
DOS XL'"
Now Includes BUG/65

OSI Precision
im ™ Software Tools

A USER'S GUIDE
and

REFERENCE MANUAL FOR

DOS XL version 2.30

A DISK OPERATING SYSTEM

designed for use with

ATARI HOME COMPUTERS

and compatible disk drives capable
of single and/or double density operation

This manual revised December, 1983

Copyright Notice

The programs, disks, and manuals comprising
DOS XL are Copyright (c) 1983 by
Optimized Systems Software, Inc.

1221-B Kent\\XXXI Ave.
San Jose, C.A 95129

All rights reserved. Reproduction or translation of
any part of this work beyond that permitted by sections
107 and 108 of the United States Copyright Act without

the permission of the copyright owner is unlawful.

TRADEMARKS

The following trademarked names are used in various
places within this manual, and credit is hereby given:

DOS XL, OS/A+, BASIC XL, ACTION!, BASIC A+, MAC/65, and
C/65 are trademarks of Optimized Systems
Software, Inc.

Atari, Atari Home Computers, Atari Writer, Atari 810
Disk Drive and Atari 850 Interface Module are
trademarks of Atari, Inc., Sunnyvale, CA.

PREFACE

DOS XL is the result of the efforts of several persons,
and we believe that proper credit should be given. The
original version of the console processor (CP) and the
original version ("version 2") of the File Manager
System (which is, of course, identical with Atari's DOS
2.0S) were written by Paul Laughton. The current
versions of all other portions are primarily the work of
Mark Rose, of OSS, with the collaboration of Bill
Wilkinson and Mike Peters.

SERVICE AND SUPPORT POLICIES

OSS has worked to bring you products which will give you
years of service and enjoyment. As with any software or
hardware product, though, errors or omissions can and do
occur. You may rest assured that, if you have a
problem, every reasonable effort shall be made to help
you.

Generally, you may direct questions and problem reports
about DOS XL to OSS. However, since DOS XL is only
distributed as a licensed product, you must sign and
return the OSS License Agreement included in your DOS XL
package before we can respond to your inquiries.

If you have a quick question or simply a procedural
problem, you may call the technical support staff at
oss. In order to allow our personnel time to answer
letters, research your problems, and eat lunch, we must
ask that you limit your technical calls to the hours of
9:30 AM to Noon or 1:30 PM to 4:30 PM (all times Pacific
Time, please). Our technical support number is

(408) 446-3117 .
Even though we have several
unusual to find them all busy.
try again.

phone
Please

lines, it is not
be patient and

Please understand that our support staff has only
limited resources and may not be able to answer all your
questions in a 5-minute phone call. So, if your problem
is such that it is not easy to describe, you are invited
to mail us a letter and include a diskette or computer
printout detailing or demonstrating your difficulty.
Please use the address given on the previous page.

Finally, if you feel the problem lies in the disk drive
itself, you must call or write the manufacturer of your
drive. Refer~the literature you received with your
drive for the appropriate address and phone number.

ABOUT THIS EDITION

DOS XL is the latest in a series of Disk Operating
Systems produced by Optimized Systems Software, Inc.

DOS XL version
completely file

2.3 is a direct
compatible with

Atari DOS 2.0S
OS/A+ version 2.0
OS/A+ version 2.1
DOS XL version 2.2

successor to and

This edition of the DOS XL manual has been issued as
what we hope is both a user-friendly "guide" to the more
commonly used features of the operating system as well
as a true "reference manual" for the entire DOS XL Disk
Operating System.

What parts of the DOS XL reference manual you read first
should depend on your experience level and your
purposes:

--If you will never program in any language, you may not
need to read any more than chapters l through 3.

--If you are an Atari BASIC programmer, you should
definitely read chapter 4 as well as the BASIC reference
manual BEFORE you start using DOS XL with Atari BASIC.

--If you are an assembly language programmer, we would
suggest reading the entire OS/A+ manual, paying special
attention to chapter 10.

--Finally, if you would
allowing it to do several
computer is unattended,

like to automate DOS XL,
tasks for you while your

you need to read chapter 8.

Of course, regardless of your experience level or
purposes, if you get tired of the restrictions of the
DOS XL menu, you should read chapters 5 and 6. You
might find them enlightening.

Whatever you choose to do, we hope that this guide and
the reference manual will help you. Written suggestions
about these manuals are always helpful and carry much
more impact than verbal comments. Your letters are
always welcome.

Section

Section

Section

Section

1 --
1. l
1. 2
1.3
1.4
1.5
1.6
1. 7

2 --
2 .1
2.2
2.3
2.4
2.5

3 --
3. l
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.ll
3.12
3.13
3.14
3.15

4
4.1
4 . 2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.ll
4.12
4.13

TABLE OF CONTENTS

Introduction
System requirements
What is a DOS?
Disk Files
Other devices
DOS XL command modes
Overview of DOS XL
Glossary of terms

Getting Started with DOS XL
Booting your DOS XL master disk
Selecting menu options
Files on the DOS XL master disk
Backing up your DOS XL master disk
Entering the cartridge

The DOS XL Menu
Entering commands
Copy Files
Duplicate Disk
Erase Files
Files on Disk
Go to Address
Initialize Disk
Load Binary
Protect Files
Quit to DOS XL
Rename File
Save Binary
To Cartridge
Unprotect Files
Xtended Command

BASIC and OS/A+
The Basic CLOSE stmt
The Basic ENTER stmt
The Basic GET stmt
The Basic INPUT stmt
The Basic LIST stmt
The Basic LOAD stmt
The Basic NOTE stmt
The Basic OPEN stmt
The Basic POINT stmt
The Basic PRINT stmt
The Basic PUT stmt
The Basic SAVE stmt
The Basic XIO stmt

RENAME files
ERASE files
PROTECT files
UNPROTECT files

1
1
1
1
3
4
6
7

9
9

ll
12
13
16

17
17
19
22
25
26
28
29
31
32
33
35
37
39
40
41

42
43
44
46
47
49
50
51
53
56
57
58
59
60
61
62
63
64

Section 5
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5. H!J
5.ll
5.12
5.13
5.14
5.15
5.16

Section 6
6 . 1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.Hl
6.ll
6.12
6.13

Section 7 --
7. l
7.2
7.3
7.4
7.5
7.6
7.7

Section 8 --
8 . l
8 . 2
8.3
8.4

Intrinsic Commands
@
CARtridge
On:
DI Rectory
END
ERAse
LO Ad
NOScreen
PROtect
REMark
REName
RUN
SAVe
SCReen
TYPe
UNProtect

Extrinsic Commands
C65
CLRDSK
CONFIG
COPY
DO
DUPO BL
DUPDSK
INIT
INITDBL
MAC65
MENU
RS232
SDCOPY

Multiple Drives, Multiple Densities
Setting Up Multiple Drives
Initializing Other Densities
Copying Between Densities
Copying with Multiple Drives
Using 3 or More Drives
Booting Up Into a BASIC Program
Converting Single Density Master

Diskette to Double Density

The DOS XL Boot Process
Extended Memory and DOSXL.SYS
The AUTORUN.SYS file
The STARTUP.EXC file
The MENU.COM file

file

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

82
84
85
86
88
90
91
92
93
94
95
97
98
99

100
HH
103
104
105
106
108

ll0

ll3
ll3
ll5
ll5
ll6

Section 9 --
9.1
9.2
9.3
9.4
9.4.1
9.4.2
9.5
9.6

Batch Processing
overview of Batch Processing
.EXC File Format
Intrinsic Commands for .EXC
Stopping Batch Files

Stops by OS/A+
Stops by User Programs

ST'ARTUP.EXC: A Special File
How It Works (Execute Files)

117
117
118
118
119
119
119
12111
12111

Section 10 -- 'Assembly Language and OS/A+ 122
10.l Interfacing to I/O Routines 123
10.l.l Structure of the IOCBs 123
10.1.2 The I/O Commands 128
10.1.3 Error Codes Returned 132
10.2 Manipulation of OS/A+ 133
10.2.l SYSEQU.'ASM 133
10.2.2 OS/A+ Memory Location 133
1111.2.3 Execute Parameters 134
10.2.4 Default Drive Location 134
10.2.5 Extrinsic Parameters 135
10.2.6 RUNLOC 136
1111.3 Device Handlers 136
10.3.l Device Handler Table 136
1111.3.2 Rules for Writing Handlers 137
1111.3.3 Rules for Adding to OS/A+ 139
10.3.4 An Example Program 140

Section 11 --
11. l
11. 2
11.3

'Appendix A -
A. l
A. 2
A. 3

'Appendix B

'Appendix C
c.1
c.2

'Appendix D

'Appendix E
E.l
E.2

Disk File Structure
Data Sectors
Disk Directory
Volume Table of Contents

Customizing OS/A+
Buffer 'Allocation
Specifying Existing Drives
Saving Your Modified Version

·DOS XL and the 850 Interface

System Memory Maps
Atari Zero Page Map
System Memory Map (Ver. 2)

142
143
143
144

147
147
148
148

149

151
151
151

Atari Writer and Other Cartridges 152

Errors
Types of Errors
Error Code Meanings

153
153
154

Section 1: INTRODUCTION

This manual is an addendum to the manual for OS/A+,
which DOS XL supercedes. At times throughout this
addendum, you will be referred to specific sections of
the OS/A+ manual for more information.

1.1 System requirements

DOS XL requires 32K of memory, and will work ort ALL
Atari computers. Although DOS XL is designed for all
users, it enhances the usage of OSS SuperCartridges
and/or Atari XL-series computers by extending program
memory.

1.2 What is a DOS?

The purpose of DOS XL is to provide a way for your Atari
computer to communicate with your disk drives, printer,
and other peripherals. DOS XL contains commands and
utilities which allow you to:

1. Organize information into files on your
diskettes.

2. Access this information with ease and
precision.

3. Make use of other applications programs (e.g.
BASIC XL, MAC/65, BUG/65, Atari BASIC, etc.).

4. Pass control of the computer between the
Operating System (DOS XL), Cartridges, and
programs stored on disk.

DOS XL is the only DOS for Atari computers which lets
you choose either an easy-to-use menu or a versatile
command processor. When you use DOS XL in conjunction
with the OSS SuperCartridge or the Atari XL computers,
you also gain up to SK of user memory.

1.3 Disk Files

Much like a record or a cassette tape can hold a number
of songs, a single diskette can hold many distinct files
of information (up to 64 files per diskette). These
files can hold programs or data in text or other form.
Unlike files stored on a cassette, each disk file must
have a name associated with it.

--01--

The rules for valid DOS XL disk file names are:
- One to eight characters in length

Optionally followed by a period and a one to
three character extender.
Only characters A-Z and 0-9 are allowed.
The first character must be a letter from
A-Z.

Valid file names: Illegal file names:
GEORGE
TEMP.ABC
PROGl.SAV
SORT123
COPY.COM

NAMETOOLONG
TEMP.LONGEXTENSION
lPROG.SAV (starts with digit)
sortl23 (lower case letters)
BAD-CHAR

The portion of the file name preceding the period is
called the primary file name, and the optional portion
of the file name following the period is called the
extender. Although any combination of valid characters
may be used for both sections of the file name, it is
recommended that the extender be dedicated to
indentifying the type of information contained in the
file . The following extenders are suggested:

Extender: Suggested usage: Example:
--------- ---------------- --------
SAV "SAVE"d BASIC file GEORGE.SAV
LIS "LIST"ed BASIC file PROGl .LIS
ACT ACTION I source file MIKE.ACT
M65 "SAVE"d MAC/65 file SORT1.M65
OBJ binary object file BILL.OBJ
COM DOS XL utility program COPY.COM
EXC DOS XL execute file STARTUP.EXC
SYS system program - reserved for DOS XL

In most cases, file names must be preceded by a device
specifier which tells the system on which drive to
search for a particular file. The format of a device
specifier is:

On:
(or)

D:
where n is a digit from 1 to 4, depending on how many
drives you have. If you just specify D:, drive 1 is
assumed (this is very useful if you only have one
drive) . Here are several examples of complete file
names as you would type them into the computer:

File name:

Dl:GEORGE
D2:MIKE.ACT
D:TEMP.LIS

--02--

Meaning:

file GEORGE on drive 1
file MIKE.ACT on drive 2
file TEMP.LIS on drive 1

In some cases file names may contain the "wild-card•
characters '?' and '*' A question mark ('?')
will match any character in a file name, while an
asterisk ('*')will match any string of zero or more
characters. For example, AB*.C?? will match
ABX.CXX AB.CUR ABCDEF.CNN etc. Wild-card characters
may be used in the following DOS XL menu commands:

Files on Disk
Copy Files
Erase Files
Protect Files
Unprotect Files

See section 3 for more information on these menu
commands. See section 5 for more on "wild-cards".

1.4 Other devices

The Atari Personal Computer considers everything except
the guts of the computer (i.e. the RAM, ROM, and
processing chips) to be external devices. Actually,
some of these "external devices" come with the computer
(for example, the Keyboard and the Screen Editor). Some
of the other devices are Disk Drive, Program Recorder
(cassette), and Printer. When prompted for a file name
by DOS XL, you need not always enter the name of a disk
file. Other devices are referred to by names consisting
of a single letter optionally followed by a single digit
used to define a specific device when more than one of
the same kind exist (e.g., Dl: or D2:) . The device name
must be followed by a colon. The following is a list of
device names which may be used under standard DOS XL:

C: The Program Recorder -- handles
and Output. You can use the
either an input or output device,
as both simultaneously.

both Input
recorder as
but never

Dl: - D81 Disk Drive(s) handles both Input and

E:

Output. Unlike C:, disk drives can be used
for input and output simultaneously. You are
also required to specify a file name with this
device, as previously mentioned.

NOTE: if you use D: without a drive number,
Dl1 is assumed.

Screen Editor handles both Input and
Output. The screen editor simulates a text
editor/word processor using the keyboard as

--03--

K:

P:

input and the display (TV or Monitor) as
output. This is the editor you use when
typing in a BASIC XL program. When you
specify no channel while doing I/O, E: is
used because the channel defaults to 0, which
is the channal BASIC XL opens for E:.

Keyboard -- handles Input only. This allows
you access to the keyboard without using E:.

Parallel Port on the 850 Module -- handles
Output only. Usually P: is used for a
parallel printer, so it has come to mean
'Printer' as well as 'Parallel Port'.

Rl: - R4: The four RS-232 Serial Ports on the Atari 850
Interface -- handle both Input and Output.
These devices enable the Atari system to
interface to RS-232 compatible serial devices
like terminals, plotters, and modems.

S:

NOTE: if you use R: without a device number,
Rl: is assumed.

The Screen Display (either TV or Monitor) -
handles both Input and Output. This device
allows you to do I/O of either characters or
graphics points with the screen display. The
cursor is used to address a screen position.

1.5 DOS XL command modes

A primary feature of DOS XL is its two modes of command
entry. You, the user, may choose either a menu mode or
a command processor. For those of you unfamiliar with
other menu driven systems such as Atari DOS, a menu is
simply a list of commands which appear on the screen.
You need simply choose one of the options listed before
you. If additional information is required, you are
further prompted by the system for input. In this way,
you need not remember the names of DOS functions:
instead, you may simply select a command from the list.

The other input mode for DOS commands is the Command
Processor mode, or "CP". In this mode, you are NOT
shown a list of commands to choose from. Instead, you
must invoke the DOS commands by name. Although this
might at first be cumbersome, once several commands have
been committed to memory, the command mode is much
faster and easier to use. Also, certain advanced
features of the DOS are available only from the "CP".

--04--

When DOS XL is shipped to you, it is set up so that
you will be presented with the menu mode of command
entry. It is recommended that this mode be used
exclusively until you have gained some familiarity
of the system. At that time you may, if you wish,
read carefully sections 4 and S which discuss using
the DOS XL command processor. After trying out the
command mode, you may refer to section 8 in order to
modify the system so that the command processor
appears by default instead of the menu.

The following section summarizes the differences between
the menu and command modes of DOS XL operation.

The DOS XL menu has the following advantages and
disadvantages:

Advantages:
1) You do not need to remember the names of DOS

commands. Instead, you are prompted at each step
for the proper information.

2) Those of you already familiar with Atari DOS 2.0s
may find the DOS XL menu more comfortable and easier
to use.

Disadvantages:
1) Using the menu with . DOS XL uses about 2K more memory

space. However, this is offset by the fact that DOS
XL saves you SK with a supercartridge.

The DOS XL CP (command processor) has the following
advantages and disadvantages:

Advantages:
l) Once a few commands have been learned, the command

mode is faster to use than the menu mode.
2) Those of you familiar with other operating systems

such as Apple DOS, CP/M, UNIX, or OS/A+ will find
the command mode more conventional and familiar than
the menu mode.

3) Unlike the menu mode, the DOS XL command processor
uses no extra user memory.

Disadvantages:
l) You are not prompted for input as in the menu mode.

Therefore, you must learn several fundamental
commands in order to utilize the power of the
command mode.

--es--

1.6 Overview of DOS XL Architecture

DOS XL (and, naturally, Atari's OS) utilizes a software
concept which is built around a structured and layered
scheme. In particular, application pr09rams are
expected to make calls to the OS via the Central Input
output routine ("CIO"). In turn, CIO is a dispatcher
which examines the application program's request and
routes the necessary subrequests to the appropriate
device driver(s).

On the Atari, the device drivers may in turn call the
SIO (Serial Input/Output) routines to perform the actual
channel communications with devices on the serial bus
(obvious exceptions include the screen and keyboard,
which do not require serial bus service). Finally, the
device (on the serial bus) receives the SIO request and
performs the actual I/O needed. The diagram below
illustrates this process .

Application
Proyram

I

BASIC User
Proyram

I
BASIC XL

I
I

Menu
I
I

Console
Processor

(CP)
I
I

Any ONE of the above
I

I
Disk

Device
Driver

I

I

SIO

(disk drive)

CIO

Printer
Device
Driver

I

I
(printer)

Keyboard
Device
Driver

I
(Atari keyboard)

Figure 1-1
Overview of DOS XL

--06--

Screen
Device
Driver

I
(TV/monitor)

Generally speaking, there is no reason any one or more
portions of this hierarchical structure cannot be
replaced with another, equivalent section of code. on
the Atari computer, in fact, DOS XL itself (or for that
matter any other DOS) is "added" to the default
structure only if a disk drive is present at power-on
time. Some manufacturers, for example, have produced
their own printer or screen drivers, replacing the
Atari-supplied drivers with minimal effect.

Unfortunately, we cannot say that any given portion may
be replaced with NO effect, simply because an
unfortunately high portion of software written for the
Atari violates the hierarchy (by direct calls to device
routines, or worse). These violators are by no means in
the majority, or we might have no hope of ever producing
an improved Atari system. However, we should be aware
of at least the most important of these (quite frankly)
poorly thought-out programs and maintain what
compatibility that we can when we change the system.

Generally, the worst offenders are programs such as
VISICALC and MICROSOFT BASIC (disk version), both of
which make assumptions about memory layout and disk
usage. However, these programs (and most others) are
shipped with an operating system intact on the disk on
which they reside. Thus, although we may not force them
to take advantage of the expanded capabilities that our
device drivers may offer, at least we need only maintain
compatibility with a standard Atari 810 Disk Drive to
allow their usage on otherwise improved products.

As you might have noted in Figure 1-1, the menu and CP
(Console Processor) are NOT priveleged parts of the
system. CP functions as an easy-to-use interface
between the human at the keyboard and the machine level
of the CIO calls, and the menu provides an even simpler
access into CP and from there to the rest of the system.

1.7 Glossary of terms

The following terms are used throughout the rest of this
manual. Their definitions are included here so that you
may familiarize yourself with them before proceeding.
Please refer back to this section to clarify concepts
introduced later in the manual.

--07--

Term:

DOS

boot
booting

master diskette
master disk

bootable diskette

file name

filespec

prompt

[RETURN]

utility
utility program

Definition:

An acronym for Disk Operating
System.

The process of loading DOS XL or
another system into memory when
you power on your computer.

The DOS XL diskette you received
with your purchase of DOS XL, or
a duplicate thereof.

Any diskette which contains the
file DOS.SYS. Such a disk can
be used to boot DOS XL into
memory. To take advantage of the
you also need DOSXL.SYS on that
diskette.

The string of characters used to
refer to a specific file on a
specific drive (e.g., D:GEORGE).

A file name which may contain
the wild-card characters '?'
and '*' (e.g., D:**.*,
D2:*.CO?).

Any message
instructing or
type a response.

from DOS
asking you

XL
to

The key located on the right
side of the keyboard of your
Atari computer, marked "RETURN".

A program which is used by DOS
XL to perform a disk operation.
Examples include COPY . COM, which
copies files: !NIT.COM, which
initializes disks: etc. Fran
the viewpoint of DOS XL, even
languages such as BASIC XL and
Atari BASIC are utilities.

--08--

Section 2: GETTING STARTED WITH DOS XL

2.1 Booting your DOS XL master disk

The first operation you should perform after opening
your DOS XL package is to fill out your license
agreement and mail it to OSS. This action puts you on
our mailing list for a quarterly (usually) newsletter
announcing new products, updates to existing products,
solutions to problems with our products, and answers to
common user questions.

Once this is done, you should determine whether you wish
to use the single density or double density version of
DOS XL. In truth, you will probably find occasion to
use both versions, so OSS has provided you with a
two-sided master diskette. One side of your DOS XL
master diskette contains a single density version of DOS
XL: the other side contains a double density version of
the same thing. But why use one version over the other?
There may be many reasons for choosing one version over
another, but allow us to give you what we feel are a few
good reasons:

SINGLE DENSITY: To be compatible with diskettes created
or designed for Atari 810 disk drives, you should use
the single density version. Single density DOS XL is
completely file compatible with Atari DOS 2.0s. All
operations which work with Atari DOS will generally work
with single density DOS XL.

Are there exceptions? Yes. Several companies produce
self-booting disks (that is, you simply put them in the
disk drive and turn on the computer) which make calls or
references to routines or addresses internal to Atari
DOS. There is nothing we can do to make DOS XL
compatible with these disks! On the other hand, this is
not really a problem, since (as we mentioned) these
disks are generally self-booting (implying that they
include a copy of Atari DOS on their disk). To use
these diskettes, do nothing special. Simply follow
their manufacturers' directions.

DOUBLE DENSITY: Generally, most programs written with
cartridge-based languages will work fine with double
density DOS XL. This usually includes programs written
in Atari BASIC, PILOT, LOGO, oss BASIC XL, MAC/65, C/65,
and more. Of course, if you yourself have written the
program and have not made assumptions about the size and
type of disk, your programs will run correctly.

--09--

What doesn't work in double density? Programs which
assume that sectors always contain 128 (or 125) bytes.
Programs which are self-booting and which have special
"protection" schemes. Programs which bypass DOS
entirely. As mentioned above, though, these programs
are usually distributed on self-booting disks, so you
need do nothing special with them.

In any case, once you have decided which density disk to
boot, perform the following steps:

1) Connect your disk drive and any other peripherals to
your Atari computer following the manufacturer's
instructions.

2) Turn on your peripherals and your monitor or
television.

3) Insert the DOS XL master disk you have chosen to use
(i.e., either single or double density) into the
disk drive (drive 1 if you have more than one
drive).

4) Now plug a cartridge, if you wish, into the
cartridge slot.

5) Finally, turn on your Atari computer.

The disk drive will be accessed, and after a time the
DOS XL copyright message will appear at the top of the
screen. Then, a message will begin to appear, line by
line, 'Which begins with "Welcome to DOS XL ... ". The
last line from the startup file is just "MENU". This is
a command which instructs DOS XL to load the DOS XL
menu. After a few more seconds, the menu program will
finish loading, the screen will again clear, and the DOS
XL menu will appear.

The scrolling text which appears on
from a special file on the disk
"STARTUP.EXC". In section 8.3, you
modify these messages or omit them

--UJ--

the screen comes
which is named
can learn how to

entirely.

2.2 Selecting menu options

You should now be presented with the DOS XL menu on the
screen. It should look like this:

DOS XL MENU version 2.30
copyright (c) 1983 OSS, Inc.

Files on Disk
To Cartridge
Copy Files
Duplicate Disk
Erase Files
Initialize Disk
Xtended Command

Protect Files
Unprotect Files
Rename File
Save Binary
Load Binary
Go to Address
Quit to DOS XL

Enter your selection.

NOTE: If the version number shown on your menu is
2.31, 2.32, etc., there is no cause for alarm. OSS
reserves the last digit of the revision number as a
"patch" number. Patches never include major
documentation or feature changes but instead only
fix bugs found in prior releases.

Although this diagram does not show it, the first
characters of each of the 12 commands in the list are in
inverse video. These characters are those which you
would type to select a command. For example, to invoke
the "Rename File" command, you would simply type 'R', to
the above prompt. For most of the menu commands, extra
input is required. The menu will prompt you with
appropriate messages whenever you are required to input
new data .

Whenever you are prompted by the DOS XL menu to enter a
filename or a filespec, you don't always have to specify
the device name for the drive. If you do not specify a
device name (i.e., D:, D2:, etc.), drive 1 is assumed
(Dl:). For example, if you typed "GEORGE" as a
filename, the menu would assume that you meant
"Dl:GEORGE".

CAUTION1 In general, you may not omit the drive
specifier on names entered while using cartridge
based products such as Atari BASIC or OSS BASIC XL.
Except when working with the menu or DOS XL's
Console Processor, you usually need to specify the
entire file name (and often must enclose it in
quotes, as in Atari BASIC).

--11--

2 . 3 Files on the DOS XL master disk

In order to insure the integrity of your DOS XL master
diakette, you should view the names of the files
contained on it. The DOS XL menu of commands should be
visible on the screen, and the menu will prompt you:

Enter your selection.

The first command in the menu is "Files on disk". This
command allows you to view the names of disk files.
First insure that your DOS XL master diskette is still
in drive 1. Then select this command as follows:

You type: F

When the menu responds by prompting with "Filespec:",
simply type [RETURN].

The list of files on your master disk will appear and
should look like this (the numbers may differ a bit):

* DOS SYS 046
* DOSXL SUP 046
* DOSXL XL 060
* MENU COM 025
* CLRDSK COM 023
* COPY COM 075
* DO COM 003
* DUPDBL COM 011
* DUPDSK COM 011
* INIT COM 006
* INITDBL COM 023
* NOVERIFYCOM 001
* RS232 COM 001
* RS232FIXCOM 002
* SDCOPY COM 086
* VERIFY COM 001
* SYSEQU ASH 022
* HEM LIS 066

STARTUP EXC 003
160 FREE SECTORS

If the list of files looks essentially the same, but
the numbers on the right side are about half what
is shown, you've booted the Double Density version
of DOS XLI In particular, if the first line reads

* DOS SYS 023
you can be sure that you are working in double
density. The number on the right indicates the
file size in sectors. Since double density sectors
hold a little more than twice as much as single
density sectors, it makes sense that the file sizes
are smaller. Also, notice how many more "FREE
SECTORS" you have in double density. THIS is why
you bought a double density drivel

--12--

Each of the files has a primary name and an extension.
For example, the file COPY.COM has primary name COPY and
extension COM. Note that in the file listing the period
is not shown. Instead, there may be one or more spaces
between the primary name and the extension. This format
appears ONLY in the file listing. You may never use
this form for specifying files. If you are using file
extensions, you must use a period with no intervening
spaces, as in "D:TEST.LIS".

Notice that all of the files on the master disk except
the file "STARTUP.EXC" are preceded by an asterisk in
the directory listing. An asterisk preceding a file
impli·es that it has been protected from modification or
erasure through the use of the DOS XL menu command
"Protect Files". This method can also be used to
protect your own files from change or deletion through
accidental use of one of the DOS XL commands (see
section 3.9 for further information).

2.4 Backing up your DOS XL master disk

Now that you have successfully booted your master disk,
you should make a backup copy. If your DOS XL master
disk should ever fail to operate properly, you may then
transfer the files on your backup copy to the master
disk, thus restoring the master to a working state.

First, for safety's sake, place a write protect tab over
the notch on your DOS XL master disk, if it does not
already have one. This protects the entire diskette
from being written to in any way. You should also use
write protect tabs to protect your program disks from
accidental change when you do not need to write to them.

At this point, the DOS XL menu of 12 commands will be
displayed on the screen. The following prompt will
appear with the cursor below it:

Enter your selection.

You type: D

This is the command for Duplicate Disk. You will then
be asked:

Double density?

If the size of DOS.SYS indicated in the file directory
was e46 (sectors), then you booted a single density
diskette, so

You types N [RETURN]

--13--

However, if the size of DOS.SYS indicated in the file
directory was 023 (sectors), then you booted a double
density diskette, so

You type: Y [RETURN]

Either the DUPDSK.COM (short for DUPlicate DiSK) or
DUPDBL.COM (short for DUPlicate DouBLe density disk)
utility program will be read into memory, depending on
whether you answered N or Y to the last prompt. The
next prompt is:

Source disk (1,2,3,4) :

Normally, you will copy from drive 1 so,
You type: 1 [RETURN]

To the prompt:
Destination disk (1,2,3,4)

You type: 1 [RETURN]

SPECIAL NOTE: If you have two disk drives, please
refer to section 7 of this manual for information on
how to configure them for various purposes. Once
you are sure they are configured properly, you can
then use drive 2 as your destination disk and the
duplication process will proceed much more speedily.

You will be asked:
Format destination disk (Y/N)?

Most blank diskettes are unformatted. That is, they are
not yet prepared to hold disk files. In order to copy
files or diskettes to blank diskettes, they must first
be formatted. Therefore,
You type: y [RETURN]

At this point, the DUPDSK or DUPDBL utility will ask:
Insert source disk into drive 1
And hit RETURN when ready

Your master dJ.~ should still be in drive 1 at this
point, so just type:

[RETURN]

The light on the front of your disk drive will come on,
and the DUPDSK utility will respond by saying:

Reading source disk

After a while, you will be prompted:
Insert destination disk into drive 1
And hit RETURN when ready

--14--

The DUPDSK utility has read as much as possible of the
source disk into memory. At this time, remove your DOS
XL master disk from drive 1 and insert a blank diskette.
When this has been done,
You type: [RETURN)

The program will respond:
Formatting destination disk

and, after a while,
Writing destination disk

Most of the time, the total information on a diskette is
too large to hold in your Atari's memory at one time.
This is the case for your DOS XL disk. Therefore, you
will be prompted to repeatedly insert your source and
destination disks (the DOS XL master and the blank
diskette, respectively) until the duplication is
complete. Follow these prompts carefully until the
DUPDSK utility responds:

Copy same disk again (Y/N)?
You type: N [RETURN]

The DOS XL menu will then prompt:

Hit RETURN for menu
You type: [RETURN]

At this point, you have successfully made a copy of your
DOS XL master disk. First place a write protect tab
over the notch on the copy so that it is never
accidently written to. Label the disk appropriately and
store it in a safe place so that you can use it if ever
your master disk fails to work properly.

--15--

2.5 Entering the cartridge

At this point, if you wish to enter the cartridge to use
BASIC, BASIC XL, ACTIONI, or other cartridge based
products, you must use a DOS XL menu command.

If you have not already plugged in the desired
cartridge, you should turn off your Atari computer
and insert it. Then insure that the DOS XL master
disk is in drive l and turn on the power. The boot
process will again take place, putting you in the
menu.

To enter the cartridge you must use the "To cartridge"
command in the DOS XL menu. To use that command,
You type: T

You will then
programming.

be in the cartridge, ready for

If you are using the Atari BASIC cartridge, please
refer to section 4 of this manual for details on the
commands which may be used from BASIC to access the
disk. For those of you already familiar with Atari
BASIC under Atari DOS 2.0s, please note that disk
access is identical under DOS XL.

--16--

Section 3: THE DOS XL MENU

The DOS XL menu was designed to be easy to use while
allowing you access to the full power of the Atari
computer.

For those of you who have previously used Atari DOS,
here is a summary of the differences between the DOS XL
menu and the Atari DOS menu:

1) Loading DOS - The Atari DOS menu must be loaded in
from the disk whenever you return to DOS from a
cartridge. Since we felt that this process was too
slow and cumbersome, we made sure that the DOS XL
menu MAY be kept "resident" (in memory) at all
times. This does occupy about 2,000 bytes more
memory, but this is more than offset if you are
using DOS XL with a SuperCartridge. If you wish to
utilize the memory taken up by the menu, you may use
the DOS XL command processor, which does not use
that memory.

2) MEM.SAV Atari
file in which to
DOS functions.
MEM.SAV file.

DOS supports the use of a special
save user memory while accessing
DOS XL neither supports nor needs a

3) Single key commands - The DOS XL menu needs only a
single key to access commands, whereas Atari DOS
requires a carriage return after the command letter.

3.1 Entering Commands

Whenever the menu is entered, the following list of
commands will appear on the screen:

DOS XL MENU version 2.30
copyright (c) 1983 oss, Inc.

Files on Disk
To Cartridge
Copy Files
Duplicate Disk
Erase Files
Initialize Disk
Xtended Command

Protect Files
Unprotect Files
Rename File
Save Binary
Load Binary
Go to Address
Quit to DOS XL

When the DOS XL menu is visible on the screen, you are
prompteds

Enter your selection.

--17--

At that point, you should type the first letter of any
of the DOS XL menu commands listed on the screen. If
more input is required to complete the command, the menu
will prompt you for more information. Unless the
command loads a utility program, you may abort a command
at any time by hitting the ESCAPE key on the upper left
of your keyboard. If the command loads a utility
program (the commands "Copy Files", "Duplicate Disk",
and "Initialize Disk"), you may have to press SYSTEM
RESET in order to abort the command.

The following sections describe each menu command in
detail. The commands are presented in alphabetical
order, NOT the order in which they appear in the menu.

--18--

3.2 C - Copy Files

CP equivalent: COPY

The copy command allows you to transfer files between
diskettes or to different files on the same diskette .
The "Copy Files" command is most useful for copying one
or a few files from one diskette to another. If you
desire to transfer all or most of the files on a single
diskette to another diskette, you should use the
"Duplicate Disk" command instead as it will perform the
operation much more rapidly.

To use the copy command, select 'C' when the menu
prompts you for a command selection. At that time, DOS
XL will check for the COPY.COM file on the diskette in
drive 1. This is the utility program which performs
file transfers. If DOS XL does not find the COPY.COM
program, you will be prompted to insert your DOS XL
master disk as follows:

Copy Files
Insert MASTER disk and hit RETURN

If you receive this prompt, take out any disk in drive l
and insert your DOS XL master disk and press the RETURN
key.

The menu will then prompt:
Copy Files

From file:

At this point, you should respond with a filespec
specifying the file or files to be copied (e.g.,
D:GEORGE, D2:JUNK.LIS, etc.). For example, if you want
to transfer the contents of the file "PROGl" on drive l
to another diskette, you should type "Dl:PROGl" .

Notice that wild-cards may be used to refer to files
using the COPY utility (e.g., TEMP.*, AB??.COM,
etc.). As a special case, if you wish to copy all
files on a disk to another disk, just use a filespec
of Dn:, where n is the source drive number (e.g . ,
Dl:).

The COPY utility will then prompt:
To file:

You should respond with the destination filespec. In
most cases you will want to transfer files from one
diskette to another without changing their names. In

--19--

this case you may
just Dn:, where n
D:, Dl:, 02:).
copy "PROGl" to a
drive, you should

refer to the destination f ilespec as
is the destination drive number (e.g.,
In the above example, if you wanted to
different diskette and you own only 1
type "Dl:".

You will then be asked:
Single Drive?

If you own only a single drive as in the above example,
or if you are performing this copy to another diskette
in the same drive,
You type: y [RETURN]

In any other case,
You type: N [RETURN]

The COPY.COM utility program will then be loaded from
the diskette, and you will be prompted:

Insert disk(s) to be copied
and hit RETURN when ready

Remove your master disk and insert your source disk. If
you own more than one drive and are copying to a second
drive, insert your destination disk into the proper
drive.
You type: [RETURN]

Before each file is copied, you will be asked:
Copy

On: filename
to Dn:filename?

If you wish to copy that particular file,
You type: y [RETURN]

Otherwise,
You type: N [RETURN]
If you choose not to copy a file, a message will be
printed to the screen verifying that the file was not
copied.

At this point the source file will be read into memory.
If you are copying to another disk on the same drive,
you will then be prompted to insert the destination disk
as follows:

Insert 'to' disk and hit RETURN

If the destination file already exists, you will be
asked:

'To' file already exists
OK to overwrite?

--20--

If you wish to replace the old file with the source
file,
You type: y [RETURN)

Otherwise,
You type: N [RETURN)

If the destination file has previously been guarded
against modification by using the DOS XL menu
"Protect Files" command (i.e., the file is preceded
by an asterisk in the "Files on Disk" listing of the
disk), the COPY utility program will not be able to
overwrite that file. The protection must first be
removed using the "Unprotect Files" command before
that file may be written to.

The COPY utility reads as much as possible of the source
file into memory at one time. If the source file is too
large to fit into memory and you are copying on a single
drive, you will again be prompted:

Insert 'from' disk and hit RETURN

Re-insert your source disk ·and continue to carefully
follow the directions of the prompts until the entire
file is copied.

When a file has been completely copied,
message will be printed on the screen.
have been copied, you will be prompted:

Hit RETURN for menu

To return to the list of menu commands,
You type: [RETURN)

a verification
When all files

The "Copy Files" command should not be used to copy
from single to double density diskettes if you own
only one disk drive. Instead see section 7 for
operations involving multiple densities. In
particular, section 7.3 discussing single to double
density copies on a one drive system. See also
section 6.16 and be sure to read all of section 7.

--21--

3.3 D - Duplicate Disk

CP equivalents: DUPDSK
DUPDBL

This command allows you to copy quickly the entire
contents of a diskette to another diskette. If you wish
to copy only one or just a few files from one diskette
to another, or if you need to preserve some of the files
already on the disk you wish to copy TO, the "Copy
Files~· command should be used instead.

The "Duplicate Disk" command writes entirely new
information to the destination diskette, thus
erasing completely all files which previously
existed there. Carefully select the desired
destination diskette to avoid accidently destroying
your program disks .

To select the Duplicate Disk command, type 'D' when you
are prompted to enter a command selection.

You will then be asked:
Duplicate Disk

Double density?

If your source disk was formatted under single density,
You type: N [RETURN)

If the source disk is double density,
You type: Y [RETURN]

The duplicate disk utility program will be read into
memory. The next prompt is:

Source disk (l,2,3,4) :

Normally, you will copy from drive 1 so,
You type: 1 [RETURN]

You will be prompted:
Destination disk (l,2,3,4) :

If you have only a single drive, or you wish to use
drive 1 as your destination drive,
You type: 1 [RETURN]

If you wish to use a drive other than 1 for a
destination drive,
You type: n [RETURN]

--22--

where n is the number of the desired destination drive.

You will be asked:
Format destination disk (Y/N)?

Most blank diskettes are unformatted. That is, they are
not yet prepared to hold disk files. In order to copy
files or diskettes to blank diskettes, they must first
be formatted. Therefore,
You type: Y [RETURN]

At this point, the DUPDSK utility will ask you to:
Insert source disk into drive 1
And hit RETURN when ready

If you specified a destination drive different from the
source drive, you will be prompted:

Insert source disk into drive 1
Insert destination disk into drive n
And hit RETURN when ready

Insert the proper source (and destination disk, if using
2 drives) into the proper drive, and
You type: [RETURN]

The light on the front of your disk drive will come on,
and the DUPDSK utility will respond by saying:

Reading source disk

If the destination drive is the same as the source
drive, you will be prompted:

Insert destination disk into drive n
And hit RETURN when ready

At this time, remove your source diskette from drive 1
and insert a blank diskette. When this has been done,
You type: [RETURN]

The program will respond:
Formatting destination disk

and, after a while,
Writing destination disk

Most of the time, the total information on a diskette is
too large to hold in your Atari's memory at one time.
This is the case for your DOS XL disk. Therefore, you
will be prompted to repeatedly insert your source and
destination disks until the duplication is complete.
Follow these prompts carefully until the DUPDSK utility
responds:

Copy same disk again (Y/N)?

You types N [RETURN]

--23--

At this point, you will be prompted:
Hit RETURN for menu

To return to the DOS XL menu,
You type1 [RETURN]

--24--

3.4 E - Erase Files

CP equivalent1 ERAse

The "Erase Files" command allows you to delete one or
more files from a diskette. This command should be used
with care, for erased files cannot easily be recov~red,
if at all.

If ·you use the "Erase Files" command to attempt to
erase a file which has previously been protected
(i.e., the file name is preceded by an asterisk in
the directory listing), you will be given the error
message "FILE PROTECTED". If you desire to erase
this file, you must first remove the protection by
using the "Unprotect Files" command. Note that
protecting files is an excellent way of guarding
against accidental erasure.

To use this command, select 'E' when the menu
you for a command selection. The menu will then

Erase Files
Filespec to erase:

prompts
prompt:

You should respond with the name of the file you wish to
erase. If you wish to erase a group of files, you may
use wild-card characters in the filespec. However, be
very sure you know what you are erasing.

You will then be asked:
Are you sure?

If you feel the filespec you entered was correct,
You type: Y [RETURN]

If you wish to abort the "Erase Files" command,
You type: N [RETURN]

If you answered 'Y', all files matching the selected
filespec will be removed from the diskette. The menu
will then prompt:

Hit RETURN for menu

To return to the menu of commands,
You type1 [RETURN]

--25--

3.5 F - Files on Disk

CP equivalent: DIRectory

The "Files on Disk" command allows you to view the names
of any or all files on a diskette.

To use this command simply select 'F' when prompted by
the menu for a command selection. Then insert the
desired diskette into one of your disk drives (or drive
1 if -you have only one drive). At that point, the menu
will prompt:

Files on disk
Filespec:

The filespec required instructs
the disk to look for and display.
gives some examples of f ilespecs
lists of files they display:

DOS XL which files on
The following table
and the corresponding

Filespec:

GEORGE

JUNK.SAV

AB?

CAT*

JOHN.??X

**·*

Files listed:

The file having the name GEORGE,
if such a file exists.

The file having the primary name
JUNK and the extender SAV, if
such a file exists.

Any file not having an extender
whose name is three characters
long where the first two are AB.
This filespec matches ABC, ABX,
ABl, etc.

Any file · whose name begins with
CAT. The filespec matches CAT,
CATCHER, CATTLE, etc.

Any file whose primary name is
JOHN and whose extender is three
characters long ending in x.
This matches JOHN.ABX, JOHN.XXX,
etc.

All files on the diskette. This
filespec may be abbreviated by
just [RETURN].

--26--

Dl:

02:

All files on the diskette in
drive l.

All files on the diskette in
drive 2.

--27--

3.6 G - Go to Address

CP equivalent: RUN

This command allows you to pass control of your computer
to a machine language program already residing in your
Atari computer's memory. This program should have
previously been loaded into memory using the DOS XL menu
"Load File" command, or an equivalent method.

To use the "Go to Address" command, type 'G' when the
menu promt "Enter you selection." appears. At that
time, the menu will prompt:

Go to Address
Address:

You should respond with the hexadecimal address of the
location in memory you desire to jump to. For example,
if a machine language program resides at location $5000
(the dollar sign indicates hexadecimal), you would
respond with "5000". Note that although the number is a
hexadecimal value, you should not precede it with a
dollar sign when you enter it.

Be sure that the address you enter is correct; for,
in general, if you pass control to a location in
memory which does not contain the desired machine
language program, control of your computer will be
lost and the keyboard will "hang". In some cases,
hitting the SYSTEM RESET key on your computer's
keyboard will return control to you. Most of the
time, however, you will be forced to turn off the
power to your computer and repeat the boot process.

At this point, control will be
language routine located at
that routine returns to the
instruction, you will be asked:

Hit RETURN for menu

passed to the machine
the desired address. If
menu with a 6502 RTS

To return to the menu of commands,
You type: [RETURN]

--28--

3.7 I - Initialize Disk

CP equivalent1 INIT

The "Initialize Disk" command allows you to format blank
diskettes so that you may use them to store program and
data files. If you wish to create a bootable diskette
rather than just a data diskette, you will normally want
to duplicate your DOS XL master disk. In this case you
should use the "Duplicate Disk" command rather than the
"Initlalize Disk" command. If you want to duplicate any
of your diskettes using the "Duplicate Disk" command,
you do not need to format them first using the
"Initialize Disk" command, for the "Duplicate Disk"
utility will perform the format operation if you desire.

The "Initialize Disk" command writes entirely new
information to the desired diskette, thus erasing
completely all files which previously existed there.
Carefully select the diskette to initialize to avoid
accidently destroying your program disks.

To use this command, select 'I' when prompted for a
command selection. At that point, DOS XL will check for
the presence of the !NIT.COM utility on the diskette in
drive 1. If it is not there, you will be prompted:

Initialize Disk
Insert MASTER disk and hit RETURN

after which you should insert your DOS XL master disk
and hit the RETURN key.

Then the INIT utility program will be loaded into memory
and you will be present with the 4 options of the INIT
program. They are:

1. Format disk only
2. Format disk and write DOS.SYS
3. Write DOS.SYS only
4. Exit to DOS XL

I CAUTION: The I {INIT) option may normally be used
I ONLY to initialize diskettes of the same density as
I the master diskette you have booted. See section 7
I of this manual for information on other options.

--29--

Normally, you should use the "Duplicate Disk"
command to copy your DOS XL master to create a spare
bootable disk. However, option 2 (and option 3 when
used with an already formatted diskette) of the
"Initialize Disk" command may be used to create a
bootable disk.

Do NOT, however, use either option 2 or 3 if you
have booted the system with the file "DOSXL.SYS"
present and active (that is, if you have followed
the instructions of section 8.1 for using an
extended memory DOS system).

If you are
configuration,
original master
thereof) before

using an extended memory DOS
we suggest that you boot your
diskette (or a direct duplicate

using option 2 or 3 of this command.

Comment: After using option 2 to create a bootable
disk, the DOSXL.SYS file should be Copied onto that
disk if it is to be used with an OSS SuperCartridge.

If you wish to create a bootable disk,
You type: 2 [RETURN]

If you wish to create just a data disk,
You type: 1 [RETURN]

You will be asked:
Drive (1,2,3,4):

You should respond with the desired drive number (always
1, if you have only one drive).

You will be asked:
Option n drive n - Are you sure (Y/N)?

If your are happy with your entries so far,
You type: y [RETURN]

Otherwise,
You type:

If you typed
executed. You
options.

N [RETURN]

'Y', the specified command will be
will again be presented with the 4

If you have more disks to initialize, repeat the above
steps. Otherwise,
You type: 4 [RETURN]

You will be returned to the DOS XL menu.

--30--

3.8 L - Load Binary

CP equivalent: LOAd

The "Load Binary" command allows you to read a binary
file from disk into the memory of your Atari computer.
This command can be used to load binary object of
assembly language programs, or binary data to be used by
such programs. The file you wish to load should have
previously been written to disk using the DOS XL menu
"Save. File" command, or an equivalent method.

Do NOT use this command to load Atari BASIC or BASIC
XL programs into memory. Instead, just use the LOAD
command from the BASIC cartridge (i.e., after you
have been given the "READY" prompt). See section
4.6 of this manual for more information.

To use the "Load Binary" command, type 'L' when prompted
to enter your command selection. the menu will then
prompt:

Load Binary
Filename:

You should respond with the name of the previously saved
file you wish to load. For example, if you wish to load
into memory the file "FILEl.OBJ" on drive 1, you should
type "D:FILEl.OBJ".

At this point, DOS XL will access the disk to read in
the binary file. You will then be asked:

Hit RETURN for menu

To return to the DOS XL menu of commands,
You type: [RETURN]

--31--

3.9 P - Protect Files

CP equivalent: PROtect

In many cases you will have created files on your disks
which you know you will hardly ever need to modify.
There is a way to guard these files so that you need not
worry about accidently deleting or modifying their
contents. The "Protect Files" command allows you to
protect files from renaming, erasure, or modification.
These files will then be preceded by an asterisk in a
directory listing when you use the "Files on Disk"
command. If in the future you desire to remove the
protection afforded by this command, you should use the
"Unprotect Files" command.

To use this command, select 'P' when the menu
you for a command selection. The menu will then

Protect Files
Filespec to protect:

prompts
prompt:

You should respond with the name of the file you wish to
protect. If you wish to protect a group of files, you
may use wild-card characters in the filespec.

At this point the disk will be accessed and the files
will be protected. The menu will then prompt:

Hit RETURN for menu

To return to the menu of commands,
You type: [RETURN]

--32--

3.10 0 - Quit to DOS XL

CP equivalent: none

The "Quit to DOS XL" command is used to pass control
from the DOS XL menu to the DOS XL command processor.
Although almost all the functions you need from DOS may
be accomplished from the DOS XL menu, certain commands
and features are accessible only from the command
processor mode.

To use this command, type 'O' when prompted by the menu
to enter a command selection. At that point, control
will be transfered to the command processor mode.

Whenever you enter the DOS XL command processor, the
following message will appear on the screen:

DOS XL - Atari version 2.30
copyright (c) 1983 OSS, Inc.

Dl:

The "Dl:" which appears to the left of the cursor is the
prompt for the command mode. In this mode you are
expected to type in a .complete command line rather than
simply a command selection. For example, to load the
DUPDSK.COM utility (for duplicating single density
diskettes), the DOS XL command line is "DUPDSK", rather
than a single character as in the menu mode .

There are two major types of commands which you can use
when the Dl: prompt appears, Intrinsic Commands and
Extrinsic Commands. As a us~r, the only real difference
between these two types is that a master disk (or,
sometimes, a subset thereof) must be in place in drive 1
in order to use an extrinsic command. Section 5 of this
manual details the Intrinsic Commands. Section 6
describes the usual Extrinsic Commands .

It is also possible to write your own commands to be
used from the DOS XL command processor or the "Xtended
Command" menu function. For more information on this
capability, refer to section 10 of this manual.

Certain features
available only
information on
please ref er to

of DOS XL such as batch processing are
from the DOS XL command processor. For
batch processing and execute files,

section 9 of this manual.

--33--

In order to return to the DOS XL menu from the command
processor, insert your DOS XL master disk into your disk
drive (or drive 1, if you own more than one drive).
Then, from the Dl: prompt,
You type: MENU [RETURN]

The DOS XL menu program will be loaded and executed.

--34--

3.11 R - Rename File

CP equivalent: REName

The "Rename File" command may be used to change the file
name associated with a file of information. This
command does not alter or delete any information
contained in the file. Rather, the file will only show
up with a different name in the directory listing when
using the "Files on Disk" command.

If you attempt to rename a file which has been
protected against modification (i.e . , the file name
is preceded by an asterisk in the directory
listing), you will be given the error message "FILE
PROTECTED". If you desire to rename this file, you
must first remove the protection by using the DOS XL
menu command, "Unprotect Files".

To use the "Rename File" command,
menu prompt, "Enter your selection."
then be asked:

Rename File
Old name:

select 'R' when the
appears. You will

You should respond with the current name of the file
whose name you wish to change. For example, if you want
to change the name of the file "D:GEORGE" to "D:PROGl",
you should type "D:GEORGE".

The menu will then respond,
New name:

At this point you should type the new name you wish the
file to have. In the above example, you should type
"PROGl" at this time. Notice that you must NOT use a
device specifier (i.e., D:, D2:, etc.) in the new name:
you should type just "PROGl", not "D:PROGl".

You will then be asked,
Are you sure?

If you are satisfied that you have entered both file
names correctly,
You type: y [RETURN]

If instead you wish to abort the rename operation,
You type: N [RETURN]

--35--

If you answered with 'Y ' , the designated file will be
renamed , and you will be prompted:

Hit RETURN for menu

To return to the list of menu commands,
You type: [RETURN]

--36--

3.12 S - Save Binary

CP equivalent1 SAVe

The "Save Binary" command allows you to write a portion
of your Atari computer's memory to a disk file. This
command can be used to save to disk binary object of
assembly language programs, or binary data to be used by
such programs.

-----~--Do NOT use this command to save Atari BASIC or BASIC
XL programs from memory. Instead, just use the SAVE
command from the BASIC cartridge (i.e., after you
have been given the "READY" prompt). See section
4 . 12 of this manual for more information.

If you attempt to save binary data to a file which
has been protected against modification (i.e., the
file name is preceded by an asterisk in the
directory listing), you will be given the error
message "FILE PROTECTED". If you desire to rename
this file, you must first remove the protection by
using the DOS XL menu command, "Unprotect Files".

To use the "Save Binary" command, type 'S' when prompted
to enter your command selection . the menu will then
prompt:

Save Binary
Filename:

You should respond with the name you wish the saved file
to have. For example, if you wish to write memory from
locations $4000 to $4100 (the dollar signs indicate
hexadecimal addresses) to the file "FILEl.OBJ" on drive
1, you should type "D:FILEl.OBJ".

It is recommended that binary object file names have
either the extension "OBJ", or "COM". In the former
case , "OBJ" would indicate that the file was an
assembly language OBJect file for a program or data.
The second extension, "COM", indicates that the
program is a system utility program which was either
included with your DOS XL master disk or written by
you or another user.

At this point you will be prompted:
Starting address:

--37--

You should respond with the hexadecimal value of the
first address you wish to write to disk. In the above
example, the starting address was $4000 so you should
type "4000". Note that although the value is
hexadecimal, you should not precede the number with a
dollar sign.

The menu will then prompt:
Ending address:

You should respond with the hexadecimal value of the
last address you wish to save. In the previous example,
you should enter "4100".

At this point, DOS XL will access the disk to write out
the binary file. You will then be asked:

Hit RETURN for menu

To return to the DOS XL menu of commands,
You type: [RETURN]

--38--

3.13 T - To Cartridge

CP equivalent: CARtridge

This command allows you to enter a cartridge, if one has
been inserted.

If you are using the Atari BASIC cartridge, please
refer to chapter 4 of this manual for information on
co11U11ands which may be used from BASIC to access the
disk. For those of you already familiar with Atari
BASIC under Atari DOS 2 . 0s, please not that disk
access is identical under DOS XL.

To use this command, select 'T' when prompted by the
menu for a command selection. At that time, you will
enter the cartridge and see the familiar READY prompt of
BASIC, or the prompt for the particular cartridge you
are using . If no cartridge was inserted , the error
message NO CARTRIDGE will be displayed.

If the "To Cartridge" command is used after any of
the following commands are selected:

Copy Files
Duplicate Diskette
Initialize Diskette
Xtended Conunand
Load Binary

a coldstart will be performed by the cartridge, thus
erasing any program which was in memory. Therefore,
if you wish to go to the menu to execute any of
these commands, remember to first write any program
you are working on to disk. This is accomplished in
Atari BASIC or OSS BASIC XL by using the SAVE
command in the BASIC cartridge.

--39--

3.14 U - Unprotect Files

CP equivalents UNProtect

The "Unprotect Files" command allows files to be
renamed, erased, or modified, thus removing protection
applied by the "Protect Files" command. These files
will no longer then be preceded by an asterisk in a
directory listing when you use the "Files on Disk"
command.

To use this command, select 'U' when the menu
you for a command selection. The menu will then

Unprotect Files
Filespec to unprotect:

prompts
prompt:

You should respond with the name of the file you wish to
unprotect. If you wish to unprotect a group of files,
you may use wild-card characters in the filespec.

At this point the disk will be accessed and the files
will be unprotected. The menu will then prompt:

Hit RETURN for menu

To return to the menu of commands,
You type: [RETURN]

--41!1--

3.15 X - Xtended Command

CP equivalent: none

This command may be used to pass a command line to the
DOS XL command processor. Although almost all the
functions you need from DOS may be accomplished from the
DOS XL menu, certain commands and features are
accessible only from the command processor mode. The
"Xtended Command" function of the DOS XL menu may be
used to access from the menu those commands available
only · from the command processor. Please refer to
sections 5 and 6 for information about the commands and
features of the DOS XL command processor.

To use the "Xtended Command" function, select 'X'
prompted by the menu "Enter your selection.". At
time, the menu will prompt:

Xtended Command
Command:

when
that

You should respond with the DOS XL command you wish to
have executed. For example, if you wish to use the
"RS232" command, you should type "RS232".

Many of the DOS XL commands accessible by the
"Xtended Command" function perform their operations
by loading utility programs on the DOS XL master
disk. If you wish to use a command which employs a
utility program (any "extrinsic" command, see this
manual's section 6), you should insure that your
DOS XL master disk is first inserted into drive 1.

At this time, the desired command will
DOS XL command processor and executed.
finished, you will be prompted:

Hit RETURN for menu

be passed to the
When that is

To return to the DOS XL menu of commands,
You type: [RETURN]

--41--

Section 4: Atari BASIC and DOS XL

When you boot DOS XL from your OSS Master Diskette, you
are (after some preliminary messages) presented with a
MENU of available options. In section 2.5 and, again,
in section 3.13 you read about the T ("To cartridge")
command. If you booted DOS XL with your BASIC XL or
Atari BASIC cartridge in place (or if you have an Atari
XL computer with BASIC built in), you may simply press
the "T" key and you should receive BASIC's READY prompt.
If you do not receive a READY prompt after pressing "T",
perhaps you forgot to insert your cartridge (or perhaps
you held down the SELECT key while booting, if you have
an XL computer). If so, simply turn off the computer's
power, insert the BASIC cartridge (if you don't have an
XL computer), and turn the power back on again.

At this time, and for the rest of this section, we •will
presume that you are in Atari BASIC or BASIC XL. Any
time the READY prompt appears, you may return to the DOS
XL menu by simply typing the BASIC command, DOS.
Generally, you may again return to BASIC without losing
any program you may have in memory by again selecting
the "T" menu option. But PLEASE be sure and read the
cautionary note in section 3.13.

If you have chosen to use the DOS XL command
processor mode ("CP"), you can enter the BASIC
cartridge via the CAR command. If you then use
BASIC's DOS command, you will be returned to CP
instead of the menu.

NOTE that using Q from the menu (thus choosing the
command processor--CP--of DOS XL) and then using the
CAR command from CP will gain you over 2,000 bytes
of user space as compared to using menu option "T".
This is because BASIC is then allowed to use all the
space formerly occupied by the MENU. See also
section 8 for information on the DOS XL boot
process.

The following sections describe the most common
commands and statements which affect files on the
Please note that these commands should be issued
using the BASIC XL or Atari BASIC only. That is,
commands should be typed immediately after the
prompt or used with a line number within your
program.

The commands are presented in alphabetical order.

--42--

BASIC
disk.
while
these
READY
BASIC

4.1 CLOSE

commands

purposes

users1

usage·

argument:

examples:

description:

CLOSE

This command disassociates the file
number (channel) and file which were
associated by a previous OPEN
statement.

BASIC XL and Atari BASIC users

CLOSE lfn

fn - file number 1-7

CLOSE 11
CLOSE IOUTFILE

After CLOSEing a file number, the user may no longer
perform I/O (e.g, via PRINT, INPUT, etc.) on the file
which had been associated with that channel.

NOTE: a file OPENed for any form of output (modes 8,9,
or 12) should ALWAYS be closed before the diskette
containing it is removed or changed. The most common
cause of crashed Atari Diskettes is failure to observe
this rule.

NOTE1 Atari BASIC does NOT consider it an error to
CLOSE a channel that is not OPEN, so it is often good
practice to end a program segment by a line such as the
following1

999 FOR I•l TO 7 : CLOSE II : NEXT I

NOTE: both the END and RUN statements close all files
(except file 10, the keyboard/screen), and can be used
to advantage for this purpose when desired.

--43--

4. 2 ENTER

command:

purpose:

users:

usage:

ENTER

This command is
BASIC program
the disk.

used to retrieve a
that has been LISTed to

BASIC XL and Atari BASIC users

ENTER filespec

argument: filespec - the name of the file you are
going to ENTER.

examples: ENTER "D:PROGRl.LIS"
ENTER OVERLAYFILE$

description:

The ENTER command is used to retrieve a BASIC program
that has been LISTed to the disk. As the program is
being ENTERed into BASIC's user area, each line will be
checked for proper syntax and converted into the
internal (tokenized) form used by BASIC.

If a syntax error is encountered, the offending line
will be listed with the suspected error location in
inverse video.

NOTE: The line with the error will, nevertheless, be
placed in program memory. In such a case, your program
must be corrected before you can RUN it.

CAUTION: ENTER does NOT clear the user memory space.
Therefore, if you wish to ENTER a new program, use NEW
first. (Actually, this can be a handy feature when you
wish to merge two programs together.)

EXAMPLE
11!1 PRINT "THIS IS PROGRAM 1"
30 PRINT "AND NOW FINISHING"
LIST "D:PROGl"

NEW
10 PRINT "WE ZAPPED THE OTHER LINE 1""
20 PRINT "AND NOW PROGRAM 2"
LIST "D:PROG2"

(continued on next page)

--44--

(section 4.2, example, continued)

NEW
ENTER " D:PROGl"
LIST
[and the computer will LIST the following:

1l:J PRINT "THIS IS PROGRAM l"
30 PRINT "AND NOW FINISHING"]

ENTER "D:PROG2 " [do NOT type NEW]
RUN
[and the computer will respond with:

WE ZAPPED THE OTHER LINE 10
AND NOW PROGRAM 2
AND NOW FINISHING]

Notice how the two programs have been neatly merged
together and how line 10 from program 2 has replaced
line 10 from program 1. Remember: like numbered lines
from an ENTERed program replace lines in memory, but
otherwise the program in memory (if any) is not changed.

--45--

4.3 GET

command:

purpose:

users:

usage:

arguments:

examples:

GET

This statement will retrieve a single
byte of data from a specified disk
file.

BASIC XL and Atari BASIC users

GET tfn,avar

fn - file number 1-7
avar - any numeric variable

GET tl,BYTE
GET tINFILE,VALUE

description:

The GET statement is used to retrieve a single byte of
data from a disk file that has been previously OPENed
using the same file number.

NOTE: The data that you are GETting from the disk file
generally should have been previously written to the
specified file using the PUT statement.

EXAMPLE:
10
20
30
40
50
60
70
80

OPEN tl,8,0,"D:TEST" : REM CREATE A TEST FILE
FOR I• 0 TO 255 : PUT tl,I :NEXT I
CLOSE tl :REM WE CREATED IT
OPEN tl,4,0,"D:TEST" : REM NOW CHECK IT OUT
FOR I a 0 TO 255 : GET tl,X : REM CHECK EACH

IF X <> I THEN PRINT "BAD DISK DATA", I,X
NEXT I
END : REM END CLOSES ALL FILES

I NOTE: BASIC XL users may specify channel zero (GET I
I t0). Atari BASIC users are limited to file numbers I
I 1 through 7. I

--46--

4.4 INPUT

command:

purpose:

users:

usage :

INPUT

This command is used
from the specified
keyboard).

to request
file number

BASIC XL and Atari BASIC users

INPUT {tfn,} var {,var •.. }

data
(or

arguments: fn - file number 1-7
var - either numeric or string

examples: INPUT t3,NAME$
INPUT tINFILE,VALUEl,VALUE2

description:

When the INPUT statement is used without the fn option,
data will be requested from the keyboard. You will
notice a "?" appearing on the screen prompting you for
the keyboard input. See your BASIC XL or Atari BASIC
Reference Manual for more details.

When the file number (tfn) argument is used, data will
come in the form of ATASCII lines from the file that
has been previously successfully OPENed using the same
file number. Otherwise, the action of INPUT is
virtually identical to the action when INPUTing data
from the keyboard. That is, a string input is
terminated by an ATASCII RETURN character and a numeric
input by either the RETURN or a comma within a line.

EXAMPLE PROGRAM:
10 DIM LINE$(100) : REM a string for INPUT
20 OPEN tl,8,0,"D:TEST" : REM create test file
30 FOR I•l TO 10 : PRINT tl: "RECORD t": I
40 NEXT I REM we wrote 10 lines to the file
50 CLOSE tl : REM close the file D:TEST
60 OPEN tl,4,0,"D:TEST" : REM ready to read it
70 INPUT tl,LINE$: REM get a line from file
80 PRINT LINE$: REM and show it on screen
90 GOTO 70 : REM and go get another line

Note that this program will STOP at line 60 with
an error (number 136), indicating it has reached
the end of the file. You could use TRAP to good
effect here (see your reference manual).

--47--

NOTE: The INPUT statement cannot (generally) read a
line that is longer the 127 characters in length. If
you PRINT a line to the disk that you will later want
to INPUT, it is best to limit the size of the PRINTed
line to 127 characters or less.

--48--

4.5 LIST

command:

purpose :

users:

usage1

arguments:

examples:

description

LIST

This command will LIST the program
currently in memory to the screen (or
to the file specified).

BASIC XL and Atari BASIC users

LIST [filespec]
LIST [filespec,] linenol [,lineno2]

filespec - the name of the file you are
going to LIST to the disk.

linenol - beginning line number
lineno2 - ending line number

LIST "D2:PROG.LIS"
LIST FILE$, 1000, 2000

The LIST command is probably one of the most commonly
used commands in BASIC. Most people know that the LIST
command, when given all by itself, will LIST their
program to the screen. Even when beginning and ending
line numbers are given the results are predictable.

Now, with DOS XL, the LIST command can do even more.
When used with a filespec, the LIST command will LIST
your program to the disk instead of the screen. The
contents of this file will contain text characters and
can take up a large amount of disk space if you have a
large program.

If you use the option where two line numbers are given,
then only the lines from linenol to lineno2 (inclusive)
will be LISTed to the filespec.

If you use the option where only one
given, then ONLY that line will
file spec.

line number is
be LISTed to the

NOTE1 The ability to LIST a range of lines to the disk
provides a convenient method of moving a subroutine
(for example) to another program.

See also Section 4.2 on the ENTER command.

--49--

4.6 LOAD

command:

purpose:

users:

usage:

LOAD

This command will get a program that
has been SAVEd to the disk and put it
in BASIC's memory.

BASIC XL and Atari BASIC users

LOAD filespec

arguments: filespec - The name of the file you
wish to LOAD.

examples:

description:

LOAD is used

LOAD "D:GAME.SAV"
LOAD FILE$

in conjunction with the BASIC SAVE
command. Only programs which have been previously
SAVEd to disk may be LOADed. No syntax checking will
be done as your program is being LOADed, because the
program is already in internal format.

Generally, if you wish to keep a program on the disk,
you SAVE it. Then, later, when you wish to look at it,
modify it, or RUN it, you can LOAD it. BASIC does not
remember the name that you use when you LOAD a program,
so you can SAVE it again either under the same name (in
which case the original version is lost) or under
another name.

Also, see the RUN command for an alternative method. of
LOADing a program which will simply be RUN and not
modified.

EXAMPLE:
10 PRINT "THIS IS PROGRAM l"
SAVE "D:PROGl"
10 PRINT "THIS IS PROGRAM 2"
SAVE "D:PROG2"
LOAD "D:PROGl"
LIST
[and the computer will list the following:

10 PRINT "THIS IS PROGRAM l"]
RUN "D:PROG2"
[and the computer will respond with:

THIS IS PROGRAM 2]

--50--

4.7 NOTE

conunand: NOTE

purpose: This command determines the current
physical disk location of an OPEN file
for later use with the POINT conunand.

users:

usage:

arguments:

examples:

description:

BASIC XL and Atari BASIC users

NOTE lfn, avarl, avar2

fn
avarl

avar2

- file number from 1 to 7
- a variable to receive the

current sector number
- a variable to receive the

byte offsett within the
current sector

NOTE 11, SECTOR, BYTE
NOTE IINFILE, S, B

This command general l'.f' requires an in-depth
understanding of BASIC and data files on the part of the
programmer before it can be used properly.

"Version 2" of both DOS XL and Atari DOS maintains only
sequential files, with a forward link and file number
check occupying the last 3 bytes of each physical
sector. Version 2 provides no direct random-access
capabilities on a file level: and, without the use of
NOTE and POINT, the programmer is restricted to reading
and updating a file by starting only at its beginning.

However, thanks to NOTE and
forward link includes
experienced programmer may
access index into either
built.

POINT and the fact that the
a file number check, the
create his/her own random

an existing file or one being

NOTE simply notes the current disk sector and
offset within that sector for any currently opened
file. It places the sector and byte values
variables supplied by the programmer. It is
progranuner's responsibility to retain and remember
NOTEd values until needed by the POINT statement.

byte
disk
into
the
the

The following example is not exhaustive, but it does
give at least a start on understanding the
implementation of random access files under version 2 of
DOS XL or Atari DOS.

--51--

100 REM part 1: build a file on disk
110 DIM LINE$(150) : REM an arbitrary size
120 DIM SECTOR(l00),BYTE(l00) : REM ditto
130 OPEN tl,8,0,"D:TESTFILE" : REM a new file
140 FOR I•l TO 100
150 PRINT "GIVE ME LINE ":I: : INPUT LINE$
160 IF LEN(LINE$)=0 THEN 200
170 NOTE tl,SECTOR,BYTE
180 SECTOR(I)•SECTOR : BYTE(I)•BYTE
190 PRINT tl:LINE$: NEXT I

200 REM done creating the file
210 CLOSE tl
220 MAXREC = I-1 : REM really ••• check it out

250 REM part 2: accessing the file
260 OPEN tl,12,0,"D : TESTFILE" : REM file we made

300 REM the main loop
310 PRINT "GIVE ME A NUMBER FROM 1 TO ":MAXREC
329 PRINT " (OR " TO QUIT) H:
330 - INPUT RECORD
340 IF RECORD=0 THEN END
350 SECTOR=SECTOR(RECORD) BYTE=BYTE(RECORD)
360 POINT tl, SECTOR, BYTE
370 INPUT tl, LINE$
380 PRINT "LINE ":RECORD:"=•":LINE$
390 GOTO 300

If you type in and run this program, be aware of the
following: When the program asks for a line, you may hit
just RETURN and the entry phase of the program will
terminate. When the program asks for a record number,
no check is made to see if the number you give is a
legal one (i.e., from 1 to MAXREC).

If you have difficulty following this example program,
we would suggest ignoring the subject of random access
files for now. Not all programs and programmers have
need of such files, so it may not be advisable to spend
too much time on this subject.

If you are a programmer experienced on machines where
random access via byte relative position is possible,
you may want to consider OS/A+ version 4, which is OSS's
DOS for Atari computers and double density (or larger)
disk drives . File positioning under version 4 is as
simple as specifying a 24-bit byte number which is the
offset from the begirtning of the file. Version 4 is NOT
recommended for beginners and/or for those who need
compatibility with Atari DOS.

--52--

4.8 OPEN

commands

purposes

users1

usage:

arguments1

examples1

description:

OPEN

This command prepares a file for access
and assigns it a file number.

BASIC XL and Atari Basic users

OPEN tfn,aexpl,aexp2,filespec

fn - file number 1-7
aexpl - I/O mode

4 - input
6 - directory access
8 - output
9 - append

12 - input/output
aexp2 - device dependent value

(usually 0)
filespec - a proper OS/A+ filename

OPEN 11,8,0,"0:NEWFILE"
INMODE • 4 : INFILE s 3
INPUT INFILE$
OPEN IINFILE,INMODE,0,INFILE$

The OPEN statement allows a disk
for that matter) to be linked
(channel) for future reference in
input/output instructions (e.g.,
CLOSE).

file (or any device,
to a file number

connection with file
PUT,GET,INPUT,PRINT,

COMMENTS on arguments:

The fn argument allows for a number between 1 and 4.
The number 0 is reserved for the screen and can not be
used in Atari BASIC (though it is allowed in BASIC XL).
After a file has been OPENed with a given fn, all
references to that file must be made using that same
fn.

The aexpl argument allows the user to OPEN a file fbr a
specific "mode", according to the following table:

Mode 41 will OPEN the specified file for input
only. Thus you can only retrieve data
from the specified file.

--53--

Mode 6: allows you to access the directory on
the disk.

Mode 8: is the opposite of mode 4. That is,
data can only be stored to the specified
file. See below for notes when using
mode a.

Mode 91 is used to add data to the specified
file. The data that is added will begin
at the current end of the specified
file.

Mode 121is used to
input AND
stored and
file.

access the specified file for
output. Thus data can be

retrieved from the specified

NOTE: After OPENing a file, the specified file number
is used to designate the file in other I/O statements.
Two OPENed files cannot have the same file number, but
it is possible to OPEN the same file with two different
file numbers. Generally, such a double OPEN will have
disastrous results. BEWARE:

NOTE: If a file is OPENed for output (aexpl=B) and the
specified file does not exist then a file with the
specified name will be created for you. If the file
specified already exists, it will be destroyed and a
new file with the specified name will be created for
you.

NOTE: A file OPENed for update (aexpl=l2) can NOT be
appended to under DOS XL version 2 or under Atari DOS.

NOTE: Mode
find what
selection.
selection
providing
extension
simply as

6 might, for example, be used from BASIC to
files are on a disk and thereby allow a menu
The following program will allow a menu

of all BASIC SAVEd programs on drive 1,
that the program names do NOT have an
(i.e., the programs should have been SAVEd

"D : name" instead of as "D:name.ext").

--54--

EXAMPLE:

100 OPEN fl,6,0,"D:*" : DIM LN$(40)
(setup to read the directory)

110 FOR I • l TO 20 : INPUT fl, LN$
(we allow for a maximum of 20 names)

120 IF LN$(2,2)•" " THEN PRINT I,LN$(3,10) : NEXT I
(if the second character is not a blank,
we just read the line "NNN FREE SECTORS"
which appears as last line of directory)

130 CLOSE fl 1 OPEN fl,6,0,"D:*"
(setup to read the directory again)

140 PRINT : PRINT "WHAT PROGRAM TO RUN ":
150 INPUT J : IF J>=I THEN GOTO 140

(if program number is too big, try again)
160 FOR I • 1 TO J : INPUT fl,LN$: NEXT I

(search for the program user wants)
170 CLOSE fl: LN$(1,2) = "D:"

(replace "* " or " "with "D:")
180 RUN LN$(1,10)

(remember, "D:filename" can't be
longer than 10 characters)

Try typing this in and then saying SAVE "D:MENU".
Later, you can use the program by typing RUN "D:MENU".

--ss--

4.9 POINT

command:

purpose:

users:

usage;

arguments:

examples:

description:

POINT

This command requests a change of
current physical disk location of
OPEN file for later access by some
command or statement.

BASIC XL and Atari BASIC users

POINT lfn, avarl, avar2

- file number from 1 to 7

the
an

I/O

fn
avarl - a variable which specifies the

avar2
desired sector number

- a variable which specifies the
byte offsett within the
desired sector

POINT tl, SECTOR, BYTE
POINT IINFILE, S, B

This command generally requires an in-depth
understanding of BASIC and data files on the part of the
programmer before it can be used properly.

"Version 2• of both DOS XL and Atari DOS maintains only
sequential files, with a forward link and file number
check occupying the last 3 bytes of each physical
sector. Version 2 provides no direct random-access
capabilities on a file level: and, without the use of
NOTE and POINT, the programmer is restricted to reading
and updating a file by starting only at its beginning.

However, thanks to NOTE and
forward link includes
experienced programmer may
access index into either
built.

POINT and the fact that the
a file number check, the
create his/her own random

an existing file or one being

POINT simply specifies a desired disk sector and byte
offset within that sector for any currently opened disk
file. If the sector specified is actually part of the
disk file OPENed on the given channel, and if the byte
offset is valid, then the next access to that file
channel (either input or output) will take place
starting at the requested location. Generally, POINT is
only valid for most operations when the, file has been
OPENed for update (mode 12).

See section 4.7, NOTE, for an example program.

--56--

4.10 PRINT

command:

purpose:

users:

usage:

arguments:

examples:

description:

PRINT

This command puts the ASCII equivalents
of the given expressions to the file
specified or the screen.

BASIC XL and Atari BASIC users

PRINT [tfn :] exp [,exp •••] {,} {:}

fn - file number 1-7
exp - the expression can either be a

string enclosed in double quotes,
a string variable, or a numeric
variable.

PRINT t3,"hi there",l,2,3
PRINT tOUTFILE, NAME$

When a file number is used with the PRINT command, the
specified expressions are PRINTed to the disk file that
has been previouly OPENed using the same file number.

NOTE: Characters are PRINTed to a disk file in a manner
identical to the way characters are PRINTed to the
screen if the file number option is not used.

NOTE: A , after the tfn causes tabbing before the
first character is PRINTed. A ":" does not cause the
tabbing. Normally, the semicolon should be used .

See INPUT (section 4.4) for more information and an
example program.

--57--

4.11 PUT

command:

purpose:

users:

usage:

arguments:

examples:

description:

PUT

this statement is used to store a
single byte of data to a specified file

Atari BASIC users with OS/A+

PUT tfn,avar

fn - file number 1-7
aexp - an arithmetic expression

PUT 13,65
PUT #OUTFILE,ASC("A")

The PUT statement is used to output a single byte of
data to a specified file. The file ·number used in the
PUT statement must be one that has been previously used
in the successful OPEN of a file.

NOTE: Data that has been stored in a file using the PUT
statement can usually only be retrieved using the GET
statement.

See GET (section 4.3) for a program example.

--58--

4.12 SAVE

command:

purpose:

users

usage:

arguments:

examples:

description

SAVE

This command will store a BASIC program
on disk in internal format (not
ATASCII).

BASIC XL and Atari BASIC users

SAVE filespec

filespec - filename you wish to SAVE
you program under.

SAVE "D2:GAME.SAV"
SAVE FILE$

The SAVE command is used to SAVE your BASIC program in
its internal format. This format is usually smaller
then the text form of your program and will take up
less room on your disk. All programs SAVEd to the disk
must be reentered using the LOAD or RUN commands.

See descriptions of LOAD and RUN for more examples and
further explanations.

--59--

4.13 XIO

command:

purpose:

users:

usage:

arguments:

descriptions:

XIO

This is BASIC's catch-all Input/Output
command. If BASIC doesn't provide a
function to access a particular feature
of a device or file, some form of XIO
can probably be used to do so.

BASIC XL and Atari BASIC users,
but see notes on individual subcommands

XIO subcommand,tfn,auxl,aux2,filespec

subcommand -- see descriptions in sub
sections which follow.

fn -- a file number. In contrast to
most OS/A+ I/O commands, XIO often
requires that the file number . be
that of an UN-OPENed channel. The
subcommand dictates the usage
here, so see descriptions below.

auxl and aux2 -- generally zero. These
values are passed to OS/A+
unchanged (and thence to the
device being accessed), so the
individual device(s) may require
other values. None of the
examples given in this section use
these values.

filespec -- a proper OS/A+ file name.

Although, as noted, XIO can be used for several
purposes, we will restrict our discussion here to those
four subcommands most useful to the Atari BASIC
programmer. For more detail, we suggest chapter 10 of
this DOS XL reference manual and other sources, such as
the Atari 850 Interface Module manual.

The subcommands to be discussed will each be treated as
a separate BASIC command.

--60--

subcommands RENAME

purpose: May be used to rename disk files.

usage: XIO 32, tfn, 0, 0, filespec

arguments1 fn -- the file number of an UN-OPENed
channel.

filespec -- a proper OS/A+ file name
followed by, in the same BASIC
string, a comma and a second file
name. The second file name may
NOT include a disk drive
specifier.

description:

It is suggested that "fn", the file number, be 7, since
that channel is normally reserved for system I/O
functions (which this certainly is). The only thing
strange about this subcommand is the form of the
filespec. Some examples follow:

XIO 32,t7,0,0,"D:TEST.SAV,OLDTEST.SAV"

DIM FL$(100)
INPUT FL$
FL$(LEN(FL$)+1) • ",BACKUP"
XIO 32,t7,0,0,FL$

Again, note that the second file name in both examples
is NOT preceded by a disk drive specifier.

NOTE: Although BASIC XL users
perform this subcommand, BASIC
easier method of accomplishing
via its RENAME command. See your
for further details.

--61--

may use XIO to
XL provides an

the same function
BASIC XL manual

subcommand:

purpose:

usage:

argumentsi

description:

ERASE (also called "KILL" and "DELETE")

May be used to permanently erase disk
files.

XIO 33, tfn, 0, 0, filespec

fn the file number of an UN-OPENed
channel.

filespec -- a proper OS/A+ file name,
with "wild cards" accepted and
processed.

IF the file specified exists on the disk drive
specified, and IF the file is not PROTECTED (see next
subcommand), the specified file will be permanently
erased (deleted, killed, zapped) from the disk.

USE THIS SUBCOMMAND WITH CAUTION: specifying a "wild
card" (a file name including an asterisk or question
mark) will erase ALL files which match the given name.

Examples:
XIO 33,f7,0,0,"D2:0LDPROG.SAV"

will erase the single file with the
name OLDPROG.SAV from the diskette in
drive 2.

XIO 33,fS,0,0,"D:*.BAK"
will erase all files having a filename
extension of ".BAK" from the diskette
in drive 1.

NOTE: Although BASIC XL users
perform this subcommand, BASIC
easier method of accomplishing
via its ERASE command. See your
for further details.

--62--

may use XIO to
XL provides an

the same function
BASIC XL manual

subcommand:

purpose:

usage:

arguments:

description:

PROTECT (also called "LOCK")

May be used to protect disk files from
accidental erasure and modification.

XIO 35, tfn, 0, 0, filespec

fn the file number of an UN-OPENed
channel.

filespec -- a proper OS/A+ file name,
with "wild cards" accepted and
processed .

All files on the specified drive which have names which
match the specified file will be "PROTECTED" by usage
of this subcommand. Protection in the OS/A+
environment simply consists of setting a flag in the
diskette's file directory which tells the OS to
disallow either modification (i.e., OPENs in modes 8,
9, 12, etc.) or erasure of the file. Any OS/A+
DIRectory listing will show protected files by means of
an asterisk in the first column of the displayed lines
(unprotected files have simply a space in that
position).

Examplesz
XIO 35, t7, 0, 0, "D:*.*"

will protect ALL files on drive 1.
XIO 35, tl, 0, 0, "D4:DOS.SYS"

will protect only the file named
"DOS.SYS" on the diskette in drive 4.

NOTEz Although BASIC XL users may use XIO to
perform this subcommand, BASIC XL provides an
easier method of accomplishing the same function
via its PROTECT command. See your BASIC XL manual
for further details.

--63--

subcommand:

purpose:

usage:

arguments:

description:

UNPROTECT (also called "UNLOCK")

May be used to unprotect disk files to
allow subsequent erasure and
modification.

XIO 36, tfn, 0, 0, filespec

fn the file number of an UN-OP~Ned
channel.

filespec -- a proper OS/A+ file name,
with "wild cards" accepted and
processed.

All files on the specified drive which have names which
match the specified file will be "UNPROTECTED" by usage
of this subcommand. Protection in the OS/A+
environment simply consists of setting a flag in the
diskette's file directory which tells the OS to
disallow either modification (i.e., OPENs in modes 8,
9, 12, etc.) or erasure of the file. Any OS/A+
DIRectory listing will show UNprotected files by means
of a space in the first column of the displayed lines
(protected files have an asterisk in that position).

Examples:
XIO 35, t7, 0, 0, "D2:*.COM"

will unprotect all files on drive 1
which have a filename extension of
".COM".

XIO 35, tl, 0, 0, "Dl:DOS.SYS"
will unprotect only the file named
"DOS.SYS" on the diskette in drive 1
(this step is necessary before erasing
that file, as you might do to gain more
space on the diskette).

NOTE: Although BASIC XL users may use XIO to
perform this subcommand, BASIC XL provides an
easier method of accomplishing the same function
via its UNPROTECT command. See your BASIC XL manual
for further details.

--64--

Section 5: INTRINSIC DOS XL COMMANDS

Instrinsic Commands are one class of commands which can
be given anytime the Dl: (or 02:, etc.) prompt ap~ears
from the DOS . XL Command Processor.

The Intrinsic Commands described in this chapter are
executed via code that was loaded into the system at
bootup time. These commands do not require the loading
of programs to perform their functions (as do extrinsic
commands). The following is a summary of the most often
used intrinsic commands:

DIRECTORY - List Directory
PROTECT - Protect a file (from change or erase)
UNPROTECT - Unprotect a file
ERASE - Erase (delete) a file
RENAME - Renames a file
LOAD - Load a binary file
SAVE - Save a binary file
RUN - Execute a program at some address
CARTRIDGE - Run Atari cartridge in the "A"

TYPE
@
On:

cartridge slot (Atari users only)
- Type a text file to the screen
- Start a batch file execution
- Change default disk drive

and there are a few others.

All intrinsic commands may be abbreviated to their first
three characters. As a matter of fact, OS/A+ only looks
at the first three characters while testing for an
intrinsic command. Each of the commands will be covered
in detail later in this manual: however, to give you a
feel of the intrinsic commands, let's look at the
DIRECTORY command. While looking at these examples,
assume the "01:" at the beginning of each line is the
default device and has been placed on the screen by CP.

Dl:DIRECTORY list all files of disk on drive one
Dl:DIRTY
Dl:DIR
Dl:DIR * *
Dl:DIR Dli
Dl:DIR 01:*.*
01 DIR 02: list all files of disk on drive two
Dl:DIR 02:*.*
Dl:DIR *.OBJ files with extension .OBJ on drive one
Dl:DIR 02:*.ASM files with extension .ASM on drive two

Detailed explanations of all Intrinsic Commands follow,
presented in alphabetical order.

--65--

5.1 @

command:

purpose:

usage:

arguments:

Description

@

This command begins execution of a batch
command file

@file-name

The name of a .EXC file containing CP
commands. The name should be used
WITHOUT the .EXC extension.

The @ command tells OS/A+ to begin taking commands from
a batch file. This file is a text file which may
contain both intrinsic and extrinsic OS/A+ commands.
For example, suppose the file TEST.EXC contains the
following commands:

DIR 0:
DIR D2:
END

Issuing the command
@TEST

would tell OS/A+ to start taking commands from the file
TEST.Exe. At that point, a directory listing of drive
1 would be given, followed by a listing of files on
drive 2.

See sections 9 and 7.6 for more information on creating
and using batch files.

NOTE: The .EXC extension should NOT be given as part of
the file-name when issuing the @ command. The command
@GEORGE is sufficient to begin execution of the file
GEORGE.Exe. In fact, an error may result if the
command @GEORGE.EXC is tried.

NOTE: A CAR command, when encountered within a batch
file will stop batch execution.

--66--

5.2 CAR

command: CAR

purpose: This command transfers control to a
cartridge

usage: CAR

arguments: none

Description

The CAR command
from DOS XL. The
system until a
cartridge.

allows the user to enter a cartridge
cartridge will retain control of the
DOS command is executed from the

CAUTION: Some cartridges do not allow DOS-type exits
and thus DOS XL cannot be used with these cartridges.

If no cartridge is present, using this command will
cause an error message to be given.

--67--

5.3 Dn:

command:

purpose:

usage:

users:

Description

01: or 02: or 03: or 04:

This command changes the default
disk drive designator.

Dn:

Owners of more than one disk drive

Whenever the console processor of DOS XL is ready to
accept a command from you, it prompts you with "01:".
This prompt serves a secondary purpose. It reminds you
what the current default disk drive designator is.

Anytime you specify a filename to CP (in either an
intrinsic or extrinsic command), if you omit the disk
specifier, CP prefixes the filename with the same three
characters it prompts you with (e.g., "01:"). Thus,
PROTECT GEORGE.OAT is seen by the protect execution
code as PRO Ol:GEORGE.DAT, and it does not have to
worry about whether or not you used a proper drive
prefix.

If you have more than one drive, however, it is
sometimes convenient to designate a drive other than
drive one as the default disk drive. So, if you type
"02:" in response to the DOS XL prompt, CP will acquire
a new prompt ("D2:") and any files given without a
drive designator will be presumed to be on drive 2.

Note that DOS XL actually supports Dl: through D8:, but
standard drives may be only be addressed as Dl: through
D4:. Drives from some other manufacturers may possibly
be able to use the additional desig·nations.

I CAUTION: As shipped, DOS XL can only access 01: and
I D2:. To allow access to other drives, see section I
I 7.5 and Appendix A. I

--68--

5.4 DIR

command:

purpose:

usage:

arguments:

Description

DIRectory

The command allows the user to view the
disk directory

DIR [Dn:][file-name] [output file-spec]

optional file specifier
optional output file specifier

The DIR command searches the disk directory of the
specified disk (or the current default drive, if On: is
omitted) for all files matching the file-specifier.
The names of all files matching the specifier are then
printed to the screen, together with the length of the
file (in sectors). An asterisk preceding the file's
name indicates that the file is protected from erasure,
writing, or renaming.

The file-specifier may be any valid file name (see
sections on file structure) and may contain the
"wild-card" characters '?' and '*'· A question mark
('?') will match any character in a file name, while
an asterisk('*') will match any string of zero or more
characters. For example,

DIR AB*.C??
will match and list

ABX.CXX
AB.CUR
ABCDEF.CNN

etc.

If the output file name is specified, the directory
listing will be sent to that file instead of to the
screen. For example, the command

DIR 01: P:
will send to the printer a listing of all files on
drive 1.

CAUTION: Specifying a disk file name as an output file
name will not generally work unless the output file is
on a diskette other than the one given or implied by
the first file specifier.

--69--

5.5 END

command:

purpose:

usage:

arguments:

Description

END

Stop batch execution from within an
execute file

END

none

The END command causes DOS XL to stop reading commands
from a batch file and to resume prompting the user for
commmands. This command has no effect outside of a
batch file.

--70--

5.6 ERA

commands ERAse

purposes This command removes files from a disk

usage: ERA [Dn:]file-name

arguments: a file specifier string

Description

The ERA command permanently removes files from a disk.
All files matching the file-specifier string on the
specified drive (or the current default drive, if Dn:
is omitted) will be erased from the disk. These files
will no longer be shown when a DIR command is issued,
nor will they be available for any type of file access.

WARNING: As this command causes the irreversible
deletion of files from the disk, it should be used with
care. Use the PROtect command to guard files against
accidental erasure.

Examples:

Notes:

ERASE *.BAK
will erase all files with an extension
of .BAK that are unprotected and that
reside on the current default drive.

ERA D2:DUP.SYS
will erase the file named DUP.SYS from
disk in disk drive number 2.

If ERAse does not find any erasable files that
match the specifier, it will return a FILE NOT
FOUND error.

--71--

5.7 LOA

command:

purpose:

usage:

arguments:

Description

LO Ad

Load disk files into memory

LOAD [Dn:]file-name

a file specifer

The LOAD command allows the user to load binary load
image files into user memory. The files must be
compatible with the normal binary object files used by
the normal host computer operating system . That is:

Each segment of the memory image file must be preceeded
by two addresses, the starting and ending addresses in
RAM memory of the segment. The entire file must be
preceeded by two bytes with all bits on ($FF, $FF).
This format is identical to that produced by Atari's
Assembler/Editor Cartridge and most upgraded products
(including ACTION and MAC/65 from OSS).

--72--

s.a NOS

command:

purpose:

usage:

arguments:

Description

NOScreen

Turns off command echo to screen during
batch

NOS

none

Normally, all commands encountered during batch
execution are echoed to the screen as if they were
typed in by the user. The NOS command can be used to
prevent this echo. All commands within an execute file
will then no longer be echoed until the execute file is
stopped for any reason or a SCR command is encountered.

This command only effects commands encountered in batch
mode.

--73--

5.9 PRO

conunand1

purpose:

usage:

arguments1

Description

PROtect

This command protects files from acciden
tal erasure, writing, or renaming

PRO [Dn:]file-name

a file specifier

The PRO command allows the user to protect one or more
files from any erasure, writing, or renaming. All
files matching the file-specifier will be protected.
The system marks a protected file by placing an
asterisk next to its name whenever a DIR command is
used. The UNP command can be used to disable the
protection, when desired.

EXAMPLES:
(Dl:}PRO *·*

will protect all files on drive 1
(Dl:}PRO D2:*.COM

will protect all files on drive 2 which
have an extension of "COM"

--74--

5.10 REM

conunand:

purpose:

usage:

arguments:

Description

REM ark

Prints remarks to the screen during
batch execution

REM any characters

a string of zero or more characters

The REM command performs no operation whatsoever. Its
sole purpose is to provide a means of easily printing
messages to the screen from an executing batch file
(see section on batch execution). When encountered
during batch execution, the command line containing the
REM command will be echoed to the screen, unless the
NOScreen command has been previously issued.

--75--

5. ll REN

command: REName

purpose: Rename a file to a new name

usage: REN from-file-name to-file-name

arguments: two file names

Description

The REN command will search the specified disk (or the
default drive, if Dn: is not specified) for a file
whose name matches the specified from-file-name. If
the file is found, its name will be changed to the
indicated to-file-name. An error occurs if the
from-file is not found on the disk. The to file-name
should NOT be preceeded by a disk drive specifier.

WARNING: The REName command
wild-card characters ("*","?")
Such usage may permanently
directory.

should not be used with
in the file names.

damage your diskette

WARNING: Under version 2 of both DOS XL and Atari DOS,
it is possible to use the rename command to create two
files with the same name. If this condition occurs,
use the COPY command with the query (-0) option to
transfer the two files to separate disks where they may
then be renamed back.

EXAMPLES:
(Dl:)RENAME TEST.DAT TEST.BAK

will rename the file "TEST.DAT" on drive
one to "TEST.BAK"

{Dl:)REN D2:DOSXL.SUP DOSXL.SYS
will rename the file "DOSXL.SUP" on
drive two to "DOSXL.SYS"--note that the
drive specifier was NOT given for the
new filename

--76--

5.12 RUN

command: RUN

purpose:

usage:

arguments:

Description

This command transfers control to an
address in memory

RUN [hex-address]

an optional hexadecimal address

The RUN command immediately causes DOS XL to perform a
jump to the indicated address (or to the address
contained in the CP's RUNLOC, if no address is given).
The hex-address, if present, must consist of 3 or 4
hexadecimal digits.

The address in RUNLOC is set any time an extrinsic
command is issued or a program is loaded using the LOAD
command. Therefore, the RUN command may be used to
reenter a program such as BASIC after leaving the
program through a DOS command.

IMPORTANT NOTE:

Most standard DOS XL interactive system programs will
set RUNLOC to point to their warmstart entry point.
Thus, for example, if the user returns to DOS in order
to perform an INTRINSIC command, he/she may reenter the
systems program by simply typing RUN. At the current
writing, BASIC A+ and MAC/65 (for example) both follow
this protocol: simply type RUN from CP to reenter at
their warmstart points.

__ ,, __

5.13 SAV

command:

purpose:

usage:

arguments:

Description

SAVe

Save a portion of memory to a disk file

SAVE file-spec start-address end-address

a file specifier
a hexadecimal starting address
a hexadecimal ending address

The SAVE command allows the user to write portions of
memory to disk files in standard binary file format.
The two addresses define the portion of memory to be
written to disk: the second address must be greater
than or equal to the first. A file which has been
'saved' may be later returned to memory using the LOAD
command.

Example:

SAVE PAGE4000 4000 40FF

This example will save the 256-page of memory at
$4000 to the disk file PAGE4000 on the current drive.

--78--

5.14 SCR

command: SCReen

purpose: Cause batch commands to be echoed to the
screen

usage: SCR

arguments: none

Description

The SCR conu11and causes
batch execution to be
conu11and may be used to
conu11ands.

conu11ands encountered during
echoed to the screen. The NOS

turn off the echo of batch

This command only effects commands encountered in batch
mode.

--79--

5.15 TYP

command:

purpose:

usage:

arguments:

Description

TYPe

This command types an ascii or atascii
file to the screen or another file

TYP [Dn:Jfile-name [output-file]

filename - the name of any text file.
output-file an optional output file.

The TYPe command allows the user to copy text files to
the screen or another file. If the optional output
file is not specified, the text file indicated will be
copied to the screen. For example, to view the
commands in the STARTUP.EXC file on your OSS master
diskette, issue the command

TYP STARTUP.EXC

If the optional output file is specified, the text file
will be copied to the output file. For example, to
copy the STARTUP.EXC file to the printer, issue the
command

TYP STARTUP.EXC P:

Another use of TYPe is to create a text file. As noted
elsewhere in this manual, you can create a new STARTUP
batch file via the following:

TYP E: STARTUP.EXC

When E: is the source "file", as in this example, you
must use a CONTROL-3 (hold down the CTRL key and type a
3) to terminate the entry (this creates an end of file
signal--always true from E: but not well documented by
Atari). Also, you may not use the cursor control keys
to edit any line for which you have already pressed the
RETURN key. Thus this method is handy for small text
files but not be used as a general file creator.

Finally, the TYPe command may also be used to copy TEXT
files from one disk file to another by using disk file
names for both the input and output files.

--80--

5.16 UNP

command:

purpose:

usage:

arguments:

Description

UNProtect

This command removes the protection
caused by the PRO command

UNP (Dn:Jfile-name

a file specifier

The UNP command allows the user to remove the write
protection caused by the PRO command so that files may
again be erased, renamed, or written to. All files
matching the file-specifier on the specified drive (or
the current default drive, if Dnz is omitted) will be
affected. These files will no longer be shown with a
preceding asterisk when the DIR command is used.

EXAMPLES1
(Dli)UNP *.BAI<

will remove the protection from all
files on drive l which have an extension
Of "BAI<"

(Dl:}UNP D3:DOSXL.SUP
will remove the protection from only the
file "DOSXL.SUP" on drive 3

--81--

Section 61 EXTRINSIC DOS XL COMMANDS

The extrinsic commands are programs that are run by the
Command Processor (CP) of DOS XL. Any binary file
containing the .COM extension may be used as a DOS XL
extrinsic command. The DOS XL COPY command is one such
extrinsic command. If you perform the DOS XL DIRECTORY
command on the master diskette, you will see a file
named COPY.COM. The program in the COPY.COM file is
what is executed when the COPY command is typed.

Remember, extrinsic commands are external to the
operating system. ·Whenever an extrinsic command is
executed from DOS XL, the system MUST go looking on the
diskette for a .COM file associated with the particular
extrinsic command issued and load that file into the
system. For example, when the extrinsic command DUPDSK
is executed the system will go looking on the diskette
in drive 1 for a file call DUPDSK.COM. If the command's
.COM file is not on the diskette the system will return
a FILE NOT FOUND error. So remember: whenever you issue
an extrinsic command to the system its .COM file must be
on the diskette for the command to execute properly.

Whenever the user types a command to DOS XL, the command
(first three characters only) is compared to the
intrinsic command list. If the command is not in the
intrinsic list, it is assumed to be extrinsic. A
consequence of this is that no extrinsic command program
may start with three characters which match any of the
intrinsic commands. For example, a program named
"PROCESS3.COM" could not be call by simply typing
"PROCESS3", since OS/A+ would view that as the intrinsic
command "PROtect". Solutions:

(1) Rename the extrinsic command file.
(2) Type the commands1

LOAD PROCESS3.COM (RETURN]
RUN [RETURN]

--82--

To process an extrinsic command, DOS XL will:

1) Prefix the command with the default device (if
a device is not specified).

2) Attach the .COM extension to the command.
3) Open the generated file spec for input .
4) Test file for program of proper LOAD file format.
5) Load and execute the program.

NOTE: (i) If any element of the procedure fails,
various error messages will result.

(ii) Step 1 of the procedure implies that a device
may be specified. This is in fact the case.

Never explicitly specify the .COM extension as part of
the command. The command COPY.COM will result in a
file spec of Dl:COPY.COM.COM, which is invalid .

Some extrinsic commands (such as COPY) are supplied by
OSS. The number of possible extrinsic commands is not,
however, limited to these few: commands may be written
by the user to perform virtually any function. If you
are intrested in writing your own extrinsic commands,
see Chapter a.
If an extrinsic command (i.e . , a program running in
RAM) has control, the program may generally be rerun or
reentered by simply using the RUN command without
parameters. Execptions to this rule are the extrinsic
commands COPY, COPY24, SDCOPY and CONFIG.

This chapter gives a description of each extrinsic
command supplied as a standard part of an DOS XL system
master diskette (except that some commands may be
specific to particular versions or packages).

--83--

6.1 C65

command:

purpose:

users:

usage:

arguments:

option:

Description:

C65

this command loads and executes the OSS
C/65 compiler

C/65 owners only

C65 source-file destination-file [-T]

two file specifiers

-T include C/65 source Text in
assembler output

This command loads and executes the file C65.COM, the
OSS small-C compilier. Two filenames are required.
The first file given must be the name of a text file
containing C/65 source code and statements. The second
file specified will be created (or reused, if it
already exists), and the compiler will write
MAC/65-compatible assembly language to it.

Option

If the -T option is specified, the MAC/65 file will
contain the user's C/65 text lines. Each source line
precedes the assembly code it generates, if any.

*** FOR MORE INFORMATION, SEE YOUR C/65 MANUAL ***

*** YOU MUST PURCHASE C/65 SEPARATELY -- IT IS NOT
SUPPLIED AS A STANDARD PART OF DOS XL **-*~

--84--

6.2 CLRDSI<

command:

purpose:

users:

usage:

arguments:

options:

Description:

CLRDSI<

To initialize a diskette like the Atari
810 disk drive does.

Non-Atari disk drive users

CLRDSI<

none

none

This utility is used to force your non-Atari disk
drive to initialize a diskette just like the Atari 810
disk drive does. Hopefully any program that does not
work with a diskette initialized in your non-Atari
disk drive will work after you initialize the diskette
using the CLRDSI< utility.

NOTE: CLRDSI< formats the diskette first, then writes
zeroes to all sectors execpt the directory, boot and
VTOC sectors.

NOTE: In general, do NOT use CLRDSI< unless instructed
to do so by your drive's manufacturer. If CLRDSI< does
not appear on your master disk, it is not necessary
for proper operation of the drive(s) you have bought.

--es--

6.3 CONFIG

command:

purpose:

users:

usage:

arguments:

options:

Description

CONFIG

Allows the user to change the status of
a configurable drive

owners of configurable drives

CONFIG [parml parm2 •.•][-NJ

an optional list of parameters which
define the desired status of drives in
the system

-N no drive configuration table
will be displayed

If no parameters are given, this command simply reports
the status of all drives currently attached to the
Atari computer.

If one or more parameters are given, they are presumed
to be requests to configurable disk drives to configure
themselves. A parameter consists of a single numeric
digit (in the range of 1 to 8) followed by one or two
alpha characters (the "Mode"). The digit is presumed
to be a disk drive number (corresponding to Dl: through
D8:). The legal character combinations usable as Modes
are as follows:

Mode Meaning

s Configure this drive as a Single density,
single sided drive.

D Configure this drive as a Double density,
single sided drive.

DD Configure this drive as a Double density,
Double sided drive.

Options

Normally, the CONFIG command will list out the current
drive configuration. Using the -N option will cause
this table to be omitted.

NOTE: DOS XL version 2 can NOT access the second side
of double sided disk drives ("DD"). Inquire about DOS
XL version 4 if you have such drives.

--86--

Section 6.3 (CONFIG Continued)

Example:

CONFIG 10 200

NOTES:

requests that 01: be configured as double
density, single sided, while 02: will
become double density, double sided.

If a configuration request is made, the file manager
system is reinitialized and the system status is
reported, as if the command CONFIG with no parameters
had been given.

If a configuration request is invalid (e.g., if the
drive is not capable of being configured via software),
the command will report an error.

--87--

6.4 COPY

command:

purpose:

usage:

arguments:

options:

Description

COPY

This program copies files. Note the
cautions listed below.

COPY source-file destination-file [-FQSW]
or

COPY file [-FQSW)

one or two file specifiers

-F
-a
-s
-w

force overwrite of existing file
query before each file transfer
single disk copy
wait for user response before
copying

The copy program copies one or more files without
changing the source file. In the first form, all files
matching the source-file specifier would be copied to
files indicated by the destination specifier, which may
be on the same or a different disk. In the second
form, the files indicated by the file name would be
copied to files having the same name on the same drive.
This enables the copying of files on a single disk
system. The source and destination file specifiers
should be of one of the following forms:

1) [Dn:]file-name
2) Dn:

In form 1, the drive specifier (Dn:) is optional: the
current default drive will be assumed if no drive
specifier is given. In the second form, all files from
the indicated drive would be copied to or from another
disk.

Options

The -F option causes the program to overwrite an
existing file if it has the same name as a destination
file to be copied. If this option is not specified,
files whose destination names already exist will not be
copied.

The -a option causes the program to ask the user
whether to copy each file.

--88--

Section 6.4 (COPY continued)

The -s option indicates to the program that it must
perform the copy on a single drive. Copy will prompt
the user to insert source and destination disks at the
proper time.

The -w option indicates that the program must wait for
the user to insert the proper disks before initiating
the copy.

CAUTION:

Do NOT use COPY to copy from a single density diskette
to a double diskette on a single drive. Instead, use
SDCOPY (section 6.13).

Examples:

COPY *·*
will copy all files on the current disk on the
current drive to another disk on the same
drive. The system will prompt the user when
the diskette needs to be swapped. Generally,
DUPDSK is a more effective and faster means of
performing this function.

COPY *.COM 03: -F
will copy all files having an extension of
".COM" from the current disk drive to drive 3
(which could be the same as the current drive:
caution). If the file(s) already exist on
drive 3, they will be erased and rewritten.

COPY D2:C*.* Dl: -0
will ask the user if he wants to copy each file
starting with the letter "C" from drive 2 to
drive l.

COPY Dl:TEST D2:NEWTEST
will copy the file TEST on drive l to the file
NEWTEST on drive 2.

COPY Dl:TEST Dl:NEWTEST -S
will perform a single disk copy of TEST to
NEWTEST.

--89--

6.5 DO

command:

purpose:

usage:

arguments:

options:

Description

DO

This command allows the user to perform
several operations with one command line

DO command[:command:command •••]
or

DO

optionally, a list of commands separated
by semi-colons

none

This DO command allows the user to issue several
commands on one line. These commands are not
restricted to DOS XL intrinsic and extrinsic commands,
however. For example, the following DO command would
activate the assembler/editor cartridge or OSS MAC/65,
enter a source program, and assemble it:

DO CAR:ENTER "D:PROGRAM.ASM":ASM ,tP:,tD:OBJECT

In the second form of the DO command, the DO program
will prompt the user for a list of commands, one at a
time, saving these away for use. The entry of just a
carriage return when prompted for a command will cause
the entire list of commands to be executed.

The DO command may also be used to run a BASIC program
upon booting the system (similar to the AUTORUN.SYS
function of Atari DOS) by plac.ing a DO command within
the STARTUP.EXC file (see chapter 9 on batch
processing). For example, placing the following within
the STARTUP.EXC file will cause the BASIC program
"MENU" to be run upon booting the system:

DO CAR:RUN "Dl:MENU"

NOTE: some programs which inspect the DOS XL command
line themselves cannot be used with DO. CP's COPY
conunand is an example of such a program.

--90--

6.6 DUPDBL

command:

purposes

users:

usage:

arguments:

options:

Description

DUPDBL

This program provides fast copying of
entire double density diskettes

ONLY those using double density disks

DUPDBL

none

none

The DUPDBL program will prompt the user for source and
destination drives, and will ask whether to format the
destination disk. The entire source disk will then be
copied to the destination disk in a manner somewhat
faster than the copy utility would provide. The two
disks, however, MUST be double density OS/A+ diskettes
formatted under version 2 of DOS XL (or Atari DOS 2.0S
as patched for double density). IF the destination
drive is the same as the source drive, the program will
prompt the user to swap disks during the duplication
process.

See also sections 7.3 and 7.4 for mixed density copies.

--91--

6.7 DUPDSK

command:

purpose:

users:

usage:

arguments:

options:

Description

DUPDSK

This program provides fast copying of
entire floppy disks of the same size and
type

all EXCEPT those using double density

DUPDSK

none

none

The DUPDSK program will prompt the user for source and
destination drives, and will ask whether to format the
destination disk. The entire source disk will then be
copied to the destination disk in a manner somewhat
faster than the copy utility would provide. The two
disks, however, must be of the same size and type. If
the destination drive is the same as the source drive,
the program will prompt the user to swap disks during
the duplication process.

CAUTION: Do NOT attempt to use DUPDSK to dupltcate
double density diskettes under version 2 of DOS XL.
Unpredictable and disastrous results may occur! DO use
DUPDBL (see previous section) for this purpose.

See also sections 7.3 and 7.4 for mixed density copies.

--92--

6.8 INIT

command:

purpose:

usage1

arguments:

options1

Description

INIT

This program initializes floppy disks
so that they may be read from
or written to

INIT

none

none

The INIT utility allows the user to format a floppy
disk so that it may be read or written by programs.
Under DOS XL version 2, the user will be prompted for
information on exactly how to initialize the disk
(i.e., with or without a system file, etc.). When the
initialization process is complete, the floppy disk
may now be used to store data.

The INIT utility presents you with 4 options:
1. Format Disk Only
2. Format Disk and write DOS.SYS
3. Write DOS.SYS only
4. Exit to DOS XL

CAUTION: If using DOS XL with either a SuperCartridge
or an Atari XL-series computer, you may not use
options 2 or 3 to write DOS.SYS to the disk. You must
use COPY to add both DOS.SYS and DOSXL.SYS if you wish
to make a bootable DOS XL disk. (A disk with DOS.SYS
alone will boot, but will not take advantage of the
extra memory available in these configurations.) If
the system was booted from a master disk which did not
have the file DOSXL.SYS, then options 2 and 3 are safe
to use. See also sections 3.7 and 7.7.

--93--

6.9 INITDBL

command:

purpose:

users:

usage

arguments:

options:

Description:

INITDBL

This utility is used to initialize a
double density diskette so that they can
be read from and written to in double
density.

DOS XL version 2 users with a single
non-Atari disk drive.

IN IT DBL

none

none

NOTE: The INITDBL utility is unnecessary for users with
more than one disk drive. Instead, just use the
standard !NIT utility (see section 6.8).

The utility INITDBL is to be used on a one drive system
to initialize a double density diskette and write
DOS.SYS to it.

To use this utility, boot the master diskette. Type
the INITDBL command, and answer the prompt with the
number l. Before you type [RETURN], replace the master
diskette with your new unformatted double density
diskette. When the INITDBL utility is finiahed the
disk drive will still be configured single density. To
get a directory of your new double density diskette,
CONFIGure the disk drive to double density and type the
DIR command.

--94--

6.1" MAC65

conunand:

purpose:

users:

usage:

arguments:

options:

Description:

MAC65

Loads and executes the MAC/65 macro
assembler

MAC/65 disk owners only

MAC65 [filel [file2 [file3]] (-A](-D]]

an optional set of one to three filename,
construed to be the source, listing, and
object files (respectively) of a MAC/65
assembly.

-A source file is Ascii
-D assembly must be Disk-to-Disk

This command loads and executes the file MAC65.COM, the
OSS Macro Assembler/Editor. If no filenames are given,
MAC/65 will be invoked in its interactive (Editor)
mode. Programs or text may then be edited and/or
assembled. See the MAC/65 manual for further details.

If one or more files are specified, MAC/65 will be
invoked in its "batch" mode. That is, it will perform
a single assembly and then return to OS/A+. Generally,
this command line will perform the assembly in a manner
equivalent to giving the "ASM" command from the MAC/65
Editor. That is, if only one filename is given, it is
assumed to be the source file, implying that the
listing will go to the screen and the object code will
be placed in memory (but only if requested by the .OPT
OBJ directive). If a second filename is given, it is
assumed to be the name of the listing file. Only if
all three filenames are given will the object code be
directed to the file specified.

NOTE: if an assembly needs no listing but does need an
object file, the user may specify E: as the listing
file, thus sending the listing to the screen.

--95--

Section 6.10 (MAC65 continued)

Options

The -A option is used to specify that the source file
is not a standard MAC/65 SAVEd file but is instead an
Ascii (or Atascii) file. This is equivalent to using
the interactive Editor mode of MAC/65 to use the
sequence of commands "ENTERtD ••• " and "ASM , •.• ".

The -D option is used to specify that the assembly MUST
proceed from disk to disk. If this option is not
given, the source file is LOADed (or ENTERed) before
the assembly, and then the assembly proceeds with the
source in memory (generally producing improved speed of
assembly). If, however, the source file is too large
to be assembled in memory, the user may use this option
to allow assembly of even very large programs. (And
remember, even if the source fits, the macro and symbol
tables must reside in memory during assembly also.)

NOTE: the -D option can NOT be used in conjunction with
the -A option, The source file assembled under the -D
option MUST be a properly SAVEd (tokenized) file.

*** FOR MORE INFORMATION, SEE YOUR MAC/65 MANUAL ***

*** YOU MUST PURCHASE MAC/65 SEPARATELY -- IT IS NOT
SUPPLIED AS A STANDARD PART OF DOS XL ***

--96--

6.11 MENU

command:

purpose:

usage:

arguments:

options:

Description

MENU

This program provides a MENU of system
commands to help the beginning user.

MENU

none

none

Although we firmly believe that the command system of
the OSS Console Processor (CP) is superior to a menu
approach, we can readily understand how the wealth of
flexibility offered may overwhelm the new user.
Therefore, we have provided this MENU command which
provides menu access to the most frequently used system
commands.

To use the menu, simply type MENU (followed by a
RETURN) any time the CP system prompt appears (usuelly
Dl:, followed by the cursor).

Refer to Section 3 for details on using the DOS XL MENU.

--97--

6 . 12 RS232

command:

purpose:

users:

usage:

arguments:

options:

Description:

RS232

installs the serial device handlers
("Rn:") for use with the Atari 850
Interface Module.

Atari users with 850 Modules

RS232

none

none

Using the command RS232 from DOS XL is functionally
equivalent to using Atari's AUTORUN.SYS file (which
boots the R: handlers at power on time under Atari
DOS). The driver for the various RS232 functions is
loaded at LOMEM, LOMEM is moved, and the R: device is
hooked into the handler table.

After giving the RS232 command, if the On: prompt
reappears BELOW the line containing the "RS232"
command, the Interface Module has loaded its software
properly. If, however, the screen clears and the On:
prompt appears at the TOP of the screen, something went
wrong during the loading process. Unfortunately, the
software in the Interface Module does not return a
usable error code, preferring instead to do a system
warmstart (hence the cleared screen).

CAUTION: due to a bug in the software in the 850
Interface Module, hitting RESET will destroy the proper
LOMEM pointer, effectively ignoring the space occupied
by the RS232 handlers. See Appendix B for a possible
fix to this problem.

CAUTION: the 850 Interface Module is sometimes too
intelligent for its own good. In particular, one
cannot generally reload the software from the module
without turning the module off and back on again.

--98--

6.13 SDCOPY

command:

purpose:

users:

usage:

arguments:

options:

Description:

SOCOPY

This program is used to copy single
density files to double density files.

Atari owners using OS/A+ version 2 only.

SOCOPY source-file destination-file [-FQRV]

one or two file specifers

-F
-a
-R
-v

force overwrite of existing file
query before each file tran~fer
reverse orientation of copy
verbose

The utility SOCOPY is for DOS XL Version 2 owners with
non-Atari disk drives only. The purpose of this
utility is to copy a single density source file to a
double density destination file. This utility works
the same way as the COPY utility execpt for the -R
option.

The -R option is used to reverse the orientation of the
copy. That is instead of copying from a single density
source file to a double density destination, the
orientation is reversed and the copy goes from a double
density source file to a single density destination
file.

NOTE: the SDCOPY utility can only be used with one disk
drive. If you want to copy from single density to
double density between two different drives, just use
the CONFIG command to set the drives up properly and
use the normal COPY utility.

Examples:
SDCOPY *·* -0

will copy all the files on the current
single density diskette to a double
density diskette in the same drive

SDCOPY ABC DEF -R
will copy double density file "ABC" to
the single density diskette in this
same drive. The copied file will be
named "DEF" on the single density disk.

--99--

Section 7: MULTIPLE DRIVES, MULTIPLE DENSITIES

Much--but not all--of the material you have read up
until now assumes or implies that you have only a single
disk drive. While DOS XL can function perfectly well on
a single drive, it really begins to show its power when
you connect two or more disk drives to your Atari
computer.

If you have only Atari 810 disk drives, very little
needs to be said about using them to advantage.
Generally, you will find that DOS XL will perform
operations such as COPY (menu option C) and DUPDSK (menu
option D) much faster if you specify that your "source"
(the file or disk you are copying from) is on one drive
and your "destination" (the diskette to receive the
copied material) is on the other drive.

It does NOT matter which drive is the source and which
is the destination . But be aware that many DOS XL
commands require that a system master diskette be
installed in drive 1 (or the "default drive" at
least--see section 5.3 if you are not using the menu).
This is NOT a limitation, since all utilities which need
to be loaded from the system master either wait for you
to give a response before executing (e.g . , INIT) or
allow you to specify that you want such a wait (e.g.,
the "-W" option of COPY). (And note that these wait
options are always automatically chosen for you when you
use a menu option.)

If you have a non-Atari drive, we would suggest you read
the rest of this section.

Many of the procedures discussed in the subsections
which follow require the use of commands and options
which are NOT available from the "ordinary" DOS XL menu
level. You, as the user, have two ways of using these
commands. First, you may use the "X" (Xtended command)
menu option. When you use "X", DOS XL prompts you for a
command line. At that time, type in the command as
shown in the descriptions below . Second, you may use
the CP level of DOS XL (possibly by choosing option "Q "
from the menu). Again , simply type in the command as
shown below when you are prompted by "Dl : ".

Remember, when using the CP commands CONFIG,
INITDBL, !NIT, COPY, and SDCOPY, as described below,
you MUST have a DOS XL master diskette in drive 1
when you type the command. If you do not, you will
get a FILE NOT FOUND error message.

--100--

7.1 Setting Up Multiple Drives

DOS XL version 2 is compatible with and capable of
controlling any mixture of up to eight single density
and/or double density disk drives. If you have a drive
capable of double density operation as well as one or
more drives only capable of single density, we would
suggest that you connect the double density drive as
drive 1 (see your drive manufacturer's manual for switch
settings, etc.). This will allow you to boot DOS XL in
either single or double density mode.

If a drive is capable of either single or double density
operation, you can generally predict what state it will
be in when power is turned on. If it is drive 1, it
will acquire the density of the booted master disk. If
it is other than drive 1, it will adopt its density from
the switch setting on the drive's controller (again, see
your drive manufacturer's manual). Of course, if it is
not capable of double density operation (e.g., an Atari
810 Disk Drive), it will always be single density.

DOS XL as shipped is set up to handle 1 or 2 disk drives
and up to 3 simultaneously open files in double density
mode (i.e., 3 BASIC "OPEN" statements without an
intervening "CLOSE"). If you own 3 or more disk drives,
or you require more files open at one time, you must
change the values in certain system variables. See
section 7.5 for more information.

DOS XL automatically asks each drive what density it is
when the boot process occurs. From then on, if you want
to change a drive's density, you must use the CONFIG
command from DOS XL's Command Processor.

CONFIG has several options, and you may read section 6.3
of this manual for more information on its capabilities.
For our purposes, however, we need to learn three of its
abilities before going on. Remember, the following
commands MUST be performed from CP or via the X menu
option.

1. If you wish to find out what density DOS XL believes
each drive is, wait until you are prompted as above.

You typer CONFIG [RETURN]

The table which is printed will tell you what
density each disk drive is as well as how many sides
DOS XL is accessing (always 1 side with version 2).
If a drive is not capable of double density

--101--

operation, it is noted as "can't configure". Up to
eight drives will be reported, and the system will
even tell you which drives you don't have. CAUTION:
the fact that CONFIG reports a drive as present does
NOT imply that it is accessible to DOS. See section
7.5 for more on this subject.

2. If you wish to change a drive from single to double
density, wait until you are prompted as above.

You Type:

Here, you
configure
density.
way. The

CONFIG lD [RETURN]
or

CONFIG 2D [RETURN]
etc.

specify the drive NUMBER you want to
and then use a "D" to indicate Double

Any configurable drive may be changed this
complete CONFIG table will be displayed.

3. If you wish to change a drive from double to single
density, wait until you are prompted as above.

You Type:

Here, you
configure
density.
way. The

CONFIG lS [RETURN]
or

CONFIG 2S [RETURN]
etc.

specify the drive NUMBER you want to
and then use an "S" to indicate Single

Any configurable drive may be changed this
complete CONFIG table will be displayed.

CAUTION: Whenever you duplicate diskettes using more
than one drive, whether using the "D" menu option or
DUPDSK or DUPDBL, you MUST be sure that both drives
are CONFIGured to the same density! You may use
CONFIG (as in 1., above) to check that both drives
are the same density and/or change them to be the
same. See sections 7.3 and 7.4, below, for
information on cross-density transfers.

--102--

7.2 Initializing Other Densities

We noted in section 3.7 that you should only use the "I"
menu option to initialize a disk which is the same
density as the booted master disk. Using the extended
options of DOS XL, however, there are several other
possibilities. And there is one exception to 3.7, also.

1. If you have a single drive system, you may
initialize a double density diskette even if you
have booted a single density master. To do so, when
you are prompted as above,

You Type: INITDBL [RETURN]

INITDBL is a command which, when it has loaded from
the DOS XL master disk, will simply ask you which
drive you wish to use (presumably 1, in this case).
It will then automatically configure the drive to
double density, format the diskette, write DOS.SYS
to the diskette, and then reconfigure the drive back
to single density. DO NOT use this command when you
have booted a double density master disk. Use INIT
or menu option "I" instead.

2. If you have a multiple drive system, you may use
CONFIG to configure drive 2 (or 3 or any other
drive) to the density you desire. You may then wait
for appropriate prompt, and

You Type: !NIT [RETURN]

and the INIT utility will load and run, presenting
choices identical to those presented by the "I" menu
option. (Or, at the menu prompt you may use menu
option "I".) The actual rule, simplified in section
3.7, is that you may initialize any diskette to the
density of the drive it is placed in. (And you may
check or set the density of a drive via CONFIG.)

--103--

7.3 Copying Between Densities, Single Disk System

This section applies only to those with one drive and
assumes that that one drive is a configurable
(single/double density) drive. If you have two or more
drives, see the next section.

If you would like to copy one or more files from a
single density diskette to a double density diskette (or
vice versa), you must first have a diskette which has
been formatted (initialized) to the proper density. If
you do not have such a diskette, we suggest that you
boot a master disk of the proper density and use the "I"
option to initialize a blank disk. (Or see section 7.2,
above, for use of INITDBL.)

Then, after having used the "O" option of the menu, wait
for the appropriate prompt,

and You Type: SDCOPY *·* -0 [RETURN]
or

SDCOPY *·* -OR [RETURN]

The first form will copy files from single to double
density. The second form will copy files from double to
single density.

SDCOPY will load in and then allow you to place your
source ("from") diskette (if it is not the master disk)
in the drive. SDCOPY will then read the files directory
of the source disk and give you a chance to say Yes or
No about each file in the directory. If you answer Yes,
the file will be copied to your destination ("to") disk.
Since you have only a single drive, you will have to
swap diskettes at least once for each file (long files
may require two or three swaps),

SUGGESTIONS: (1) Read section 6.13 for other options
available with SDCOPY. (2) Remove any cartridges in
your machine if you are copying large files. ~ey may
copy in fewer swaps, since the cartridge space is used
by SDCOPY. (This does not apply to OSS SuperCartridges,
which already automatically release their space to DOS
XL.)

--11!14--

7.4 Copying with Multiple Drives

If you own 2 drives, you may instead use the standard
"Copy Files" command (option "C" of the menu) to
transfer files between single and double density.

First, however, you must ensure that your drives are
appropriately configured.

Since you presumably have booted your double density
master diskette on drive 1, we suggest that you use
"CONFIG 2S" (see 7.1, above) to place drive 2 in single
density mode (unnecessary, of course, if drive 2 is an
Atari 810 Disk Drive, since it is always single
density).

Remember, to use COPY or menu option "C" after using
CONFIG, you must wait for the appropriate prompt. When
asked for "from" and "to" file names (or when placing
them in the command line for COPY), be sure and specify
"Dl: " and "D2:", as appropriate. (If you make a
mistake, Copy will probably not find the file names you
are looking for, so no harm will be done. Just reverse
the drive specifiers and try again.)

SUGGESTION: The COPY command available from the DOS XL
Command Processor is extremely flexible and powerful.
It may be in your best interests to learn its secrets
even if you do not want to learn all about CP. (By the
way, note that the menu command "C" invokes COPY with
the -0 and -W options requested.)

CAUTION: You may NOT use menu option "D" (Duplicate
disk) to copy from a double density to single
density diskette or vice versa! Strange and
disastrous things will occur if you attempt to do
so. Similarly, you may not use the CP commands
DUPDSK or DUPDBL for this purpose . Duplicate disks
are literally duplicates, including the fact that
the densities MUST be the same.

--105--

7.5 Using 3 or more drives

DOS XL as shipped is set up to handle l or 2 disk drives
and up to 3 simultaneously open files in double density
mode (i.e., 3 BASIC "OPEN" statements without an
intervening "CLOSE"). If you own 3 or more disk drives,
or you require more files open at one time, you must
change the values in the system variables DRVBYT and
SABYTE as follows:

Changlng the number of drives: As shipped, the
variable DRVBYT, location 1802 decimal, holds the
3, which allows you to use l or 2 disk drives.
need to change this value, refer to the following
for new values:

system
value

If you
table

value: number of drives:

-----------------l only l
3 l or 2
7 1, 2, or 3

15 l to 4
31 l to 5
63 l to 6

127 l to 7
255 up to 8

In order to change the value in DRVBYT, perform the
following steps:

l) Insert the Atari BASIC cartridge into your
computer (do NOT use BASIC XL). Boot your
DOS XL master disk.

2) Ensure that the DOS XL menu is not active by
issuing the "Quit to DOS XL" command.

3) Enter the BASIC cartridge via the CAR command.
4) POKE location 1802 with the desired value.
5) Hit the SYSTEM RESET key.
6) Issue the "DOS" command to return to DOS XL.
7) Type: MENU [RETURN] to get back into the•menu.
8) Use the "Initialize Disk " command with option

3 to write DOS.SYS onto your master disk.

Changing the number of simultaneously open files: As
shipped, you may open at the same time up to 6 single
density files, or up to 3 double density files. If this
setting is not enough for your application, you may
change the value in the system variable SABYTE, location
1801 decimal, according to the following table:

--106--

value:

2
4
6
8

10
12

files open in
single density:

2
4
6

files open in
double density:

l
2
3
4
5
6

In order to change the value in SABYTE, perform the
following steps:

l} Insert the Atari BASIC cartridge into your
computer (do NOT use BASIC XL}. Boot your
DOS XL master disk.

2) Ensure that the DOS XL menu is not active by
issuing the "Quit to DOS XL" command.

3) Enter the BASIC cartridge via the CAR command.
4) POKE location 1801 with the desired value.
5) Hit the SYSTEM RESET key.
6) Issue the "DOS" command to return to DOS XL.
7) Type: MENU (RETURN] to get back into the menu.
8) Use the "Initialize Disk•• command with option

3 to write DOS.SYS onto your master disk.

NOTE: You many change both SABYTE and DRVBYT (via POKEs}
at step 4, if desired, thus executing the 8 steps only
once.

See also Appendix A for further information on buffer
allocation, sizes, etc.

--un--

7.6 Booting up directly into a BASIC program

DOS XL is capable of booting directly into a BASIC
program. In order to do so, you must perform a few
simple operations, which are presented in step-by-step
fashion below:

1) Boot a master diskette, entering either the menu or
the command processor.

2) If you want the startup file on another disk, place
that disk in the drive at this time. If it is not
initialized, refer to either section 3.7 (menu) or
6.10 (CP) for instructions on how to initialize it.

3) From the appropriate prompt (see above), use

TYPE E: STARTUP.EXC [RETURN]

At this time, the screen will be blanked out and the
cursor will appear in the top left hand corner of
the screen.

4) At this time, type the line

DO CAR:RUN"D:MENU" [RETURN]

Note the filename MENU is a fictitious filename.
Please replace this name with a name of a program
that is on your disk. Also note that your BASIC
program must also have been SAVEd to the disk before
it can be used in this startup mode.

5) Type the character:
(cntl-3)

To perform the CNTL-3 function, press the key marked
CTRL on the left hand side of the keyboard while at
the same time pressing down the number 3 key. (To
the Atari Computer's OS, this signals and
end-of-file.) When this step has been executed, the
file STARTUP.EXC will actually be written to the
disk and control will return to the operating system
and the menu or Dl: prompt. (For information on the
workings of EXC files in general and STARTUP.EXC in
particular, see Sections 8 and 9.)

--108--

6) In answer to the Dli prompt type DIR (or use the
MFM menu option) to obtain a directory of the disk.
CAUTION: if any of the files listed below are NOT on
your diskette, the STARTUP.Exe file will not work
properly .

DOS.SYS
DO.COM
STARTUP.EXC
your BASIC program file that was used in the

STARTUP . EXC file

If DO . COM is missing, us COPY (C menu option) to
move it from your system master diskette to this
disk . If your BASIC program is missing, SAVE it
(from BASIC) to this disk.

7) Last but not least, before you try out this newly
created diskette by switching the power off and on,
make sure the BASIC cartridge is in its proper
slot .

--109--

7.7 Making a Double Density Master Diskette

This section presumes that you were shipped a DOS XL on
a single density diskette, only. Some disk drive
manufacturers are now shipping either two disks or a
flip-over disk with a copy of DOS XL in both single and
double density. If you received such a disk, you do
NOT need this section. Instead, simply boot the
density desired and use menu option "I" (to initialize
a disk of the appropriate density) or "D" (to duplicate
the master diskette in the appropriate density). If
you use option D, be sure to answer the density
question prompt correctly. (Of course, you can also
use DUPDSK or DUPDBL commands from the DOS XL CP.)

We provide here step-by-step instructions for both menu
mode and CP mode. In either case, we assume you have
booted a single density master diskette.

CAUTION: you should NOT use your original master
disk for the procedure we are about to describe.
Be sure and use a duplicated copy of your master,
instead. Since we may rename a file, you may NOT
have a write protect tab on the disk. This is VERY
dangerous, hence the need for using only a copy of
your master disk and NEVER the original.

From the DOS XL Menu:

l. Use option F. Inspect the files directory. If the
filename DOSXL.SYS appears, use the U option,
giving DOSXL.SYS as the filespec, and then use the
R option. To the "Old name" prompt, answer
DOSXL.SYS and to the "New name" prompt , answer
simply DOSXL. If you did need to do this rename,
reboot your system at this time (turn your computer
power off and then on).

2. Use option x. To the " command:" prompt, answer

INITDBL [RETURN]

When you are prompted with "DRIVE TO INITIALIZE",
answer with the numeral l followed by [RETURN].
The program will then prompt you to "INSERT DISK
AND HIT RETURN". At this time, remove your system
master diskette and insert a blank diskette. Then,
and only then, hit [RETURN].

--110--

INITDBL takes a minute or so to complete its work.
The usual "HIT RETURN FOR MENU" prompt will finally
occur, and you should reinsert your master diskette
before hitting [RETURN].

3. Use option x. To the "command:" prompt, answer

SDCOPY *·* -0

The SDCOPY program will load and execute. When it
asks you to insert the disk to be copied, do
nothing except hit [RETURN] since you will be
copying this system master diskette.

SDCOPY will tell you which file you are about to
copy and ask whether you wish to do so. If you hit
Y [RETURN] the file will be copied. If you hit N
[RETURN], it will not be. Presuming that you wish
a complete double density master, the only file you
do NOT wish to copy is DOS.SYS (since INITDBL has
already written it to your new double density
diskette). Answer N to DOS.SYS but Y to all other
files. (If you KNOW you will not be using certain
programs or files, you may answer N for them, also,
but we would suggest making at least one full
double density master.)

SDCOPY is a slow and painful process of inserting
and removing diskettes, but it will finally finish
(and it is worth it).

4. If you used option R in step 1, above, use option
R. We will now give DOSXL as the "old name" and
DOSXL.SYS as the "new name", thus restoring the
system master to its original condition.

5. Turn off the power to the computer. Insert your
new double density diskette into your drive. Turn
on the computer's power. DOSXL should boot in
double density mode. By obtaining a diskette
directory (option F), you can note whether DOS.SYS
is now only 23 sectors long. If so, you have been
successful.

6. If you used option R in step 1, above, use option R
now. Again, we will rename from "old name" DOSXL
to "new name" DOSXL.SYS, thus allowing extended
memory operation the next time this disk is booted.

7. Label and write protect your new double density
master.

--111--

From the DOS XL Command Processor prompt (Dl:)

1. Use the DIR command. If the file DOSXL.SYS appears
in the file listing, UNProtect it and then REName
it to simply DOSXL (with no extension). If you
renamed DOSXL.SYS, reboot your system.

2. Use the
diskette
re-insert
finished.

INITDBL command to initialize a blank
in double density mode. Be sure to
your master diskette when INITDBL is

3. Use the command

SDCOPY *•* -0

to copy all files except DOS.SYS from your single
density master to your new double density master.
Be sure to re-insert your single density master
when SDCOPY is finished.

4. If you RENamed DOSXL in step 1, use REName again to
change its name back to DOSXL.SYS.

5. Insert your new double density master diskette and
re-boot the computer. Check to be sure you do,
indeed, have a double density master by using the
DIR command. A double density DOS.SYS file is only
23 sectors long.

6. If you RENamed DOSXL in step 1, use REName again to
change its name on this double density diskette.

7. Be sure to label and write protect your new double
density master diskette.

--112--

Section 8: THE DOS XL BOOT PROCESS

The process of loading the DOS XL operating system into
your Atari's memory is somewhat different than the
process for loading other DOS's. Also, deleting or
adding certain files to a bootable disk can affect what
portions of DOS XL are loaded. In order for you to
modify this process and thereby customize your system,
this section describes the steps which are followed in
the boot process.

8.1 Extended Memory DOS Systems and DOSXL.SYS

As shipped, your DOS XL master diskette contains two
special files. One is called "DOSXL.XL" and the other
is called "DOSXL.SUP". We shall call these two files,
collectively, the "extended memory DOS system(s)".

In order to take advantage of an extended memory DOS
system, you MUST have one (or both) of the following:

1. An Atari XL-series computer with 64K Bytes
of RAM (1200XL, 800XL, expanded 600XL, etc.)

2. An oss SuperCartridge (ACTION!, BASIC XL,
MAC/65, etc.)

If you have neither of these capabilities, please 'skip
to section 8.2.

Again, as shipped, these extended memory DOS systems are
NOT active. If you wish to take advantage of possible
extended memory configurations on your computer, you
should read the rest of this section. Otherwise, you
may skip to section 8.2.

If you are using an OSS SuperCartridge for most of your
work, you should rename DOSXL.SUP, following the
procedure outlined below. If you are not using
SuperCartridge but you are using an XL-series computer,
you should rename DOSXL.XL, again using the following
process:

If you are using the DOS XL MENU, choose option u. The
"filespec" to be unprotected is either DOSXL.SUP or
DOSXL.XL, depending on your system configuration as
outlined above. Again, from the menu, choose option R.
In response to the "Old name" prompt, answer either
DOSXL.SUP or DOSXL.XL, as you did with the option U
prompt. In response to the "New name" prompt, answer
DOSXL.SYS and return to the menu.

--113--

If you are using CP, you should UNProtect DOSXL.XL or
DOSXL.SUP, as noted above, and then REName that · same
file to DOSXL.SYS before proceeding.

If you now reboot your system (turn your computer's
power off and back on), an extended memory DOS system
will be booted.

How It Works

While most DOS's reside only in the DOS.SYS file on a
bootable disk, DOS XL can actually occupy two separate
files. The first file, DOS.SYS must be on any disk to
make it bootable. At the beginning of the boot process,
this file is loaded into memory, occupying locations
$700 to $1E00.

At that time, this DOS
itself) checks to see
the booted diskette.
DOSXL.SYS contains an
for you. Once DOSXL
happen.

(it is actually a complete DOS in
if the file named DOSXL.SYS is on
If so, DOS.SYS presumes that
extended memory DOS and loads it
gets control, several things

First, DOSXL checks to see if you do, indeed, have the
memory configuration that you "claimed" to have when you
renamed one of the DOSXL files. If you do not actually
have such a system, DOSXL returns control to the
original DOS.SYS and nothing more happens. For all
intents and purposes, DOSXL.SYS is not active at alll in
this circumstance.

If, however, your memory configuration is as you
"claimed", DOSXL moves itself into the RAM memory
"under" either the SuperCartridge or Atari's OS (as
appropriate).

This newly loaded code now becomes the DOS of the
machine. This DOS saves the user 3K Bytes to SK Bytes
of memory by occupying memory which is bank-switched
with the SuperCartridge (by taking advantage of special
hardware within the cartridge) or the Atari OS (again,
by taking advantage of special hardware built into Atari
XL-series computers).

Remember, then, if you desire NOT to load this special
DOS file, DOSXL.SYS, simply rename the file to a name
other than DOSXL.SYS (we recommend simply DOSXL, with no
extension).

--114--

8.2 The AUTORUN.SYS file

During the boot process, and once the DOSXL.SYS file is
either loaded, skipped, or not used at all (see previous
section), DOS XL searches the disk for a file called
AUTORUN.SYS (note that there is no such file on the DOS
XL master disk). If this file is found, it is loaded
into memory just as if you had issued a "Load Binary"
menu command.

For example, one way to insure that the RS232 driver is
loaded into memory each time you boot a certain disk is
to rename the file "RS232.COM" to the name "AUTORUN.SYS"
(see also the section on the file "RS232FIX.COM").

This loading of AUTORUN.SYS is compatible with the Atari
DOS mode of operation, so most AUTORUN.SYS files which
ran with Atari DOS will also run with DOS XL.

8.3 The STARTUP.EXC file

Again, during the boot process, there is yet another
possible step.

If the file AUTORUN.SYS is not found, or if it returns
to DOS with a 6502 RTS instruction, DOS XL continues the
boot process by searching for the file STARTUP.EXC.
This file is a text file which contains commands to the
DOS XL command processor.

On your DOS XL master disk there is a STARTUP.EXC file
which contains REM commands for just putting messages to
the screen, and the command MENU, which loaded and
started the DOS XL menu (see the following section for
another method of loading the menu).

SIDELIGHT: In order to change the contents of this file,
just use the "Copy Files" option of the DOS XL menu and
select "Ea" and "D:STARTUP.EXC" as the "From" and "To"
files, respectively. When the screen clears and the
cursor appears at the upper left of the screen, type the
desired commands, one to a line. When you are finished,
type control-3 (hold down the control key and press 3).
The commands you typed will then be written out to the
disk into the STARTUP.EXC file.

If you desire not to have a
erase it or rename it to
STARTUP.TXT, for "text file").

STARTUP.EXC file, simply
a different name (perhaps

--115--

Certain cartridge-based products, including ATARI I
WRITER from Atari, Inc., will not work properly if I
your boot disk contains a STARTUP . EXC file. If you I
are using a product such as ATARI WRITER, make a I
special boot disk as follows: I

1) Duplicate your master disk onto a blank one.I
2) Erase the file STARTUP.EXC on that disk. I
3) Erase the file MENU.COM on that disk. I

(only if you want more memory space) I
You should now use this disk for booting into ATARI I
WRITER (you may use this disk for booting into other I
products, but you will not have the menu if you go I
to DOS). I

8.4 The MENU.COM file

As the last step of the DOS XL boot process, and
presuming that neither AUTORUN.SYS nor STARTUP.EXC has
taken control of the system, one further action may be
performed.

The final step of the boot process is the loading of the
DOS XL menu. DOS XL will search the disk for the file
MENU.COM. If that file is found, it is loaded into
memory in the lowest available address (the current
value of the MEMLO pointer, locations $2E7 and $2E8) and
will be in control at the end of the boot process. If
the file MENU.COM is not found, the DOS XL command
process will be in control.

At this point, if there is a cartridge inserted, it will
be entered. Otherwise, the DOS XL menu or the DOS XL
command processor, depending on which has control of the
system, will be entered.

--116--

Section 9: Batch Processing

9.l An Overview of Batch Processing

You may often find yourself repeating the same group of
commands over and over. DOS XL allows you to put these
commands into a file with special capabilities. 'This
file may be used by typing a single command which will
cause all the commands in that file to be executed.
This can save quite a bit of your time and energy since
you won't constantly be typing the same string of
commands.

Let's suppose that you wrote a set
that had to be run in sequence.
two waysz

of ACTIONI programs
You could do this in

1. Issue the CP extrinsic command for each program
one at a time. If the running time of the
programs was very long you might sit at the key
board for hours just to type a program name every
once in awhile.

OR

2. Create a BATCH file containing the DOS XL
commands required to run the set of programs. You
would then enter one command that would free you
from the keyboard for more important (or fun)
things.

The second method is obviously preferable as it is
quicker and can be repeated easily.

Any text file with the filename extension .EXC can be
used as a DOS XL batch execute file. The execution of
the file is invoked much like the extrinsic commands,
except the command is preceeded with a commercial "at"
symbol ("@"). To execute the EXECUTE file DEMO.EXC on
the Dl: default device, type:

Dl:@DEMO

CP will open the file spec DlzDEMO.EXC for input and
then set up DOS XL to read it line by line, executing
the CP commands just as if they were being entered from
the keyboard.

--117--

9.2 .EXC File Format

An execute file is simply a text file. Each line of
this text file will become a CP command when executed.

The three basic rules of the text file lines are:
1) they must contain valid DOS XL Console Processor

commands
2) they must be shorter than 128 characters in

length
3) they must end in a carriage return

(ATASCII $9B).

DOS XL allows the commands in
preceeded by numbers and blanks.
the command lines to be numbered
document their purposes.

an execute file to be
This feature allows

for readability and to

The command file lines: LOAD OBJ.TEST <return>
and

100 LOAD OBJ.TEST <return>

are the same to DOS XL. The CP scans the line for the
first non-numeric, non-blank character before starting
to scan the command word. Virtually any text editor,
including the editor of MAC/65, can be used to create
and modify execute files.

NOTE: One may also create an execute file (or, for that
matter, any text file) by using "TYP E: <diskfile>".
(TYPE will clear the screen, at which time you simply
type in your text, line by line. You terminate the
copy by pressing CTRL-3 on the Atari, the end of file
signal for the E: device.)

9.3 Intrinsic Commands for .EXC Files

DOS XL has four special intrinsic commands designed for
use exclusively with execute files. These commands
are:

REMARK
SCREEN

NOSCREEN

END

See Section 5 for more

Remark or comment (does nothing)
Turn on Echo of execute file
command lines to the screen.
(Default mode)
Turn off Echo of execute file
command lines
Stop executing the execute file
and return DOS XL to keyboard
entry mode (the CP).
detailed explanations.

--118--

9.4 Stopping Batch Files

While an execute file is being processed, various
conditions may occur which will warrant a halt in the
batch execution. These conditions may occur because of
system-detected errors or because of a user program
detecting a condition it considers hazardous to the
system's health.

9.4.1 Stops by DOS XL

Humans are not quite perfect in the eyes of computers
and sometimes make mistakes. DOS XL commands specified
in error will generate error messages. If DOS XL
discovers an error while executing an EXECUTE file, it
will print the error message as usual and STOP
executing the EXECUTE file. Note that this error stop
only occurs if the error is found . by DOS XL, not just
because a program generates an error.

Execution of an execute file will also stop after the
CARTRIDGE commmand is executed.

Finally, execution of course stops when the end of the
execute file is reached.

9.4.2 Stops by User Programs

It is sometimes desirable for a program in a chain of
executing programs to stop the execute process. The
usual reason for this is that the program has detected
an error severe enough to invalidate the processes
performed by the following program(s). The continued
execution of the execute files is provided for by a
single byte flag within DOS XL. If a program sets this
byte to zero, then upon returning to DOS XL the execute
file execution will immediately stop. The execute flag
is located 12 bytes from the start of DOS XL, which is
pointed to by memory location 10 ($0A). The following
BASIC program segment will turn off the execute file
and return to DOS XL.

1000 CPADR • PEEK(ll)*256 + PEEK (10)
1010 EXCFLG • CPADR + 11
1020 POKE EXCFLG,0
1030 DOS

Or, from BASIC XL, you could simply use
100 Poke Dpeek(l0)+11,0 : Dos

(Remember, though, that a CAR command automatically
stops EXC file execution, so this example may not be
useful from BASIC.)

--119--

9.5 STARTUP.EXC: A Special File

The execute filename STARTUP.EXC has special meanings
in the DOS XL system. When the system is first booted
(power up), DOS XL will search the directory of the
booted disk volume for a file named STARTUP.Exe. If
STARTUP.EXC is on the booted volume, DOS XL will
execute that file before requesting keyboard commands.

See section 8.3 for other details on STARTUP.EXC.

9.6 How Execute Files Work

When you type in the command "@filename", CP actually
stores that filename in an internal buffer (CPEXFN) and
sets a flag (CPEXFL) to indicate that a batch operation
is in progress.

Each time CP prompts the user (e.g., with Dl:), it
checks this flag to see if batch is active. If so, it
opens the batch file (using the stored filename).
Unless this is the first time the batch file has been
opened (again, kept track of via a bit in CPEXFL), CP
POINTs to the start of the next text line in the file.

The next text line
buffer. Then CP NOTES
saves the position (in
use by the next needed

is then read into the command
the new position in the file and
internal variable CPEXNP) for
POINT process (as above).

Finally, the command in the command buffer is executed
just as if the user had typed it from the keyboard.

If the command properly terminates (e.g., via an RTS or
a JMP through DOSVEC), the entire process repeats,
until the execute flag is somehow turned off.

The experienced programmer will no doubt realize that
changing the contents of the various CPEXxx locations
can affect batch execution in possibly very interesting
ways. These locations are all defined in the file
called SYSEQU.ASM and are offsets from the address
contained in DOSVEC (location $000A). See, as an
example, the "program controlled stop" mentioned in
9.4.2, above.

See also section 10.2.J, which repeats some of this
material.

--120--

--121--

Section 10: Assembly Language and DOS XL

As mentioned in Section 1.6, DOS XL is designed as a
layered operating system. Application programs
(including languages such as BASIC XL) are expected to
call the operating system "properly", through the
system call vector (labeled "CIO" in SYSEQU.ASM). In
turn, the CIO will determine which device is to receive
what I/O request and handles most of the work
transparent to the calling program.

If a program restricts itself to proper calls to CIO
using labels provided in SYSEQU.ASM, the program should
transfer virtually without change from one version of
DOS XL to another. (Probably the only other areas of
change would involve memory map usage.)

In any case, herewith is a description
assembly language calling sequences
under DOS XL.

--122--

of the proper
and parameters

10.1 Interfacing to I/O Routines

10.1.1 The Structure of the IOCB's

When a program calls the OS through location "CIO", OS
expects to be given the address of a properly formatted
IOCB (Input Output Control Block). For simplicity, we
have predefined 8 IOCB's, each 16 bytes long, and the
call~ng program specifies which one to use by passing
the IOCB number times 16 in the 6502's X-register.
Thus, to access IOCB number four, the X-register should
contain $40 on entry to OS. Notice that the IOCB
number corresponds directly to the file number in BASIC
(as in PRINT 16, etc.). The IOCB's are located from
$0340 to $03BF on the Atari (but you really should use
the equates from the disk file "SYSEQU.ASM" rather than
relying on hard-coded addresses.)

When the OS gets control, it uses the x-register to
inspect the appropriate IOCB and determine just what it
was that the user wanted done. Figure 10-1 gives the
DOS XL standard name for each field in the IOCB along
with a short description of the purpose of the field.
Study the figure before proceeding.

The user program should NEVER touch fields ICHID,ICDNO,
ICSTA and ICPUT, as they are set by the OS. In
addition, unless the particular device and I/O request
requires it, the program should not change ICAUXl
through ICAUX6. The most important field is the
one-byte command code, ICCOM, which tells the operating
system what function is desired.

--123--

FIELD
NAME

I CH ID

ICDNO

ICCOM

I CST A

ICBADR

ICPUT

ICBLEN

OFFSET
WITHIN

IOCB
(bytes)

1

2

3

4

6

8

FIGURE 10-1

IOCB STRUCTURE

SIZE
OF

FIELD
(bytes)

1

1

1

1

2

2

2

PURPOSE OF FIELD

SET BY OS . Index into device
name table for currently OPEN
file, set to $FF if no file
open on this IOCB.

SET BY OS. Device number
(e.g., 1 for "Dl:xxx" or 2 for
"D2:yyy")

The COMMAND request from user
program. Defines how rest of
IOCB is formatted.

SET BY OS. Last status returned
by device. Not necessarily the
status returned via STATUS
command request.

BUFFER ADDRESS. A two byte
address in normal 6502 low/high
order. Specifies address of
buffer for data transfer or
address of filename for OPEN,
STATUS, etc.

SET BY os. Address minus OQe of
device's put-one-byte routine.
Possibly useful when high speed
single byte transfers are
needed.

BUFFER LENGTH. Specifies
maximum number of bytes to
transfer for PUT/GET opera
tions. NOTE: this length is
decremented by one for each
byte transfered.

--124--

ICAUXl

ICAUX2

ICAUX3
ICAUX4

ICAUX5

ICAUX6

10

11

12

14

15

1

1

2

1

1

Auxiliary byte number one. Used
in OPEN to specify kind of file
access needed. Some nrivers can
make additional use of this
byte.

Auxilliary byte number two.
Some serial port functions may
use this byte. This and all
following AUX bytes are for
special use by each device
driver.

For disk files only: where the
disk sector number is passed by
NOTE and POINT. (These bytes
could be used separately by
other drivers.

For disk files only: the byte
within-sector number passed by
NOTE and POINT.

A spare auxilliary byte.

FIGURE H'l-1

IOCB STRUCTURE

--125--

!--!
I IOCB field namel 0 I 1 I 2 I 3 I 4 I s I 6 I 7 I
I I I I I I I I I I
I ' I ' I I I I I I BUFFER I PUT-A- I
' I c I c I c I c I ADDRESS I BYTE I
I I H I D I C I S I I I ADDRESS I
!Type of I I I N I O I T I I I I I
lcommand I D I 0 I M I A I ICBADR I ICPUT I

1---------------------···································I
loPeN I * I * I 3 I * I filename! * I , __ ,
I CLOSE I • I ' 12 I • I I I
1--1
I dynamic I I I I I I I
ISTATus I I * I 13 I * I filename! I
!--!
I Get TeXT I I I I I I I
!Record I I I 5 I * I buffer I I
1--1
IPut TeXT I I I I I I I
!Record I I I 9 I * I buffer I
1--
IGet BINary I I I I I I
!Record I I I 7 I • I buffer I
1--
IPut BINary I I I I I I
!Record I I I 11 I * I buffer I
!--------------------------~-----------------------------
' EXTENDED COMMANDS: DISK FILE MANGER ONLY
1--
IREName I I * I 32 I * I filename!
1--IERAse I I * I 33 I * I filename!
!--
' PROtect I I * I 35 I * I filename I
1~---
IUNProtect I I * I 36 I * I filename!
1--INOTE I I I 38 I • I I
1--
IPOINT I I I 37 I • I I
!--

LEGEND: ' .. Set by OS when this
command is used

'buffer' Address of a data buffer
'filename' Address of a filename

Figure 10-2 IOCB Field Usage

--126--

1--1
I 8 I 9 I 10 I 11 I 12 I 13 I 14 j 15 I IOCB field namel
I I II IIIIIII II I
I BUFFER I c I c I c I c I c I c I I
I LENGTH I A I A I A I A I A I A I (as given in I

I I u I u I u I u I u I u I SYSEQU.ASM) I
I lxlxlxlxlxlxl I

ICBLEN I 1 I 2 I 3 I 4 I 5 I 6 I COMMAND NAMES I

--!
lmodel I I I I I COPN I

--!
I I I I I I I CCLOSE I

--1
I I I I I I I I
I I I I I I I CSTAT

--1
I I I I I I I I

length I I I I I I I CGTXTR

--!
I I I I I I I I

I length I I I I I I I CPTXTR I

1--1
I I I I I I I I I
I length I I I I I I I CGBINR I

1--1
I I I I I I I I I
I length I I I I I I I CPBINR I
!--!
I (See section 10.1.2) I
1--1
I I I I I I I I CREN I

1--1
I I I I I I I I CERA I
!--!
I I I I I I I I CPRO I
!--!
I I I I I I I I CUNP I
!-- ------------!
I I I I sec num lbytel I CNOTE I
!--!
I I I I sec num (byte! I CPOINT I
1--1

'length'
'mode'
'sec num'
'byte'

Length of a data buffer
Mode of OPEN (i.e., read, write, etc.)
Sector number, see section 10.1.2
Byte in sector, see section 10.1.2

Figure 10-2 (con't.)

--127--

10.l.2 The I/O Commands

Figure 10-2 provides a table of I/O commands and their
usage of the various fields of the IOCB'a . The first
seven are DOS XL oriented and will be dealt with in
part A) of this section. The last six are File
Manager specific and are discussed in part B).

Moat of the commands manipulate a device in some way,
so maybe we should talk about them for a moment.
Device names under DOS XL are very simplistic~ they
consist of a single letter optionally followed by a
single digit used to define a specific device when more
than one of the same kind exist (Ex.- Dl: or D2:).
Traditionally (and, in the case of Atari disk files, of
necessity) the device name is followed by a colon. The
following devices are implemented under standard DOS XL
and Atari DOS:

E: The keyboard/screen editor devi ce.
console output.

The normal

K: The keyboard alone.
editing of user input.

Use this device to bypass

S: The screen alone. Can be either characters (ala E:)
or graphics.

P: On the Atari, the
driver allows only

printer. The
one printer.

C: The cassette recorder.

standard device

D: The disk file manager, which also usually requires a
file name.

Other device names are possible (e.g., for RS-232
interfaces) , and in fact the ease with which other
devices may be added is another mark for the claim that
DOS XL is a TRUE operating system. The structure of
device drivers is material for a later section (10.3),
but we should like to point out that, on the Atari, the
OS ROM includes drivers for all the above except the
disk. In fact, the drivers account for over SK bytes
of the ROM code. The screen handler, with all its
associated editing and GRAPHICS modes, occupies about
3K bytes of that.

--128--

A) The Standard DOS XL Commands

The OS itself only understands a few fundamental
commands, but DOS XL also provides for the extended
commands necessary to some devices (XIO in BASIC). In
any case, each of these fundamental commands deserves
a short description.

OPEN

Open. a device (synonyms: file, IOCB, channel) for ~ead
and/or write access. OS expects ICAUXl to contain a
byte that specifies the mode of access:

ICAUXl
4
6
8
9

12

MODE
Read Only
Read Directory Only
Write Only
Write Only Append
Read/Write(Update)

The name of the device (and, for the disk, the file)
must be given to OS: this is accomplished by placing
the ADDRESS of a string containing the name in ICBADR.

CLOSE

Terminate access to a device/file. Only the command
must be given.

STATUS

Request the status of a device/file. The device can
interpret this request as it wishes, and pass back a
(hopefully) meaningful status. As with OPEN, the
ADDRESS of a filename must be placed in ICBADR.

GET TEXT

A powerful command, this causes the OS to retrieve
("GET") bytes one at a time from a device/file already
OPENed until '~€t-ther the buffer space provided by the
user is exhausted or a RETURN character (Atari $98) is
encountered. The user specifies the buffer to use by
placing its ADDRESS in ICBADR and its maximum size
(length) in ICBLEN.

PUT TEXT

The analogue of GET TEXT, OS outputs characters one at
a time until a RETURN is encountered or the buffer is
empty. Requires ICBADR and ICBLEN to be specified.

--129--

GET DATA

Extremely flexible command, this causes OS to retrieve,
from the device/file previously OPENed, the number of
bytes specified by ICBLEN into the buffer specified by
ICBADR • NO CHECKS WHATSOEVER ARE PERFORMED ON THE
CONTENTS OF THE TRANSFERRED DATA.

PUT DATA

Similar to GET DATA, exce~t that OS will output ICBLEN
bytes from the buffer specified by ICBADR Again, no
data checks are performed.

--130--

B) Commands Unique to the Disk File Manager System

Figure 10-2 shows several DOS XL system commands not
yet discussed. These "extended" commands are accessed
via the extended request routine in a device driver's
handler table (see section 10.3 for details on device
drivers). However, some of these extended commands as
implemented for the disk device in the File Manager
System are important enough to deserve their own
sections. We'll examine each of the extended disk
operations in a little detail:

ERASE, PROTECT, and UNPROTECT

Also known as Delete, Lock, and Unlock, these three
commands simply provide OS with a channel number (i.e.,
the X-register contains IOCB number times 16), a
command number (ICCOM), and a filename (via
ICBADR). When OS passes control to the FMS, an attempt
is made to satisfy the request . Note that the filename
may include "wild cards", as in "D:* . ??S" (which will
affect all files on disk drive one which have an 'S' as
the last letter of their filename extension).

RENAME

Very similar to ERASE, et al, in usage. The only
difference is in the form of the filename. Proper form
is: "[Dnz]oldname.ext,newname.ext" Note that the disk
device specifier is not and CAN NOT be given twice.

NOTE and POINT

Other than OPEN, these are the only commands
encountered in standard DOS XL which use any of the
AUXilliary bytes of the roes. For these commands, the
user specifies the channel number and command number
and then receives or passes file pointer information
via three of the AUX bytes. ICAUX3/ICAUX4 are used as
a conventional 6502 LSB/MSB 16-bit integer: they
specify the current (NOTE) or the to-be-made-current
(POINT) sector within an already OPENed disk file.
ICAUX5 is similarly the current (NOTE) or
to-be-made-current (POINT) byte within that sector.

--131--

FMS Extensions of the OPEN Command

Open is not truly an extended operation, but for disk
I/O we need to know that the FMS allows two additional
"modes" beyond the fundamental OS modes.

If ICAUXl contains a 6 when DOS XL is called for OPEN,
then the disk DIRECTORY is opened (instead of a file)
for read-only access. The address ICBADR now specifies
the file (or files, if wild cards are used) to be
listed as part of a directory listing. Note that FMS
expects this type of OPEN to be followed by a
succession of GETREC (get text line) OS calls.

If ICAUXl contains a 9, the specified file is opened as
a write-only file, but the file pointer is set to the
current end-of-file.

10.1.3 Error Codes Returned

On return from any OS call, the Y-register contains the
completion code of the requested operation. A code of
one (1) indicates "normal status, everything is okay".
(I know, why not zero, which is easier to check for.
Remember, we based this on Atari's OS ROMs, which are
good, not perfect.) By convention, codes from $02 to
$7F (2 through 127 decimal) are presumed to be
"warnings". Those from $80 to $FF (128 through 255
decimal) are "hard" errors. These choices facilitate
the following assembly language sequence:

JSR CIOV
TYA
BMI OOPS

call the OS
check error code
if $80-$FF, it must be an error

In theory, DOS XL always returns to the user with
condition codes set such that the TYA is unnecessary.
In practice, that's probably true: but a little
paranoia often leads to longer life of both humans and
programs.

--132--

10.2 Manipulation of DOS XL

The writer of assembly language code will most likely
need to interface with the Atari Operating System (OS)
in some way. If the assembly code is to become an
extrinsic command, there may be a need to interface to
DOS XL. See section 10.l for further information about
the OS interface.

If you are writing software designed to interface with
DOS ~L, you may need to examine and/or modify certain
special memory locations or access certain routines
within DOS XL. This section lists and describes those
that we feel are the most useful.

10.2.l SYSEQU.ASM

Every DOS XL master disk contains an assembler source
file, SYSEQU.ASM, that has various commonly used Atari
OS and DOS XL system equates. This file may be
included in an assembly language program via the OSS
MAC/65 include function (.INCLUDE #Dl:SYSEQU.ASM):
however, it exists on the master disk as a text file
and must be 'ENTER'ed into MAC/65 and then 'SAVE'ed
back to the disk.

10.2.2 CP MEMORY LOCATIONS

The Command Processor (CP) on the Atari is designed to
be placed just after the normal Atari File Manager
when the DOS.SYS version of DOS XL is used. Since the
actual location of CP may vary with different versions
of the file manager and/or because of different memory
configurations, a fixed location has been assigned to
point to CP. The location CPALOC ($0A on the Atari)
contains the address of the DOS XL and CP warmstart
entry point. Most Atari programs should return to CP
by JMPing to the address contained in CPALOC.

--133--

10.2.3 EXECUTE PARAMETERS

The CP execute flag is located CPEXFL {$0B) from the
start of CP. The CPALOC may be used as an indirect
pointer to access the execute flag:

LDY
LOA

f CPEXFL
(CPALOC), Y

;GET DISPL TO FLAG
:LOAD FLAG

The Execute Flag has four bits that control the execute
process:

Name
EXCYES
EXCSCR

EXCSUP

EXCNEW

Bit t
$80
$40

$20

$10

If one, an execute is in progress
If one, do not echo execute input
to screen
If one, a cold start execute is
starting. Used to avoid a FILE
NOT FOUND error if STARTUP.EXC is
not on boot disk.
If one, a new execute is start
ing. Tells CP to start with
the first line of the file

CP performs the execute function by OPENing the file,
POINTing to the next line, READing that line, NOTEing
the new next line and CLOSEing the file. To perform
these functions, CP must save the execute file name and
the three byte NOTE values. The filename is saved at
CPEXFN {$0C) into CP. The three NOTE values are saved
at CPEXNP ($1C) into CP. (CPEXNP = ICAUX5: CPEXNP + l=
ICAUX4: CPEXNP + 2 = ICAUX3). By changing the various
execute control parameters, a programmer can cause
chaining of execute files, skipping of certain lines in
the file, etc.

10 . 2.4 DEFAULT DRIVE LOCATION

The CP default drive file spec is located at CPDFDV
($07) into OS/A+. The Default Drive here is ATASCII
On: where "n" is the ATASCII default drive number.

--134--

10.2.5 EXTRINSIC PARAMETERS

The extrinsic commands may be called with parameters
typed on the command line. The CP command

Ol:COPY FROMFILE 02:TOFILE

is an example of this. The entire command line is
saved in the CP input buffer located at CPCMOB ($3F)
bytes into CP and is available to the user. Since most
command parameters are file names, CP provides a means
of extracting these parameters as filenames . The
routine that performs this service begins at CPGNFN
($03) bytes into CP The routine will get the next
parameter and move it to the filename buffer at CPFNAM
($21) bytes in CP. If the parameter does not contain a
device prefix, then CP will prefix the parameter with
the default drive prefix. The first time COPY calls
CPGNFN the file spec "Ol:FROMFILE" is placed at CPFNAM.
The second time COPY calls CPGNFN the file spec "D2:TO
FILE" is placed in CPFNAM. If CPGNFN were to be called
more times, then the default file spec would be set
into CPFNAM at each call. To detect the end of
parameter condition, the user may check the CPBUFP ($0A
into CP) cell. If CPBUFP does not change often a
CPGNFN call then there are no more parameters. The
filename buffer is always padded to 16 bytes with
ATASCII EOL ($9B) characters. The following example
sets up a vector for calling the get file name routine:

CLC
LOA
ADC
STA
LOA
ADC
STA
GETFN

CPALOC
tCPGNFN
GETFN+l
CPALOC+l
t0
GETFN+2
JMP 0

:ADD CPGNFN
:TO CPALOC VALUE
:AND PLACE IN
:ADDRESS FIELD
:OF JUMP
: INSTRUCTION

The following routine gets the next file name to
CPFNAM:

LOY tCPBUFP :SAVE CPBUFP
LOA (CPALOC), Y :VALUE
PHA
JSR GETFN :GET NEXT FILE PARM
LOY tCPBUFP
PLA :TEST FOR NO NEXT
CMP (CPALOC), Y :PARM
BEQ NO NEXT :BR IF NO NEXT PARM
LOY tCPFNAM :ELSE GET FILE
LOA (CPALOC), Y :NAME FROM BUFFER

--135--

10.2.6 RUNLOC

Whenever an Extrinsic command is invoked, RUNLOC ($30
into CP) is given the value of the first address in
that command's .COM file. Some Extrinsic commands
(including user written commands) can therefore be
restarted by typing the RUN command. You may want to
change the contents of RUNLOC to point to the warmstart
point of your program when it's entered the first time
to avoid unwanted reinitializations when re-entered.
BASIC A+ and MAC/65 do this to avoid clearing any user
progfam which may be in memory when returning from CP.
If you want to forbid re-entry, you need to set
RUNLOC's high order byte ($3E into CP) to zero:

10.3

LOY
LOA
STA

tRUNLOC+l
t0
(CPALOC), Y

DEVICE HANDLERS

:FORBID RE-ENTRY
:TO ME

As we have noted before, CIO is actually a very small
program (approximately 700 bytes). Even so, it is able
to handle the wide variety of I/O requests detailed in
the first two parts of this chapter with a surprisingly
simple and consistent assembly language interface.
Perhaps even more amazing is the purity and simplicity
of the OS interface to its device handlers.

Admittedly, because of this very simplicity, CIO is
sometimes slower that one would wish (only noticeably
so with PUT BINARY RECORD and GET BINARY RECORD) and
the handlers must be relatively sophisticated. But not
too much so, as we will show.

10.3.1 The Device Handler Table

At location "HATABS" in RAM, CIO has (loaded from ROM
on the Atari) a list of the standard devices (P:,
D:,E:,S:, and K:) and the addresses thereof. To add a
device, simply tack it on to the end of the list: you
need only specify the device's name (one character) and
the address of its handler table (more on that in a
moment).

In theory, all named device handlers under DOS XL may
handle more than one physical device. Just as the disk
handler understands "Dl:" and "02:", so could a
keyboard handler understand "Kl:" and "K2:". DOS XL
supplies a default sub-device number of "l" if no.
number is given (thus "D:" becomes "01:").

--136--

Following is the layout of the HAndler TABleS on the
Atari computers:

·= $031A
HA TABS

.BYTE •p• the Printer device

. WORD PDEVICE and the address of its driver

. BYTE •c• the Cassette device

.WORD CDEVICE

.BYTE 'E' the screen Editor device

.WORD EDEVICE

. BYTE •s• the graphics Screen device

.WORD SDEVICE

.BYTE ' K' the Keyboard device

. WORD KDEVICE.

.BYTE fl.I zero marks the end of the
table

.WORD 0 : • • • but there's room for
several

.BYTE fl.I : . • • more devices
et cetera

10.3.2 Rules for Writing Device Handlers

Each device which has its handler address placed into
the handler address table (above) is expected to
conform to certain rules. In particular, the driver is
expected to provide six (6) action subroutines and an
initialization routine. (In practice , the current
Atari ' s OS only calls the initialization routines for
its own pre-defined devices . Since this may change in
the future, and since one can force the call to one's
own initialization routine, we must recommend that each
driver include one, even if it does nothing .) The
address placed in the handler address table must point
to, again, another table, the form of which is shown
below (Figure 111.1.3).

HANDLER
.WORD
.WORD
. WORD
. WORD
.WORD
. WORD
JMP

<address of OPEN routine>-!
<address of CLOSE routine>-1
<address of GETBYTE routine>-!
<address of PUTBYTE routine>-1
<address of STATUS routine>-1
<address of XIO routine>-!
<address of initialization routine>

Figure 10-3

--137--

Notice the six addresses which must be specified; and
note that in the table one must subtract one from each
address (the "-1" simply makes CIO's job
easier ••• honest). A brief word about each routine is
given in the following pages.

Device OPEN

The OPEN routine must perform any initialization needed
by the device. For many devices, such as a printer,
this may consist of simply checking the device status
to insure that it is actually present. Since the
X-register, on entry to each of these routines,
contains the IOCB number being used for this call, the
driver may examine ICAUXl (via LOA ICAUXl,X) and/or
ICAUX2 to determine the kind of OPEN being requested.
(Caution: CIO preempts bits 2 and 3 ($04 and $08) of
ICAUXl for read/write access control. These bits may
be examined but should normally not be changed.)

Device CLOSE

The CLOSE routine is often even simpler. It should
"turn off" the device if necessary and possible.

Device PUT and GET BYTE Routines

The PUTBYTE and GETBYTE routines are just what are
implied by their names: the device handler must supply
a routine to output one byte to the device and a
routine to input one byte from the device. HOWEVER,
for many devices one or the other of these routines
doesn't make sense (ever tried to input from a
printer?). In this case the routine may simply RTS and
DOS XL will supply an error code.

Device STATUS Routine

The STATUS routine is intended to implement a dynamic
status check. Generally, if dynamic checking is not
desirable or feasible, the routine may simply return
the status value it finds in the user's roes. However,
it is NOT an error under DOS XL to call the status
routine for an unOPENed device, so be careful.

Device Extended I/O Routine(s)

The XIO routine does just what its name implies: it
allows the user to call any and all special and
wonderful routines that a given device handler may
choose to implement. OS does nothing to process an XIO
call except pass it to the appropriate driver.

--138--

General Comments on Device I/O Routines

In general, the AUXilliary bytes of each IOCB are
available to each driver. In practice, it is best to
avoid ICAUXl and ICAUX2, as several BASIC and OS
commands will alter them to their will. Note that
ICAUX3 thru ICAUXS may be used to pass and receive
information to and from BASIC via the NOTE and POINT
commands (which are actually special XIO commands).
Finally, drivers should not touch any other bytes in
the IOCBs, especially the first two bytes.

Notice that handlers need not be concerned with PUT
BINARY RECORD, GET TEXT RECORD, etc.: OS performs all
the needed housekeeping for these user-level commands.

10.3.3 Rules for Adding Things to OS

1. Inspect the system MEMLO pointer (see
SYSEQU.ASM for the actual location).

2. Load your routine (including needed buffers)
at the current value of MEMLO.

J. Add the size of your routine to MEMLO.

4. Store the resultant value back in MEMLO.

5. Connect your driver to OS by adding its name
and address into the handler address table.

6. Fool OS so that if SYSTEM RESET is hit steps
3 thru 5 will be reexecuted (because SYSTEM
RESET indeed resets the handler address table
and the value of MEMLO).

In point of fact, step 2 is the hardest of these to
accomplish. In order to load your routine at wherever
MEMLO may be pointing, you need a relocatable (or
self-relocatable) routine. Since there is currently
no assembler for the Atari computers which produces
intrinsically relocatable code, this is not an easy
task. But it may not be necessary if you are writing
code for your own private system instead of the
general public.

Step 6 is accomplished by making Atari OS think ' that
your driver is the Disk driver for initialization
purposes (by "stealing" the DOSINI vector) and then
calling the Disk's initializer yourself before steps 3
thru 5 are performed again.

--139--

10.3.4 AN EXAMPLE PROGRAM

This driver, included in source form on your disk as
"MEM.LIS", ·builds a new driver and adds it to the
operating system. The "device" being driven is simply
excess system memory within your computer. Thus, you
may (for example) use this are as a pseudo-disk file
for passing data between sequentially called programs.

Some words of caution are in order. This driver does
NOT perform step 6 as noted in the last section (but it
may be reinitialized via a BASIC USR call). It does
NOT perform self-relocation: instead it simply locates
itself above all normal low memory usage (except the
serial port drivers, which would have to be loaded
AFTER this driver). If you assemble it yourself, you
could do so at the MEMLO you find in your normal system
configuration (or you could improve it to be self
modifying, of course).

Other caveats pertain to the handler's usage: it uses
RAM from the contents of MEMTOP downward. It does NOT
check to see if it has bumped into BASIC's MEMTOP ($90)
and hence could conceivably wipe out programs and/or
data. To be safe, don't write more data to the RAM
than a FRE(0) shows (and preferrably even less).

In operation, the M: driver reinitializes upon an OPEN
for write access (mode 8). A CLOSE followed by a
subsequent READ access will allow the data to be read
in the order it was written. MORE CAUTIONS: don't
change graphics modes between writing and reading if
the change would use more memory (to be safe, simply
don't change at all). The M: will perform almost
exactly as if it were a cassette file, so the user
program should be data sensitive if necessary: the M:
driver will NOT itself give an error based on data
contents. Note that the data may be re-READ if desired
(via CLOSE and re-OPEN).

A suggested set of BASIC programs is presented on the
next page.

--l4l!J--

Ending of PROGRAM 1:
9900 OPEN 12,8,0,"M:"
9910 PRINT 12: LEN(A$)
9920 PRINT 12: A$
9930 CLOSE 12
9940 RUN "D:PROGRAM2"

Beginning of PROGRAM 2:
100 OPEN 14,4,0,"M:"
110 INPUT 14,SIZE
120 DIM STRING$(SIZE)
130 INPUT #4, STRING$
140 CLOSE 14

BASIC XL users might find RPUT/RGET and BPUT/BGET to be
useful tools here instead of PRINT and INPUT. And, of
course, users of any other language(s) might find this
a handy inter-program communications device.

--141--

Section 11: FILE STRUCTURE

DOS XL version 2 was produced to provide the maximum
compatibility possible with Atari's DOS 2.0s. In fact,
the FMS used is identical to that used by Atari (for a
simple reason: we wrote Atari's DOS). For reasons
known best to Atari, we were instructed to create
Atari's FMS around a linked-sector disk space
management scheme. In essence, this means that the
last three bytes of each sector in a disk file contain
a link to the next sector in that same file. The
positive result of this is that one produces a
relatively small, memory-resident, disk manager which
is nevertheless capable of dynamically allocating
diskette space (unlike, for example, a contiguous file
disk manager). The biggest disadvanta~e of the scheme
seems to be that one may not do direct (random) access
to the bytes of such files, as one CAN do with either a
contiguous or mapped file allocation technique. Also,
a disk error in the middle of a linked file means a
loss of access to the rest of the file.

The purpose of the FMS is to organize the 720 data
sectors available on an 810 (or its double density
equivalent) diskette into a system of named data files.
FMS has three primary data structures that it uses to
organize the disk:

1. Volume Table of Contents (VTOC): a single disk
sector which keeps track of which disk sectors are
available for use in data files.

2. Directory: a group of eight contiguous sectors
used to associate file names with the location of
the files' sectors on the disk. Each Directory
entry contains a file name, a pointer to the first
data sector in the file, and some miscellaneous
information.

3. Data Sectors: sectors containing the actual
data and some control information that links one
data sector to the next data sector in the file.

NOTE: since double density diskette sectors contain 256
bytes whereas single density (810 drive) sectors
contain only 128, certain absolute byte number
references may vary depending upon the diskette in use.
Throughout this chapter, in such cases, the single
density number is given followed by the double density
number in square brackets [thus].

--142--

11.1 DATA SECTORS

A Data Sector is used to contain the file's data bytes.
Each 128 (256] byte data sector is organized to hold
125 (253] bytes of data and three bytes of control.
The data bytes start with the first byte (byte 0) in
the sector and run contiguously up to, and including,

byte 124 [252]. The control information starts at byte
125 (253].

The sector byte count is contained in byte 127 [255].
This value is the actual number of data bytes in this
particular sector. The value may range from zero (no
data) to 125 [253] (a full sector). Any data sector in
a file may be a short sector (contain less than 125
[253] data bytes).

The left six bits of byte 125 [253] contain the file
number of the file. This number correspoinds to the
location of the file's entry in the Directory.
Directory entry zero in Directory sector $169 has a
file number of zero. Entry one in Directory sector
$169 has a file number one, and so forth. The file
number value may range from zero to 63 ($3F). The file
number is used to insure that the sectors of one file
do not get mixed up with the sectors of another file.

The right two bits of byte 125 [253] (and all eight
bits of byte 126 [254]) are used to point to the next
data sector in the file. The ten bit number contains
the actual disk sector number of the next sector. Its
value ranges from zero to 719 ($2CF). If the value is
zero then there are no more sectors in the file sector
chain. The last sector in the file sector chain is the
End-Of-File sector. The End-Of-File sector will almost
always be a short sector.

11.2 DISK DIRECTORY

The Directory starts at disk sector $169 and continues
for eight contiguous sectors, ending with sector $170.
These sectors were chosen for the directory because
they are in the center of the disk and therefore have
the minimum average seek time from any place else on
the disk. Each directory sector has space for eight
file entries. Thus, it is possible to have up to 64
files on one disk.

--143--

A Directory entry is 16 bytes in size, as illustrated
by Figure 11-1. The directory entry flag field gives
specific status information about the current entry.
The directory count field is used to store the number
of sectors currently used by the file. The last eleven
bytes of the entry are the . actual file name. The
primary name is left justified in the primary name
field. The name extension is left justified in the
extension field. Unused filename characters are blanks
($20). The Start Sector Number field points to the
first sector of the data file.

Starting
Byte #
of Field

1

3

5
13

Length
of Field
(bytes)

1

2

2

8
3

Purpose of Field

Flag byte . Meanings of
bits:

$00 Entry never used
$80 Entry was deleted
$40 Entry in use
$20 Entry protected
$02 a version 2 file
$01 Now writing file

Count (LSB,MSB) of
sectors in file

Start sector (LSB,MSB)
of link chain

File name, primary
File name, extension

Figure 11-1

Directory Entry Structure

--144--

(sector $169)
first directory

sector

I FILEA ptr
-I FILEB ptr

I I etc.
I I

-I I
I I I
I I I

-I I I
I I --------------
1 I (sector $16A) I
I --------------
1 etc.

--->>
--+

I
I

' I
' ' I
' I
+-->>

Figure 11-2

sector I
l of I

FILEA f
I ______ ,

I linkl --»

sector I
l of I

FILEB f

' -----1

more I
FILEA f
sectors!

I

I linkl -->> etc.

Version 2 Directory Structure

NOTE: only eight file directory entries are stored per
sector, even on double density diskettes.

--145--

11.3 VOLUME TABLE OF CONTENTS (VTOC)

The
disk
11-3
The
map.

VTOC sector -($168) is used to keep track of which
sectors are available for data file usage. Figure
illustrates the organization of the VTOC sector.
most important part of the VTOC is the sector bit

The sector bit map is a contiguous string of 90 bytes,
each of which contains eight bits. There are a total
of 720 (90 x 8) bits in the bit map--one for each
possible sector on an 810 diskette. The 90 bytes of
bit map start at VTOC byte ten ($0A). The leftmost bit
($80 bit) of byte $0A respresents sector zero. The bit
just to the right of the leftmost bit ($40 bit)
represents sector one. The rightmost bit (bit $01) of
byte $63 represents sector 719.

Starting
Byte t
of Field

0
l
3
5
10

100

Length
of Field
(bytes)

l
2
2
5
90

28

Purpose of Field

Reserved (for type code)
Total number of sectors
Number of unused sectors
Reserved
Sector usage bit map

Each bit represen~s a
particular sector:
a l bit indicates an
available sector,
a 0 bit indicates a
sector in use.

Reserved (could be used
for version 2 type
DOS with more than
720 sectors per disk)

Figure 11-3

Structure of the VTOC Sector

--146--

Appendix A: CUSTOMIZING DOS XL

Although DOS XL was designed and implemented with the
average user in mind, no one piece of software can ever
be all things to all people. For that reason, a
degree of flexibility exists over certain aspects of
the system which allows the user to modify DOS XL to
suit his own tastes. The following sections describe
the moat useful modifications which may be performed.

----~-----------------
A.l BUFFER ALLOCATION

DOS XL allows the user to specify the starting address
of the system file buffers and the number of buffers to
be used. The location of the words which specify these
parameters is not guaranteed to remain fixed in future
releases. Therefore, it is strongly suggested that the
user desiring to change one or both of these values
check the file "SYSEQU.ASM", supplied on the DOS XL
disk, to be sure of the latest system value. As of the
printing of this manual, the following locations are in
use:

label location use

SASA $070C
SABYTE $0709

start of buffers
t of buffers

Presuming the user wishes to change SABYTE, the first
question that needs answered is "How many buffers do I
need?" The rules follow:

Amount of space required: For single density diskettes,
use 2 buffers per active drive AND 1 buffer per
simultaneously open file. For double density
diskettes, use 2 buffers per active drive and 2
buffers per simultaneously open file. EACH BUFFER
IS 128 BYTES LONG.

Be sure you have enough room at the
will specify by SASA to contain
required.

location you
the buffers

Specifying the number of buffers: Do NOT include the
drive buffers in the count of buffers you give DOS
XL. Instead, simply specify the FILE buffers in
location SABYTE.

--147--

A.2 SPECIFYING EXISTING DRIVES

Under version 2, the byte
consult SYSEQU.ASM to
controls which drives are
represents a given drive.
DRVBYT represents drive
drive 2, etc., up to the
represents drive 8.

location DRVBYT (at $70A, but
confirm current location)

active. Each bit of DRVBYT
The least significant bit of
1, the next bit represents

most significant bit which

bit is DRVBYT is on (set to one), the drive is
active. If a bit is off, the drive is inactive. Thus
a value of $05 would imply that "Dl:" and "D3:" are
active.

If a

CAUTION: simply changing the bits in DRVBYT or adding
information to the disk drive table is NOT sufficient
to change the system configuration. After changing the
bits, you must cause DOS XL to reinitialize its.elf.
This may be accomplished by simply hitting the SYSTEM
RESET key from the keyboard, or calling the DOS
initialization routine, via DOSINI, from a running
program.

A.3 SAVING YOUR MODIFIED VERSION

Saving a modified version of DOS XL is extremely simple.
With version 2, simply use the INIT command and, when
the menu appears, specify "Write DOS.SYS file only" (or
go ahead and initialize the disk if it is a new
disk .•. just be careful not to reinitialize a disk with
valuable goodies on it). However, this option can NOT
be taken when an extended memory DOS system is active.
See sections 3.7, 6.8, 7.7 for more information.

--148--

Appendix B: DOS XL AND THE 850 INTERFACE MODULE

B.l Loading the RS232 handler

When using Atari DOS 2.0s, the only way to load the
RS232 device handler (Rn:) from the 850 interface module
is through the use of an AUTORUN.SYS file (see section
8.2). This option is also available to DOS XL users.
Another option is, however, available to you. After
booting DOS XL, you can simply issue the following
commands:

1) from the DOS XL menu:
You type: X

and then, when prompted for a command,
You type: RS232 [RETURN]

2) or, from the DOS XL command processor:
You type: RS232 [RETURN]

This sequence of commands will cause the RS232 device
handler to be loaded into the system. You can then
refer to the 4 RS232 ports on the 850 interface module
as "Rl:" through "R4:", respectively.

B.2 Bugs in the RS232 driver

Unfortunately, the device handler which loads in from
the 850 interface module is not perfect. The most
serious flaw occurs when you push SYSTEM RESET after the
RS232 driver has been loaded into memory. Under certain
circumstances, your Atari computer will "hang", freezing
the keyboard, after pressing that key. For this reason,
many Atari reference books recommend that you NEVER
press SYSTEM RESET after loading the RS232 driver.
Under DOS XL, however, there is a solution to this and
other problems. On your master disk there is a file
called "RS232FIX.COM''. This file is almost identical to
the "RS232.COM" file which is normally employed to
install the RS232 handler. The fixed version attempts
to correct some of the known bugs in that handler.

You may ask, "Why not just include the correct version
on the DOS XL master disk?" Well, Atari has produced
several versions of the 850 interface module. OSS has
almost no way of knowing whether the corrected version
works with all such revisions so, rather than

--149--

introducing new problems, both the original and the
fixed version are included.
To test the "RS232FIX.COM" file with your 85111 module,
either:

l) Using the DOS XL menu:
You type: X

When prompted for a command,
You type: RS232FIX [RETURN]

2) or. using the DOS XL command processor:
You type: RS232FIX [RETURN]

If the RS232 handler loaded in this way seems to work
properly, you may use it exclusively for loading the
RS232 handler, ignoring the original RS232 command.

--15111--

APPENDIX C - SYSTEM MEMORY MAPS

C.l ATARI ZERO PAGE MAP

location usage

system zero page 0-9
A-B
C-D
E-42
43-4'1
4A-7F
80-FF
80-CD
D2-FF

CPALOC known to Atari DOS as DOSVEC
DOSINI vector to FMS initialization

system zero page
fms zero page
system zero page
user .and language zero page
BASIC XL and Atari BASIC zero page
floating point zero page

C.2 ATARI SYSTEM MEMORY MAP - DOS XL version 2

location

100-lFF
200-319
300-308
31A-33F
340-JBF
3C0-57F
580-5FF
600-6FF
700-variea

709 SABYTE
70A DRVBYT
70C SASA
(2E7)-BFFF

A000-BFFF

C000-CFFF

D000-D7FF
D500-D5FF
D800-DFFF
E000-E3FP
E400-FFFF
E408-FFF9

usage

6502 stack area
system ram
DCB (device control block)
device handler table
IOCB's - 8 at 16 bytes each
system ram
E: text buffer
user ram
DOS XL -- file manager and CP
or just buffers, etc., when using
extended memory DOS systems
number of 128 byte file buffers
bit map: accessible drives
address of start of buffers
user, language, and graphics memory
Note: (2E7) means "contents of
location $02E7" (LOMEM).
SuperCartridge and Atari BASIC memory-
also used by DOS XL for file manager
and CP in "DOSXL.SUP" version of the
extended memory DOS system
Unused in Atari 400/800, OS ROM
in XL-series, bank switched with RAM
I/O locations
Used by SuperCartridge for bank select
Floating Point ROM
Character Set ROM
OS Drivers, CIO, etc.--in ROM
Bank-selectable RAM used by DOS XL
for file manager, CP, etc., in the
"DOSXL.XL" version of extended memory DOS

--151--

Appendix D: Atari Writer and Other Cartridges

Certain cartridge-based products, including ATARI WRITER
from Atari,
disk contains
product such
as follows:

Inc., will not work properly if your boot
a STARTUP.EXC file. If you are using a
as ATARI WRITER, make a special boot disk

1) Duplicate your master disk onto a blank one.
2) Erase the file STARTUP.EXC on that disk.
3) Erase the file MENU.COM on that disk.

(only if you want more memory space)

You should now use this disk for booting into ATARI
WRITER (you may use this disk for booting into other
products, but you will not have the menu if you go to
DOS).

--152--

APPENDIX Et Error•

E.l TYPES OF ERRORS

All DOS XL operations return a 1tatu1 value in the
IOSTAT field. DOS XL convention i1 that 1tatu1 value•
of $88 or 9reater indicate 1ome 1ort of error. 'l'hete
are four fundamental kinda of error• that can occur
with DOS XL1

Hardware Error•

Such a1 attemptin9 to read a bad disk, write a
read-only di1k, etc.

Data Tran1fer Error•

Error1 which occur when data i1 transferred between the
computer and a peripheral device. Examples include
Device Timeout, Device NAJC, Framir19 Error, etc.

Device Driver Error•

Found by the driver for the 9iven device, ae in (for
the DFH) File Not Found, File Locked, Invalid Drive
Number, etc.

OS Errors

U1ually fundamental usage problems, 1uch ae Bad Channel
Number, Bad Command, etc.

E.2 ERROR CODE LISTING

The li1t of error code• ..ttich follow• i• not nece11arily
exhauative, but it doe• represent all error code• which
will normally be returned fro DOS XL or any of the Atari
device driver1.

--153--

ERROR COO!
H!X O!CIHAL

$91

$92

$03

$89

$81

$82

$83

$84

$85

$86

l

2

3

128

129

139

131

132

133

134

MEANING

No error or warning.

Truncated ASCII line. The OS did not
find a CR within BUFLEN for ASCII line
I/O.

End of file look ahead. The laat byte
tranafered from the device driver waa
it• end-of-file byte. The dev>ce
driver must aet thia status, so it is
best to verify that the device being
uaed ia capable of returning thi•
status before depending on it.

Operation aborted. Set by Device
Handler. (Also BREAK abort on Atari.)

File already open. Program i• trying
to open a channel (IOCB) that has
already been OPENed.

Device does not exiet. The device was
not found in the OS device table.
Often caueed by forgetting the disk
drive name when using a disk file.

File is write only. Program tried to
read from a file which can only be used
for writing (i.e., file was OPENed with
AUXl set to 8 or 9).

Invalid Co111111and. CIO has rejected your
requeeted command. (!xample1 program
tried to do XIO to a device which has
no extended operation• defined.)

Device/File not open. The IOCB ha• not
been OPENed for the operation. Moet
I/O requeats require that the channel
be OPENed before a requeet cari be ~ade.

The IOCB specified ie invalid. Only
IOCB number• $00, $19, $29, $39, $49,
$59, $69, and $70 are valid. FrOlll acne
languages, these will be •••n a•
channel• 9 to 7.

--154--

$87

$88

$89

$8A

$88

$8C

$8D

$8E

$8P

$98

$91

$92

135

136

137

138

139

148

141

142

143

144

145

146

File i• read only. Program tried to
write to a file which can only be uaed
for reading (i.e., file waa OP!Ned with
AUXl apecified aa 4 or 6.

End of file. No more data in file.

Truncated record error. Uaually occur•
when the line you are reading ie longer
then the maximum record aize epecified
in the Call to CIO (line oriented I/O).
Can't occur with binary I/O on vereion 2
OS/A+.

Device timeout error. Ueually eet by
the aerial bua I/O handler ("SIO")
because a device did not respond within
the alloted time aa aet by the OS.

Device NAJC error.
error.

Atari: aerial I/O

Serial framing error. Atari1 aerial I/O
error.

Cursor out of range for epecif ic
9raphice mode you are in. (Could be
uaed for similar meaning by a
non-9raphice device.)

Serial bua overflow. Atari: computer
could not respond faat enou9h to aerial
bu• input (SIO error).

Checkeum error.
aerial bua are
error).

Communication• over the
9arbled (Atari SIO

l) Device done error. A valid command
on the eerial bua waa not executed
properly. Atari• diek rotational speed
needs ad-juatment. 2) Write protect
error. The diskette hae a write protect
tab in place.

Ille9al screen mode error. Bad graphic•
mode number. Other devicees AUXl and/or
AUX2 bytes in IOCB are ille9al.

Thie error mean• the function you tried
to do haa not been implemented in the
device handler. (Examples attempt to
POINT with the graphic• device.)

--155--

$93 147 Not enouqh RAH for th• graphic• •ode you
requeeted. (Could be ueed by cuetom
driver• for a eimilar ••••age.)

NOTEs Error• $A8 through $AF are file aanager errore.

$A8

$Al

$A2

$A3

$A4

$AS

$A6

$A7

$A8

$A9

$AA

$AB

$AC

$AD

168

161

162

163

164

165

166

167

168

169

178

171

172

173

Either a drive t NOT between 1-8 or
drive wae not powered on.

Too many OPEN filee. No free eector
buffer• to u•• for another file.

Diak FULL. No free apace left on disk.

Fatal ayete• error. Either DOS ha• bug
or bad diekette.

File miematch. Bad file structure or
POINT value• wrong.

Bad file name. Check for illegal char
acter• in file name. Veraion 4 is more
liberal in thi• regard than version 2.

The byte count in your POINT Call wae
greater then 125 (for eingle denaity
vereion 2) or 253 (for double deneity
vereion 2).

The file epecified i• locked
(PROtected). Protected file• cannot be
eraeed or vritten to.

The eoftware interface for the
device received an invalid
(examples tried to acceaa
exietent track or sector).

specific
command

a non-

All epace allocated for the directory
ha• been ueed up (too many filename• in
uae).

The file you requeeted doea not appear
on thia diekette.

You have tried to POINT to a byte
file that i• not OPENed for
(version 2 only).

in a
update

Tried to OPEN a DOS l file with DOS II
(vereion 2 only).

Th• diak drive haa found bad aectore
while trying to format the diek.

--156--

a reference manual for

B u G I 6 5

an Assebly Language Debugging program for
use with 6502-based computers built by

Apple Computer, Inc., and Atari, Inc.

The programs, disks, and manuals comprising
DUG/65 are Copyright (c) 19R2 by

McStuff Company
and

Optimizen Systems Software, Inc.

This manual is Copyright le) 1902 by
Optimized Systems Software, Inc., of
10379 Lansdale Avenue, Cupertino, CA

Rev 1.1

All rights reserved. Reproduction or translation of
any part of this work beyond that permitted by sections
107 and 108 of the United States Copyright Act without

the permission of the copyright owner is unlawful.

ERRORS IN YOUR BUG/65 MANUAL

Unfortunately, due to a mistake by the company which prints our manuals, the BUG/65
portion of your DOS XL manual does not completely match your software. It describes
an older version ·.-1hich had fewer features. Luckily, the only changes are enhancements
to the system, and only involve a few pages. This sheet will describe those new
f eat•Jres.

l. The revision number printed on the title page of your BUG/65 manual should be 2.0,
not 1.1.

2. BUG/65 normally protects itself from modification (by the Sor A commands, for
example). P:l<Je 37 of your 11anual describes how to turn off this protection by
modifying the PROTFG flag. We have added t·.;o new commands, however, to make it
easier to turn on and off BUG's memory protection. The N command will turn
off the protection (i.e., No protection). The 0 command turns back On the
protection.

3. Page 24 of your manual describes how to read sectors of a disk using the Ri
command. This command has been changed, however, to allow reading of either
single- or double-density sectors. If you want to read from a single-density
diskette, use R', instead of R%. Use R•, correspondingly, for double-density
c;ectors.

4. Similarly, page 28 of your manual describes using the W% command to write sectors
to a disk. Again, use W' for single-density diskettes, and w• for double-density
diskettes.

5. Completely ignore page 45 of your manual. The current version of BUG/65 will work
properly with OS/A+ version 4 without applying any patch program.

PREFACE

BUG/65 is an interactive debugging tool for use in the
development of assembly language programs for the ATARI
800 or ATARI 400 personal computers. It's designed to
take as much of the <lrudgery out of assembly language
debugging as possible. The design philosophy behind
BUG/65 is that the computer should serve as a tool in
the debugging process as opposed to a hindrance. One
result of this philosophy is that BUG/65 requires a
relatively large amount of memory when compared to
simpler <lebug monitors. This is the result of a
tradeoff between memory and functionality, with
function winning out.

BUG/65 is a RAM loade<l machine language program
occupying 8K of memory; it is self relocatable as
shipped and requires a full 48K bytes of memory .
BUG/65 is also designed to be floppy disk base<l it
isn't intended to be used in cassette-only systems.
BUG/65 was designed for use by an experienced assembly
language programmer.

BUG/65 is an original product of the McStuff Company,
which ileveloped the product under the name "McBUG",
which name is their trademark.

For use on the ATARI A00 or 400 computer with a
minimum of 48K of RAM and one floppy disk drive.

TRADEMARKS

The following trademarke<l names are useil in various
places within this manual, and credit is hereby given:

OS/A+, BUG/65, MAC/65, and C/65 are trademarks of
Optimized Systems Software, Inc.

Apple, Apple II, and Apple Computer(s) are trademarks
of Apple Computer, Inc., Cupertino, CA

Atari, Atar 400, Atari 800, Atari Home Computers, and
Atar 850 Interface Module are trademarks of
Atar , Inc., Sunnyvale, CA.

TABLE OF CONTENTS

Summary of Major Features

Section 1 Command Summary

Section 2 Notation used, syntax

Section 3 Address Parameters
3.1 Spaces as Delimiters

1

2

4

5
6

Section 4 -- Loading and Running BUG/65 7

Section

Section

Section

4.1 Specifying BUG/65's Loadpoint Address 7
4.2 Creating a Non-Relocatable Version 8

5 --
5.1
5.2
5.3
5.4

6 --
6.1
6.2
6.3
6.4
6.5
6 . 6

7 --
7. l
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7. ll
7 .12
7.13
7.14
7 .15

Command Entry
Conunand Line Editing
Normal and Immediate Commands
Command Execution
Multiple Commands on a Line

Command Termination
Normal Termination
Error Termination
Command Suspension
Command Abort
The RESET Key
Manual Restart

Detailed Command Descriptions
A l\SCII memory change
B set relocation Ras e
C Compare memory blocks
D Display Memory
E Execute command file
F Fill a memory block
G Go to user program
H Hexadecimal arithmetic
I disk Inventory (d irecto ry)
J create command file
K convert hex to d e cimal
L Locate hex string in memory
M Move memory block
P select output (Printing) device(s)
Q Quit (to OS/A+)

(continued)

9
9

11'1
10
11

12
12
12
12
12
13
13

14
15
16
17
18
1A
18
19
20
21
21
21
22
22
23
23

TABLE OF CON'rENTS (continued)

Section 7 -- Detail en Command Description (continu•'!n)
7.16 The read comman<ls 24

7.16.1 R -- Read binary file 24
7.16.2 R% -- Read se~tor 24

7.17 S Substitute (change) memory 25
7.18 T Trace user routine 26
7.19 U call User subroutine 26
7.20 V Verify user registers 27
7.21 The write commands 28

7.21.1 W -- Write binary file 28
7,21.2 W% -- Write sector 28

7.22 X change user register values 29
7.23 Y -- disassemble memory block 30
7.24 Z -- instant assembler 31

Section 8
8. 1
8.2
8.3

Section 9

Section 10
10. 1

Section 11

Section 12
12.1

Section 13

Appendix A

Special Command ModifiP.rs
Return key
/ repeat command line forever

display last command line

Memory Protection

Memory Usage
Page Zero Sharing

Customization, Configuration

User Command Interface
User Command Handler Example

Error Messages

Use of BUG/65 with OS/A+ Version 4.l

33
33
33
33

34

35
35

36

38
41

43

45

SUMMARY OF MAJOR FEATURES OF BUG/65

* A full set of debugging commands change
memory, display memory, goto user program with
break points, etc.

* Binary file read and write, including appended
write.

* A disassembler.

* An instant
capability.

assembler providing labeling

* Expanded command addressing capability: hex or
decimal addresses, + and - operators supported,
relocated addresses supported.

* Read or write disk sector(s).

* Multiple commands permitted in a command line.
Command lines can be repeated with a single
keystroke or repeated forever with the special
slash opera tor.

* Support for relocatable assemblers - the base of
a module can be specified and then used to
reference addresses in that module.

* BUG/65 commands can be executed from a command
file, and there is a command to create command
files.

* Hex to decimal and decimal to hex conversions
provided.

* Memory protection of BUG/65's code and data.

*

BUG/65 won't allow you to use a BUG/65 command
that will destroy any part of BUG/65 itself.
For example, you can't use the Fill command to
overwrite BUG/65's code.

Page zero sharing.
a user program by
shared page zero
and one for BUG/65

BUG/65 shares page zero with
keeping two copies of the

locations - one for the user
itself.

--1--

SECTION 1 : COMMAND SUMMARY

This section is i.ntenc'led to be a hanc'ly reference gui<ie
anc'l will probably prove inc'lispensable after the user
has thoroughly read through the rest of this manual.
For the experiencec'l debug user, might we suggest at
least a quick perusal of Sections 2 through 6 and
Sections 8 and 9.

The following table is simply a syntax summary of the
available commands. Excepting for the first three
commands (which are c'lescribed in Sertion 8), all the
commands are described in alphabetical or<ler in Section
7.

COMMAND
CODE

{RETURN)

I

A

B

c

D

E

F

G

H

I

J

K

SYNTAX

A <ac'ldr>)S

B <addr>

PURPOSE

Repeat last command line

When appenc'led to a commanc'l
line: repeat line forever.

Display last command line

Ascii moc'le memory change

Base ac'ldress for relocation

C <startaddrl> <endaddrl> <startaddr2>
Compare memory blocks

D <startaddr> f<endac'lc'lr>] Display memory

E #filespec Execute a command file

F <startaddr> <endaddr> [<value>]
Fill memory block with value

G ~<startadc'lr>] [@<breakpoint> [Rn=<value>] [!=<count>]

H <number!> <number2>

I

J #filespec,string

K <number>
--2--

Go at adnress, set optional
breakpoint, with optional Register
value breakpoint and pass Counter.

Hexadecimal arithmetic result

disk Inventory (directory listing)

create command file

convert hex to decimal

L L <startaddr> <endaddr> <bytel> [<byteN> •..]
Locate byte string in memory
block

M M <startaddr> <endaddr> <toaddr>
Move memory block

P P rs] fp~ Print output on Screen and/or
Printer

Q Q Quit • .. go to OS/~+

R R f<offset>] #filespec Read a binary file to memory
with optional offset

R% R% (<sectornumber> [<bufferaddr> [<numsectors>J J J

s S <addr>)S

Read sector(s) from disk to
memory buffer.

Substitute memory,
mode

numeric

T T [SJ (<count>] Trace, with optional Skip
over subroutine calls, for
(optional) count instructions

U U <addr> [<param>] call User routine at given
address and pass optional
parameter in X,Y registers

V V View user registers

W W [:A] <startaddr> <endaddr> #filespec
Write a block of memory to a
binary image file, optionally
appending instead of creating
new file.

W% W% [<sectornumber> [<bufferaddr> [<numsectors>] 1]
Write sectors from memory
buffer to disk

X X~ or XX or XY or XS or XP or XF
change user register value

Y Y <startaddr> [<endaddr>]
disassemble memory block

z Z <addr>~ instant assembler lat address)

--3--

< ••• >

SECTION 2: Notations Used In This Manual

The following notations are used in this manual:

Is used to indicate a numerical address
parameter. The address expression between the
two characters"<" and ">" may be any valid
address as described in Section 3. For example,
<START> means that you can enter any valid
address expression to specify the START
parameter.

~ Is used to indicate one and only one blank. In
most cases, blanks are insignificant and any
number of them may be entered between commands
and parameters. However, in certain cases, one
and only one blank must be entered - this blank
is indicated by the "~" character.

~ ...] Is used to specify an optional parameter. For
example, (<VALUE>] would indicate that VALUE is
an optional address parameter. You'll find that
many parameters are optional, and in such cases
logical default values will be supplied by
BUG/65.

or Is used to delimit a list of choices. In such a
list, one and only one choice may be used. For
example, "+ or -" indicates that you may enter a
plus sign or a minus sign, but not both.

filespec Is used to indicate a standard OS/A+ filespec.
This consists of the device name followed by a
colon and the filename. For example,
"D: DATAFILE" is a valid filespec for a file
named DATAFILE on disk drive one.

--4--

SECTION 3: Address Parameters

BUG/65 allows numerical addresses to be specified in a
variety of ways. You can use hexadecimal or decimal

notation, add and subtract terms, or add a relocation
factor to any address. The following Backus-Naur
definitions describe the various address types:

<ADDR> :• + or - <TERM> [+ or - <ADDR> J

<TERM> : = <NUMBER> or X<NUMBER>

<NUMBER> := <DECNUM> or <HEXNUM>

<DECNUM> := .<DECIMAL DIGITS>

<HEXNUM> := <HEXADECIMAL DIGITS>

In the above, the only item not literally defined is
the "X" item in the definition of a TERM. This is used
to indicate that the following NUMBER is to be
relocated by adding the value of the current relocation
base to the value of NUMBER. The current relocation
base is set by the "B" command.

All address parameters are interpreted as 16-bit
positive numbers in the range of 0 to 65535. Overflow
isn·• t detected or reported as an error.

Some examples will help (all of these are valid address
expressions) :

lFAl

. 100

1000+.20

1+2-3+4

Xl234

a hexadecimal number.

a decimal number (one hundred) •

a hexadecimal number plus a decimal
number. This evaluates to 1014 hex
(4116 decimal).

a long expression. Evaluates to 4.

a relocated address. If the current
relocation base has the value $100A,
then this expression will evaluate
to $2234.

--5--

3.1 Spaces as Parameter Delimiters

BUG/65 uses spaces as parameter delimiters.
for easier and quicker entry of commands.
does introduce some conventions regarding
spaces that you must be aware of:

This makes
However, it

the use of

..

*

..

Spaces may not be embec'lded in a number. For
example, "12 34" is interpretec'I as two
parameters ($12 and $34) and not as the single
parameter $1234.

Spaces aren't allowed between the "X" relocation
specifier and it's associated relocated address.
For example, "X 12 34" is interpreted as two
parameters. The first will have the value of
the current relocation base and the second is
$1234 .

Any number of spaces may be
parameters. For example,
perfectly valid way of
parameters $1234 and $5678.

--6--

used to separate two
"1234 5678" is a

entering the two

SECTION 4: Loading and Running BUG/65

BUG/65 is shipped on your master diskette as a
relocatable COMmand file, named "BUGGS.COM".
Therefore, BUG/65 functions just as does any OS/A+
extrinsic command: simply type "BUG65" when OS/A+
prompts with 01: (or On: if you have changed default
drives .•. see the OS/A+ manual for more details) and
BUG/65 will load into memory and relocate itself to
just above the current value of LOMEM (contents of
$2E7-$2E8).

4.1 Specifying BUG/65's Load Address

If you need BUG/65 to load at some location other than
LOMEM (which is typically around $2000 with OS/A+
version 2 and around $2C00 with version 4), you may
also enter a load address on the OS/A+ command line.
The address must be in hex, must be at or below $9A00,
and should be above LOMEM. Remember, BUG/65 occupies
BK bytes, which means it will occupy memory starting at
the address you give and ending $2000 bytes higher.

EXAMPLE:
[Dl:)BUG65 8000

This usage will load BUG/65 at $8000, set its
restart point at $8200, and occupy memory
from $8000 through $9FFF.

--7--

4.2 Creating a Non-Relocatable Version

In order to allow itself to be relocated virtually
anywhere in memory, BUG/65 as shipped includes a
relocation bit map and a relocation program. In
addition, relocatable BUG/65 always loads in at
locations $9800 through $BC00. If these addresses are
"poison" to you (e.g., if you want to use BUG/65 with a
cartridge plugged in), you may wish to produce a
non-relocatable version designed to run within an
address range you pick.

If so, USING A 48K SYSTEM, simply specify the
loadpoint, as shown in the preceding section (e.g, via
"BUG65 7000") and allow BUG/65 to load and relocate.
Then exit to OS/A+ (via Quit) and use the OS/A+
intrinsic command SAVE to save a non-relocatable
version. The address range to be SAVEd may be
calculated as follows:

SAVE filename.COM loadpoint+$200 loadpoint+$2000

Thus, if you had specfied "BUG65 7000", you could save
the non-relocatable version via

SAVE BUG7000.COM 7200 9000

thus also giving it a name
where it will load at. To
version, simply type in
example shown).

which will later remind you
execute this non-relocatable
its name (BUG7000 in the

--s--

SECTION 5: Command Entry

When you see BUG/65's input prompt (the ">" character)
in the left-hand column of the screen, then you're in
command entry mode . Any data typed at that point will
be entered into the command line buffer - the command
line isn't executed until you type RETURN. You can
enter as many commands in one command line as will fit
in the command line buffer (100 characters). As soon
as you type the RETURN, you'll leave command entry mode
and BUG/65 will begin executing the command(s) in the
command line.

You can tell the difference between command entry mode
and command execution mode. In command entry mode, the
cursor is displayed. When a command is executing, the
cursor is blanked . If you try to enter more than 100
characters in the command line, BUG/65 will beep the
bell and not allow any more ch~racters to be input. At
that point, you may either hit RETURN to execute what's
in the command line so far, or edit some characters out
of the command line with the BACKSPACE key.

5 . 1 Command Line Editing

When entering commands, you may edit mistakes with the
BACKSPACE key. The BACKSPACE will move the cursor one
column to the left and delete whatever character was in
that column. Unfortunately, the normal system editing
facilities aren't supported. This is because of the
manner in which BUG/65 does keyboard input.

--9--

5.2 Normal and Immediate Type Commands

BUG/65 has two types of commands normal and
immediate. Normal commands are those that don't
require interaction with the operator for their
execution. Immediate commands do require operator
interaction. Normally, you'll never be aware of the
distinction between the two types command entry
"flows" without any consideration of the comman<i type
required. The only difference is that an immedi~te
command must be the first command entered in a command
line. Once an immediate command is entered, BUG/65
will begin interacting with the operator for further
input. Since this interaction is required for
completion of the command, it doesn't make sense to
allow immediate commands to be "stacked" in the middle
of a command line for execution between other commands.
If you try to enter an immediate command in the middle
of a command line, you'll get an "IMMEDIATE ERROR"
error message and find yourself back in the command
entry mode.

The immediate commands are the "A" command (ASCII
memory change), the "S" command (hex memory change),
the "X" command (change user registers), and the "Z"
command (instant assembler).

5.3 Command Execution

For a normal type command, BUG/65 will begin command
execution as soon as you type RETURN. For immediate
type commands, BUG/65 will begin command execution as
soon as you type the command character (provided that
character is the first character in the command line).

--10--

5 . 4 Multiple Commands on a Line

Multiple commands may be entered on the same command
line. Normally, successive commands in the command
line don't require command separators between them
other than at least one space character. The
exceptions to this are commands for which an optional
parameter is being defaulted. For example, the display
memory command ("D") may have an optional parameter
specified as the end of the area of memory to be
displayed. If that ending parameter isn ' t specified,
BUG/65 will default the end to the start plus eight
bytes. If you wanted to enter two successiv e display
commands in the command line without defaulting the end
parameters, you could type

D 1000 1010 D 2000 2010

and no command separators would be required because
BUG/65 knows that the "D " command only has two
parameters and will interpret further characters in the
command line as the beginning of a new command.
However, if you wanted to default the ending address of
the first display command, then you'd have to insert a
command separator so that BUG/65 knows that the first
display command is finished. If you didn't do this,
then the second display command "D" would be
interpreted as the second parameter of the first
display command (the end address would be interpreted
as $00. The command separator is a comma, so in this
case you would enter the commands as follows:

D 1000, D 2000 2010

--11--

SECTION 6: Command Termination

This section describes the many ways that a command
will stop.

6.1 Normal Termination

Once a command line is given to BUG/65 for execution,
BUG / 65 will execute all of the commands in the line to
conclusion before returning to command entry mode.
It's possible to instruct BUG/65 to execute a commanrl
line "forever" (see Section 8.2), in which case BUG/65
will never come back to command entry mode until you
manually intervene (with ESC or BREAK - see Section
6.4)

6.2 Error Termination

If an error occurs in command execution, BUG/65 will
beep the bell and display a short error message in
English indicating the cause of the error. Commanrl
execution will stop and you'll enter the command entry
mode. Any commands in the command line after the
command which caused the error won't be executed. (You
should also be aware that BUG/65 will close any file
that has been opened using IOCB number one when any
error occurs.) {A complete list of error messages is
in Section 14.)

6.3 Command Suspension

Once BUG/65 begins executing a command line, you may
temporarily suspend command execution by hitting the
space bar. This will put BUG/65 in a "hold" condition,
at which point you have two alternatives: you can
restart the command by hitting the space bar again, or
you can abort the command with ESC or BREAK.

6.4 Command Abort

You can abort any command that is executing (except for
the read and write disk commands) by hitting the ESC or
BREAK keys. BUG/65 will stop executing the command and
you'll enter command entry mode.

--12--

6.5 The RESET Key

BUG/6S traps the RESET key so that hitting RESET will
bring you back to BUG/6S. RESET will stop any command
that is executing. You'll see the BUG/6S version and
copyright prompt, and you'll be in command entry mode.
RESET will reset all of BUG/6S's internal stuff except
for any user defined or modified parameters. For
example, the user's registers, the current relocation
base, etc., aren't cleared on a RESE·r - they'll retain
whatever values they had before the RESET. (All of
this depends, however, on the fact that the reset
vectors haven't been modified by the user - either by
using a BUG/6S command or by a user program. If you've
modified the reset vectors, then the action of the
RESET key is your responsibility.)

G.G Manual Restart

Since BUG/GS is relocatable, the manual restart point
(coldstart) depends upon where it has been relocated
to. If you specified an address to load BUG/6S when
you gave the OS/A+ command line (e.g., BUGGS 4000),
then the coldstart point is $200 greater than the
address specified, and you may use 'RUN address' from
OS/A+ if desired (e.g, RUN 4200 if the original command
was BUGGS 4000). In any case, you may inspect location
$000C (via the BUG/GS command 'DC') to determine the
coldstart point. The GS02 word address in locations
$0C and $00 (LSB, MSB order) points to BUG/GS's restart
point. The result of a manual restart is the same as
if the default RESET key processing occurred (see
section G.S).

--13--

SECTION 7 : Command Descriptions

Throughout the descriptions of the commands, comments
are sometimes presented in the command line examples.
These are denoted by the characters "* /". Anything
appearing on a line after these characters is a comment
and is NOT part of the command line being exemplified.

The commands are presented in alphabetical order.

--14--

7.1 A - Change Memory, ASCII mode

A <ADDR>]6

The A command allows you to replace the contents of
memory bytes beginning at location <ADDR> with ASCII
characters. As soon as you type the required space
character after the address, BUG/65 will prompt you
with the current contents of the memory location at
<ADDR>. Those contents will be displayed as an ASCII
character. At that point, you have the following
options:

1. Typing a SPACE will cause the current memory
location to be skipped and the contents of the next
memory location to be displayed.

2. Typing an UNDERLINE will cause the current address
to be decremented by one. The new address is then
displayed on the next line of the screen followed by
the contents of the new memory location.

3. Typing a RETURN will cause
current memory location to be
line of the screen followed by
current location.

the address of the
displayed on the next
the contents of the

4. Typing ESC will get you out of the command and back
into command entry mode.

5. Typing any o::haracter other than "@" will cause the
ATASCII value of that character to be entered into
memory at the current address. The address is then
incremented by one and the contents of the new
memory location are displayed.

6. Typing the character " @" causes the next character
typed to be entered into the current memory location
as its pure ~TASCII value without any of its control
character significance. For example, typing "@ ESC"
will insert the ATASCII value for ESC into memory.
The address is then incremented by one and operation
continues as in 5. above.

After you exercise any option except option 4., BUG/65
will again prompt you with the contents of the current
location and you may then choose from any option again.

--15--

7.2 B - Set Relocation Base

B <ADDR>

The B commann will set the value of the relocation base
to ADDR. The relocation base is intended for use with
relocating assemblers. In a relocatable environment,
listings typically are addressed from location zero.
When a module to be debugged is subsequently loaded
into memory, it will have a relocation offset added to
the addresses in the listing. The B command allows you
to set the relocation base to the load address of the
module you're working on and then to reference
addresses within the module by simply prefixing each
address expression with the relocator symbol "X". For
example, suppose that a relocatable module is loaded at
location $5380 in memory. Suppose further that we want
to display the contents of a memory location which is
$230 from the beginning of the module. The following
commands would do the job:

B 5380, D X230

The world isn't overrun with relocating assemblers for
the ATARI. However, until it is, the B command has
other useful. applications. These take advantage of the
fact that the relocation base value is a variable which
can be modified during command execution. For example,
suppose you know that the string of characters "ABCD"
is stored somewhere on a diskette and you want to find
the sector that contains it. The following commands
will do the trick:

B l

D X, R% X 4000 1, L 4000 407F 41 42 43 44, B X+l/

--16--

This uses some commands not introduced yet, but this is
what happens: First, X is set to 1 with one command
line. Then a second command line will display memory
at the location X (so you'll know where you're at as
you step through), read sector number X into memory
locations $4000-$407F, locate the string "ABCD" in that
sector buffer, then bump X by one for the next sector.
The slash at the end of the command line means that the
ccmmand line will execute forever. What will happen is
that BUG/65 will continuously read diskette sectors.
For every sector read, you'll see at least a memory
display of eight bytes beginning at address X (which is
the sector number). If the Locate instruction finds
the string "ABCD" in the sector buffer, it wi 11 display
the location of the string. At that point, just hit
ESC to stop the command, and display the value of X ("O
X RETURN"). The sector containing the string will
either be the value of X or one before it, depending on
how fast your ESC was.

7.3 C - Compare Memory Blocks

C <STARTBLOCKl> <ENDBLOCKl> <STARTBLOCK2>

Compare is used to compare the contents of two blocks
of memory. The block of memory beginning at
STARTBLOCKl and ending with ENDBLOCKl is compared to
the same size block beginning at STARTBLOCK2. If both
blocks are the same, then there will be no output. If
any bytes in the blocks differ, then BUG/65 will
display a line of data in the following format for
every byte that is different:

BB CCCC DD

where A.AAA = the hex address of
in the first block, BB = the hex
AAAA, CCCC = the hex address of
in the second block, and DD
location CCCC.

--17--

the differing location
contents of location
the differing location
the hex contents of

7.4 D - Display Memory

D <START> [<END>]

The D command displays the contents of t~e memory block
beginning at START and ending at END. If END isn't
specified, then the <lefault value of START+? is use<l.
The memory block is displayed in the following format:

AAAA BB BB BB BB BB BB BB BB cccccccc

where AAAA the hex address of the first byte in this
line, BB the hex contents of successive memory
locations beginning at location AMA, and c = the ASCII
character interpretation of the positionally
corresponding BB value of the byte.

7.5 E - Execute a Command File

E #filespec

The E command is used to execute a command line from a
command file. The file specified by filespec must
consist of a line of BUG/65 commands an<l parameters and
must be ended with an ATASCII EOL character ($9B).
9UG/65 will only execute one command line from a
command file and then it will stop reading the file.
Command files can be chained however, so that the last
command in one file can execute another command file.
An E command should be the last command in a command
line because any commands after the E in the line won't
be executed.

7.6 F - Fill a Memory Block with a Value

F <START> <END> (<VALUE>]

The F command will fill the block of memory beginning
with START and ending with END with VALUE. If VALUE
isn't specified, then zero will be used. Note that
VALUE is a byte value - the least significant byte of
the 16-bit VALUE will be used for the fill.

--18--

7.7 G - Goto a User Program

G (<START>] (@<BRKPOINT> [RN=<VALUE>] (I=<COUNT>J J

The G command will execute a user program beginning at
START. If START isn't specified, then execution begins
at the current value of the user's PC register.
BRKPOINT is an optional breakpoint. If the user's
program trys to execute the instruction at BRKPOINT,
the program will break back to BUG/65 and BUG/65 will
display the contents of the user's registers at that
point. Examples:

G 1000 /* go at location $1000, no breakpoint

G @4300 /* go from wherever our PC was and
break at location $4300 */

A breakpoint may be conditionally qualified by a
required value in a specified register. "RN=<VALUE>"
will tell BUG/65 to break at that point only if the
value of user register "N" equals V.!\.LUE. If that
condition isn't met, then the user's program is allowed
to continue executing at the location of the
breakpoint. (The instruction that was at the
breakpoint location WILL be executed.) The mnemonic
names of the registers that may be specified for "N"
are: A, X, Y, S, and F, which stand for the user's A,
X, Y, Stack, and Status (flags) registers respectively.
(Note that only the least significant byte of VALUE is
used for this qualification.)

Example:

G 1000 @1422 RX=33

/* go from location $1000 and break at
location $1422 only if register X
equals $33 */

A breakpoint may also be qualified with an iteration
counter. "I=<COUNT>" tells BUG/65 to allow the
execution of the instruction at the breakpoint COUNT
times before breaking.

Example:

G 1000 @2300 I=2

/* go from location $1000 and break
the second time we hit the instruction
at $2300 */

--19--

The register and iteration qualifications may be uscr1
together. In this case, the register condition must be
met before the iteration counter is decremented. As in
the following example:

G 10~0 @1234 RA=50 1=3

/* go from location $1000 and break
the third time the instruction at loc
ation $1234 is executed with register
A equal to $50 */

All of this flexibility isn't without its price,
however. Because BUG/65 has to do quite a bit of
evaluation at every breakpoint before deciding if the
break condition has been met, don't expect to be able
to conditionally pass through breakpoint instructions
at real-time speed. As long as you never execute the
instruction at the breakpoint, you're OK, but as soon
as BUG/65 gets the break, expect several hundred
instructions to be executed before your program is
given back control after the break isn't met.

Also, BUG/65 was NOT designed to allow breakpoints in
PROM resident code. If you attempt to set such a
break point, or if you try to set a breakpoint at a
non-existent memory location, you'll get a "BREAKPOINT
ERROR".

One other thing. BUG/65 will automatically remove
breakpoints from your program after a break occurs .
Breakpoints aren't left set after the break is
performed.

7.8 H - Hexadecimal Arithmetic

H <NUMBERl> <NUMBER2>

The H command will calculate the sum NUMBERl + NUMBER2
and the difference NUMBERl - NUMBER2 and display the
results on the next line of the screen as two hex
words. The sum is the first word displayed, the
difference is the second.

--20--

7.9 I - Display Disk Directory

I

The I command will display the directory of the
diskette in drive one. The display can be suspended or
halted with the SPACE or ESCAPE keys respectively.

7.10 J - Create a Command File

J #filespec, string

The J command allows you to create command files for
execution by the E command. The string in the command
is any string of valid BUG/65 commands. The string
will be written to the file specified by filespec in
the format expected by the E command. Please note the
comma after the filespec - it's required, else BUG/65
won't know where your filespec stops and your command
string starts. Also note that the J command doesn't
allow multiple commands in the command line to be
executed after the J command - everything in the line
after the filespec and up to the RETURN is written to
the file instead of being executed.

7.11 K - Convert Hex to Decimal

K <NUMBER>

The K command will convert NUMBER to a decimal number
and display the result on the next line of the screen.
NUMBER can be any valid address expression .

To convert decimal to hex, just display memory at the
decimal location of the number you want to convert.
The hex equivalent of the decimal location appears in
the display output as the hex word on the beginning of
the line. For example, to convert 1000 decimal to hex,
just execute the command "D .1000". You'll see the hex
conversion of 1000 as the first hex word on the next
line.

--21--

7.12 L - Locate a Hex String

L <START> <END> <BYTEl> <BYTE2> • , , <BYTEn>

The L command will search the block of memory beginning
at START and ending at END for a hex string. The hex
string is defined by BYTEl ... BYTEn, which are
interpreted as the hex bytes of the pattern string.
(Only the least significant bytes of the address values
are used for each byte in the string.) Wildcard bytes
which will match any byte in memory may be specified by
the character "*" in the string. BUG/65 will output
the addresses of every occurrence of the string found
in the block. For examples:

7.13

L 1000 10FF 41 42 43

/* will locate any occur- rences of
the string "ABC" in the memory block
$1000 to $10FF */

L 1000 2000 10 * 20

/* will locate any occur- rences of a
three-character string which begins
with $10 and ends with $20 in the
memory block $1000 to $2000 */

M - Move a Memory Block

M <START> <END> <TO>

The M command will move the block of memory beginning
at START and ending at END to TO. BUG/65 will take
care to handle overlapping moves correctly, either for
moves up or down.

--22--

7.14 P - Select Output Devices

P [SJ [P]

The P command is used to select output to either the
screen ("S") or the printer ("P") or to both ("SP"),

For example:

p s

p p

p s p

p

/* turns screen output on,
printer output off */

/* turns printer output on,
screen output off */

/* turns both screen and
printer output on

/* turns both outputs off
commands will still be
accepted and executed, you
just won't see their entry or
output anywhere. */

In addition to allowing you to list BUG/65 results to
the printer, this command was designed to allow you to
debug the generation of intricate screen displays
without having the outputs of BUG/65 commands scroll
your display off the screen. It is a little crude, and
might have a few problems depending on what your
program has done to OS, but is handy to have in
emergencies. (The LFFLAG and NULFLG bytes in the
Configuration Table can help you here - see section
11.)

7.15 Quit to OS/A+ command

Q

The Q command will coldstart DOS. The results are
essentially the same as when you power-up the machine.

--23--

7 .16 Read Commands

7.16.l R - Read a File

R (<OFFSET>] #filespec

The R command is used to load binary files. If OFFSET
is specified, then OFFSET is added to the load
address(es) specified in the file, and the data will be
loaded at the loading point(s) plus OFFSET. This
allows you to load a file into a different memory
location than where it is origined at. After the file
is loaded, the load starting point specified in the
file is placed into the user's PC register.

BUG/65 supports concatenated binary file sections as
described in the DOS 2.0s manual. If such a file is
loaded using the OFFSET option, however, ALL file
sections will be loaded starting at the load addresses
specified in the file plus OFFSE'r. In addition, the
user's PC register will contain the value of the load
point of the last file section loaded (not plus
OFFSET).

R% - Read Sector(s)

R% [<SECNO> [<BUFFER> [<NOSECS>]]

The R% command allows you to read a sector or a group
of sectors from a diskette in disk drive number one.
SECNO specifies the sector number to be read and
defaults to one. BUFFER specifies the buffer the
sector is to be read into and defaults to BUG/65's
loadpoint plus $2000. NOSECS specifies the number of
sectors to read and defaults to one. If more than one
sector is specified, then consecutive sectors are read
sequentially into memory beginning at BUFFER.

--24--

7 .17 S - Change Memory, Numeric mode

S <ADDR>~

The S command allows you to replace the contents of
memory bytes beginning at location ADDR with numerical
values. As soon as you type the required space
character after the address, BUG/65 will prompt you
with the current contents of the memory location at
ADDR. Those contents will be displayed as a
hexadecimal byte value. At that point, you have the
following options:

1. Typing SPACE will cause the current memory
location to be skipped and the contents of
the next memory location to be displayed.

2. Typing an UNDERLINE will cause the current
address to be decremented by one. The new
address is then displayed on the next line
of the screen followed by the contents of
the new memory location.

3. Typing a RETURN will cause the address of
the current memory location to be displayed
on the next line of the screen followed by
the contents of the current location.

4. Typing ESC will get you out of the command
and put you back into command entry mode.

S. Typing an address value (any valid address
expression) will cause that value to be
entered into memory at the current address.
The address is then incremented by one and
the contents of the new memory location are
displayed. (Only the least significant
byte of the address value will be entered
into memory.)

After you exercise any option except option 4., BUG/65
will again prompt you with the contents of the current
memory address and you may select any of these options
again.

--25--

7.18 T - Trace a User Program

T [SJ [<COUNT>]

The T command will single-step through user program
instructions beginning with the instruction at the
current user PC register. The number of instructions
to be executed are specified by COUNT, which defaults
to one·. If "S" is specified, then all of the
instructions in a subroutine are counted as one
instruction for tracing purposes - the trace is turned
off until return from the subroutine ("S" stands for
"skip the subroutine" J. .l'\fter every instruction
traced, BUG/65 will display the contents of the user's
registers.

Some examples:

T

T 5

TS

/* will execute one instruction and then
display the register contents */

/* will execute five
displaying registers

instructions,
after each

instruction * /

/* will execute 16 instructions. If
of the instructions are JSR's, then
trace will be turned off after the
until the subroutine executes an RTS

any
the
JSR
*/

The trace command can't be use to trace instruction
execution through PROM resident code. Any i'lttempt to
do so, or to trace through non-existent memory, will
result in a "BREAKPOINT ERROR".

7.19 U - Call a User Subroutine

U <ADDR> [<PARAM>]

The U command is used to call a user subroutine at
ADDR. The user routine is passed the optional
parameter PARAM in the X register (low byte) and Y
register (high byte). The user routine should return
to BUG/65 via an RTS instruction. If PARAM isn't
specified, then zero is used.

--26--

7.20 V - Display User's Registers

v

The V command will display the contents of the user's
registers in the following format:

A X Y SP NV BDIZC PC
HH HH HH HH BBBBBBBB HHHll

INSTR
LOA 1000,X

This is interpreted as follows:

A the hex value of the A reg
x the hex value of the x reg
y the hex value of the y reg
SP the hex value of the stackpointer
N the binary value of the negative
v the binary value of the overflow

the binary value of an unused bit

flag
flag
in

8 the binary value of the break flag
D the binary value of the decimal flag

the

I the binary value of the interrupt enable
z the binary value of the zero flag
c the binary value of the carry flag
PC the hex value of the PC reg (This is a

pseudo register maintained by BUG/65.
It contains the location of the next
user program instruction to be executed .)

INSTR = the instruction at the current PC

--27--

bit

7.21 Write Commands

7. 21. l W - Write a File

w [:A] <START> <END> #filespec

The W command is used to write a binary file. Memory
from START to END is written to the file specified by
filespec in the standard OS/A+ binary file format. If
the ":A" option isn't specified, then the data written
will replace the current contents of the file if the
file already exists. If the ":A" option is specified,
then the data is appended to any data already in the
file. A load header consisting of a start and end
address as described in the OS/A+ manual will precede
the appended data.

7. 21. 2 W% - Write Sector(s)

W% [<SECNO> [<BUFFER> [<NOSECS>])]

The W% command is used to write a sector or a group of
sectors to a diskette. SECNO specifies the sector
number to be written and defaults to one. BUFFER
specifies the memory location of the sector data to be
written and defaults to the BUG/65 loadpoint plus
$2000. NOSECS specifies the number of sectors to be
written and defaults to one. If more than one sector
is specified, then consecutive sectors are written
sequentially from memory beginning at BUFFER.

--28--

7.22 X - Change User's Registers

X REGNAME

The X command allows you to change the contents of user
registers. REGNAME is a one-character register name
mnemonic. The allowed register names and their
meanings are:

A A register
X X register
Y Y register
S stackpointer register
P program counter pseudo-register
F status register (flags)

After you type in the name of the
changed, BUG/65 will prompt you
character followed by an equals sign.
you have the following options:

register to be
with that name

At that point

l. Enter the new value for the register. The
new value may be any valid address
expression. After the new value, typing
RETURN will end the command. Or you can type
SPACE which will prompt you with another
register name for possible change. The next
register name is determined by the order of
the above list. For example, if you change
register Y then hit a space after the new
value, BUG/65 will prompt you for possible
change of register s. This prompt list
continues through register F and then wraps
back to register A again.

2. Enter RETURN or ESC to end the command.
BUG/65 will display the new contents of the
registers and then put you back into command
mode.

--29--

7.23 Y - Disassemble Memory Block

Y <START> <END>

The Y command will disassemble instructions in memory
beginning at START and ending at END. The following
conventions are used in the disassembly:

1. Standard MOS Technology mnemonics are used
for opcodes.

2. Illegal opcodes are displayed as "***"·
3. All numeric operands

hexadecimal numbers.
are displayed as

4. Zero page operands will display as two hex
digits, all other non-immediate operands will
display as four hex digits.

5. No operand is displayed for accumulator mode
operands.

--30--

7.24 Z - Instant Assembler

Z <ADDR>~

The Z command allows you to assemble instructions to be
stored in memory at ADDR. Immediately after typing the
SPACE character (or RETURN, which is allowed as well),
BUG/65 will prompt you with the current program counter
value of the instant assembler (which initially will be
ADDR). At that point you may type in a valid assembly
language instruction. The format for an instruction
line is:

[<LABEL>] <OPCODE> (<OPERAND>]

LABEL may be any label in the form "Ln", where "n" may
be any digit from zero to nine. OPCODE may be any
valid MOS Technology instruction mnemonic or one of two
pseudo-ops (described below). OPERAND, if allowed by
the addressing mode of the instruction, may be any
valid address expression. At least one space must
separate a label from an opcode or an opcode from an
operand.

After typing your instruction, type RETURN and the
instruction will be entered into memory at the current
PC if it doesn't contain any errors. If there are any
errors, then BUG/65 will display an error message and
will reprompt you with the current (unchanged) PC. If
there are no errors, then BUG/65 will display the
object code created by the instruction to the right of
the instruction on the screen and will prompt you with
the PC of the next instruction on the next screen line.
You may exit the instant assembler by typing ESC at any
time, or by typing RETURN by itself in response to the
PC address prompt.

The instant assembler provides you with two pseudo-ops.
"/" followed by an address wi 11 change the PC to that
address. It acts like an ORG ("*=") pseudo-op. For
example, "/4000" will set the PC of the next
instruction location to $4000. "+" followed by an
address will insert the value of that address (least
significant byte) at the current PC and bump the PC by
one. It acts like a DB (.BYTE) pseudo-op. For
example, "+34" will insert the hex byte 34 at the
current PC.

--31--

The instant assembler provides a simple labeling
capability. You may prefix an instruction with a two
character label of the form "Ln", where "n" may be any
digit from 0-9. You may then use that label as an
operand in an instruction, with the following three
restrictions:

l. Immediate
labels.

type operands (tHH) can't be

2. Indirect type operands can't be labels.

3. A label can't be combined with any of the
standard address operators(+, -, X, etc.)

Label references may be forward or backward. BUG/65
will store unresolved references and resolve them when
the label is later defined. You may reference
undefined labels twenty times before BUG/65 runs out of
room to store the unresolved locations you'll then
get an error message and the assembly will be aborted.
The same label may be reused more than once. In such
cases, BUG/65 will use the last defined address of the
label when it is referenced.

If any labels have been referenced but not defined when
you exit the instant assembler, BUG/65 will prompt you
with a message and the label name followed by an equals
sign. At that point you may either define the label by
entering any valid address expression followed by a
RETURN, or you may chose not to define it and simply
hit RETURN. If you don't define the label, then the
value of the label is defaulted according to the
following two rules.

1. If an instruction using the undefined label
is a relative branch, then the value of the
label for that instruction defaults to the
location of the instruction plus two.

2. For all other instructions, the value of the
label defaults to the location of the
instruction plus three.

These rules guarantee that all branching instructions
using undefined labels are effectively turned into
NOP'S. This offers some measure of protection against
a program going into never-never land. (If you
reference a label that isn't yet defined, the object
code displayed to the right of the instruction on the
screen will show addresses generated according to these
rules. Don't worry, when the label is subsequently
defined, BUG/65 goes back and fixes up all these
references.)

--32--

SECTION 8: Special Command Modifiers

8.1 Repeat Last Command Line

{RETURN]

The last command line entered
repeated without typing the whole
hit RETURN. BUG/65 remembers the
just this purpose.

8.2 Repeat Command Line Forever

I

and executed may be
thing in again - just
last line entered for

Appending a slash to the end of a command line will
cause BUG/65 to repeat the execution of that command
line forever. The only way to stop such a repeat is to
suspend or abort the command.

8.3 Display Last Command Line

If you want to see what your last command line was,
possibly because you might want to repeat it, just type
the "=" character as the .first character of the new
command line. BUG/65 will display the last line
entered for you.

--33--

SECTION 9: BUG/65 Memory Protection

BUG/65 won't allow you to modify any portion of it's
code or variable storage areas with a BUG/65 command.
Any attempt to do so will result in a "PROTECTION
ERROR". For example, if we assume that the BUG/65 was
loaded via the command "BUG65 2000", the following
command will cause an error because it attempts to move
a memory block into BUG/65's area:

M 4000 40FF 2000

BUG/65 protects all memory from loadpoint to
loadpoint+$1FFF in this manner, where loadpoint is that
specified in .the invoking OS/A+ command line (or LOMEM,
if no loadpoint is specified). {The memory protection
feature can be turned off by changing a byte in the
Configuration Table.)

--34--

SECTION 10: BUG/65 Memory Usage

BUG/65 uses memory from $80 to $XX and loadpoint to
loadpoint+$01FF for variable storage. You can
determine the value of XX by looking at the LSTPG0 byte
in the Configuration Table. It uses memory . from
loadpoint+$200 to loadpoint+$1FFF for code storage.

10.1 Page Zero Sharing

BUG/65 will share the page zero memory that it needs
with a user program. It does this by keeping two
copies of these page zero locations. When BUG/65 is
running, the BUG/65 page zero locations contain
BUG/65's stuff. When a Go is done to a user program,
BUG/65 will save it's own page zero data and replace it
with the user's data. If a user program breaks back to
BUG/65, the reverse operation is performed.

In addition, BUG/65 will translate any command
reference to these shared page zero locations so that
the user may modify or inspect his own page zero data.
It does this by translating any command reference to
the user's page zero data to the location where the
user's copy of the data is actually being stored. This
is all transparent to the user. For example, you can
fill memory from $80 to $FF with zeros without crashing
BUG/65. If you then display $80 to $FF, you will see
zeros. They aren't really in locations $80 to $FF of
course, but they will be when you run your program.
(This is the reason it may seem to take an
extraordinarily long time to perform certain commands
(Fills, for example). The reason is that every memory
reference has to go through this translation process -
both to translate zero page references if necessary and
to check to make sure that BUG/65 isn't being
overwritten . }

--35--

SECTION 11: Customization with the Configuration Table

There is a Configuration Table located near the
beginning of the code segment of BUG/65. By changing
this data, you can customize some BUG/65 stuff. In the
table which follows, "+$xxx" means that the
configuration value is located $xxx bytes above the
loadpoint address, where loadpoint is the address
specified in the invoking OS/A+ command line (or LOMEM,
if loadpoint is not specified}. Example: if the
invoking command was "RUGGS 6000", then DISPIJ will be
located at $6209.

NAME

DISPIJ

PRINTV

GETKYV

TSTKYV

BEEPV

CHRCLR

CHRLUM
BRDCLR
EOLBYT

LOCATION FUNCTION/COMMENTS

+$209 A JMP instruction to BUG/GS's
display a character routine. All
chars displayed on the screen go
through here. The char to be
displayed is passed in reg A.

+$20C A JMP instruction to BUG/65's print
a character routine. All chars
sent to the printer go through
here. The char to be printed is
passed in reg A.

+$20F A JMP instruction to BUG/65's get a
keyboard character routine. All
keyboard reads go through here.
The key read is returned in reg A.

+$212 A JMP instruction to BUG/65's test
for a key waiting routine. All
tests for key waiting go through
here. If no key is waiting, the
equal flag is returned set. (The
key is NOT returned by this routine
- GETKYV will be called to read the
key if there's one waiting.}

+$215 A JMP instruction to BUG/65's bell
routine. All beeps are generated
through here. To eliminate the
beeps, just patch this out with an
RTS.

+$218

+$219
+$21A
+$218

Character background color
value.
Character luminance byte value.
Border color byte value.

byte

This is the byte sent to the
printer at the end of a line.
Normally set to BDH or 9BH.

--36--

LFFLAG +$21C

NULFLG +$210

PROTFG +$21E

MCBEND +$21F

If nonzero, then
character is sent to
after every EOLBYT.

a linefeed
the printer

If nonzero, then 40 nulls will be
sent to the printer after every
line. Used to flush the printer
buffer maintained by the ATARI OS
so that all lines will print
immediately.

If nonzero, then BUG/65 will not
allow itself to be overwritten wi th
a BUG/65 command. If zero, then
BUG/65 will allow itself to be
modified .

High byte of end address of
BUG/65's code. Normally set to
high byte address of
loadpoint+$2000 (e . g, $50 if the
invoking OS/A+ command were BUG65
3000). You would change this if
you added any user command handlers
after BUG/65. The handlers would
then be included in BUG / 65's memory
protection features.

To change anything in the Configuration Table, you must
f i rst disable memory protection by writing a small
program to stuff a zero into PROTFG . For example,
assuming that the loadpoint is $2000 (command line was
BUG65 2000), then using the instant assembler, you
could enter "LDA #0, STA 221E, RTS" at loca t ion $5000,
and then run the program with the "U" command by
entering "U5000 <RETURN>". This will disable memory
protection. Then make your changes, reenable memory
protection if you want by storing $FF into PROTFG, then
dump the modified BUG/65 to diskette.

Be careful when changing any of the JMP instruction
vectors. Since BUG/65 is constantly calling these
locations, the instant you change them control will be
passed to the new routine. Your replacement routines
had better be in place and ready to run or it's ga-ga
time. Actually, you will probably have to change all
three bytes of a vector at once with a small user
program.

Also, be careful about calling the vectors DISPV,
PRINTV, GETKYV, TSTKYV, and BEEPV. Since they use
BUG/65's page zero data to operate, they can't be
called from a running user program without first
calling the MCBGP0 routine defined in the User Program
Interface section.

--37--

SECTION 12: User Command Interface

It's possible to add commands to BUG/65. The hooks to
do so have been provided in a group of vectors located
at loadpoint+$0220 called the User Command Interface
Vectors. These vectors provide most of the interfaces
to BUG/65 that you'll need to add commands.

The commands you add may be activated by any non
BUG/65 command char. For example, you could add the
numeric commands "l" through "9". When IlllG/65
recognizes a non- alphabetic command character, it will
call the vector USERCMD. In it's initial state, USRCMD
is just a 3-byte subroutine that returns the equal flag
reset. BUG/65 assumes that the equal flag being reset
means that a user command handler considers the command
illegal. In this case, BUG/65 wil 1 report a "CMD
ERROR". If USRCMD returns the equal flag set, then
BUG/65 assumes that a user command handler processed
the command. In this case, BUG/65 won't generate a
command error, and will proceed to process the rest of
the command line.

So, to add your own command handler, just patch a JMP
to your handler at USRCMD. BUG/65 will pass you the
command character that it considered illegal in reg A.
On return, you must indicate the status of the command
- equal set means you handled it, equal reset means you
didn't like it either.

--38--

There are a number of other vectors in the User
Interface group which you may use to process the
command. Here's the complete list (and, as in the
previous section, the string "+$xxx" indicates a
displacement from the loadpoint):

NAME

US RC MD

GETCHR

PUTCHR

GETlHX

GET2HX

GET3HX

LOCATION FUNCTION/COMMENTS

+$2~ sub"routfne----caTrea--by --nucf6S-on
every non alpha comand char.
Returns equal set if command
handled by user, else equal reset.

+$223 User handler can tell this to get
the next char from the command line
in reg A.

+$226

+$229

+$22C

+$22F

User handler can call this to
return the last char taken from the
command line. The char itself
doesn't have to be passed. This is
used to put chars back that you've
taken but don't want - like an EOL.

User handler can call this to
collect a hex address from the
command line. The address is
returned in a word at $FE,$FF. If
next command line chars are not a
valid address, zero is returned.

User handler can call this to
collect two hex addresses from the
conunand line. The first address is
returned in a word at $FC,$FD, the
second at $FE,$FF. Zero is
returned for any invalid address.

User handler
collect three
the command

can call this to
hex addresses from

line. The first
address is returned in a word at
$FA,$FB, the second at $FC,$FD, and
the third at $FE,$FF. Zero is
returned for any invalid address.

--39--

ADRCHK +$232

ERR PAR +$235

DHXBYT +$238

DHXWRD +$23B

CTBPTR +$23E

LSTPG0 +$240

User handler can call this to
perform the usual BllG/65 address
checking and translation. The
checking refers to not allowing
IHJG/65 to be overwritten. The
translation refers to correcting
user page zero addresses. The user
handler passes the address to check
in reg X (LO) and reg Y (HI). If
the address points into BUG/65, a
"PROT ERROR" will occur, and the
user handler will not be returned
to. If the address references a
user page zero value that is being
stored somewhere else by BUG/65,
then the address of where the
actual user page zero byte is
located will be returned in reg X
(LO) and reg Y (HI).

The user haniiler can JMP to here to
reRQrt a parameter error. There is
no return back to the user handler.
BUG/65 will abort command line
processing.

The user haniiler can call this to
display a hex byte. The byte is
passed in reg A.

The user
1Hsplay a
is passel"\
(HI).

handler can call this to
hex word. 'Phe hex word

in reg X (LO) and reg Y

This is a pointer to ntJG/65 's jump
table for the alphabetic comands.
Every letter has a word entry in
this table. The entry is the
address of the handler for that
commanii minus one. The first word
in the table is the acidress minus
one for the "A" command, the 1 as t
is the same for the "Z" command.
If you want, you can change this
table to point to your own comand
routines, thereby changing the
BUG/65 command set.

This is the address (byte value) of
the last page zero location used by
BIJG/6 5. You can use th is to locate
free page zero memory for your own
use. (See the example user command
listing.).

--40--

**** SPECIAL NOTE ****

All of the above routines assume that BUG/65 data is in
page zero. THEY WILL NOT WORK if called from a running
user program for that reason, unless the user program
manages page zero with the following two routines:

MCBGP0 +$241

USERP0 +$244

Assumes BUG/65 data is in page
zero. Saves BUG/65 page zero and
replaces with user page zero. Use
this routine from a running user
program before calling any of the
above routines.

Assumes user data is in page zero.
Saves user page zero and restores
BUG/65 page zero. Use this routine
from a running user program after
calling any of the above routines
to restore the running program's
page zero data.

12.l User Command Handler Example

Here is an assembly listing of an example user comand .
This command wi 11 be command "l". It wi 11 calculate
and display an exclusive-or checksum byte on a range of
memory. The syntax of the command is:

1 <START> <END>

NCYrE: It is highly
be patched into
See Section 4.2
non-relocatable
loa<'lpoint.

recommended that user commands only
a non-relocatable version of BUG/65.
for instructions on making a

version with a user specified

:**
EQUATES INTO BUG/65:

loadpoint = ????
lp = loadpoint
MCBEND lp+$21F
DISPV lp+$209
USRCMD lp+$220
GET2HX lp+$22C
HEXl $FC
HEX2 $FE
ERRPAR lp+$235
DHXBYT lp+$238.
LSTPG0 lp+$240
EOL $9B

to be <'letermined by user I I
just an abbreviation

BUG/65 END CODE MSB
DISPLAY CHAR
USER COMMAND VECTOR
GET 2 HEX PARAMS
HEX PARAM 1 RESULT
HEX PARAM 2 RESULT
REPORT PARAM ERROR
DISPLAY HEX BYTE
LAST BUG/65 P0 BYTE USED
END OF LINE CHAR

--41--

;**

USER Cl

CMDOK

PARMER .
PARM OK

LOOP

.
NXTEOR

DONE

*=
JMP

*=
CMP
BEQ
RTS

JSR
LDA
ORA
DEQ
LOA

USRCMD
USERCl

lp+$2000
#'l
CMDOK

GET2HX
HEXl
HEXl+l
PARMER
HEX2

ORA HEX2+1
BNE Pl\RMOK

JMP

LDX

LDA
STA
TAY

LDA
CMP
BCC
BNE
J,DA
CMP
BCC

LOA
EOR
STA
INC

ERRPAR

LSTPG0

#0
1, x

HEX2+1
HEXl+l
DONE
NXTEOR
HEX2
HEXl
DONE

(HEX!) I y
l,X
l,X
HEXl

BNE LOOP
INC HEXl+l
JMP LOOP

LOA
JSR
LDX
LDA
JSR
LOA
RTS

fEOL
DISPV
LSTPG0
l,X
DHXBYT
10

*= MC BEND
• BYTE > [*+$FF)
.END

--42--

PATCH US INTO BUG/65

RIGHT AFTER BUG/65 CODE
COMMAND "l" ?
YES
ELSE RTN EQUAL RESET - ERR

GET S'rART, END
MAKE SURE BOTH SPECIPIED

OR ELSE ERROR

REPORT PARAM ERROR

LAST BUG/65 P~ BYTE
(WE' LL USE THE NEX'r
FOR OUR ACCUMULATOR)

CLEAR ACCUMULATOR

INIT Y PTR INDEX

PAST END ADDRESS ?

YES
NO

YES

CALC EOR CHKSUM
EOR WI'rH ACCUM
AND SAVE IN ACCUM
BUMP P'rR

TO NEXT SCREEN LINE

RESTORE ACCUM ADDRESS
DISPLAY HEX RESULT

RTN OK (EQUAL S E'r)

CHANGE BUG/65 CODE
END BYTE TO INCLUDE

THAT'S ALL FOLKS

SECTION 13: Error Messages

The following is a list of all of the error messages
and a short explanation of each one:

COMMAND ERROR
An attempt to execute an illegal command. A
letter or number that isn't a valid command
mnemonic was interpreted as a command character.
For example, trying to execute the command "N"
will cause a command error.

IMMEDIATE CMD ERROR
An attempt to execute an immediate type command
in the middle of a command line. An immediate
command (A, S, X, or Z) must be the first
command on a command line. See se~tion 5.2.

PROTECTION ERROR
An attempt was made to modify BUG/65's code or
variable memory areas with a BUG/65 command.

PARAM ERROR
Caused by the usage of any .invalid comman<'l
parameter.

REGISTER ERROR
An invalid register name was specified in either
the G or X command.

BREAKPOINT ERROR
An attempt was made to set a breakpoint in
either PROM memory space or non-existent memory.

PRINTER ERROR
Any printer error returned to BUG/65 by the
operating system. (BUG/65 uses the ATARI OS to
print characters. Any error returned by the OS
on a print character call will cause this
error.)

SYNTAX ERROR

I/O

Caused by an error in the syntax of a command.

ERROR - NNN
Any disk I/O error returned to
operating system. (BUG/65 uses
disk I/O. Any error returned by
will cause this error.) NNN
error nwnber returned by the OS.
OS/A+ manual for the meanings of

--43--

BUG/65 by the
the OS/A+ to do
the OS/A+ call
is the decimal
Refer to your

these numbers.

*** ERROR - MNEMONIC
In the instant assembler, an invalid opcode
mnemonic was entered.

*** ERROR - OPERAND
In the instant assembler, an invalid instruction
operand was entered.

*** ERROR - RANGE
In the instant assembler, a br~nch out of range
was attempted.

*** ERROR - TOO MANY LABEL REFS
In the instant assembler, too many references
have been made to an undefined label. BUG/65
2.0 allows twenty references to undefined labels
before it's label buffer overflows.

*** ERROR - UNDEFINED - Ln
In the instant assembler, a
referenced but not defined. "n"
number that needs definition.

--44--

label has been
is the label

1\PPENDIX

This section applies only to those users who own
version 4 of OS/A+.

The version of BUG/65
directly compatible with
on your disk, however, is
BUGGS.COM file into a
version 4. This program,
program that modifies the

which you received is not
version 4 of OS/A+. Included
a program which converts the
form which will work under

BUGV4FIX.COM, is a binary
relocatable version of BUG65.

The resultant version of BUG65.COM will work ONLY with
version 4. Further, under version 4, the R (read
binary file) command will not work properly under all
conditions. We suggest instead using the OS/A+ LOAD
command for loading binary files into memory, although
the ERROR 136 produced by the R command may simply be
ignored, if desired. Only location $00 is improperly
affected by this error.

HOW TO USE 'rHE PROGRAM:

1) Copy the files BUG65.COM and
BUGV4FIX.COM to a version 4 disk using
the COPY24 command (sec the OS/A+
manual for details on this command).

2) At the version 4 "Dl:" prompt, type the
command:

BUGV4FIX [RETURN]

3) The file BUG65.COM on that disk is now
compatible with version 4 of OS/A+.

WARNING: Do NO'r perform the BUGV4FIX command on your
version 2 master disk!

--45--

	DOS XL v2.30 (Cover)
	Copyright OSS Inc.
	Preface
	About This Edition
	Table of Contents
	Section 1: Introduction
	1.1 System Requirements
	1.2 What is a DOS?
	1.3 Disk Files
	1.4 Other Devices
	1.5 Command Modes
	1.6 Overview of Architecture
	1.7 Glossary of Terms

	Section 2: Getting Started
	2.1 Booting Your Master Disk
	2.2 Selecting Menu Options
	2.3 Files on the Master Disk
	2.4 Backing Up Your Master Disk
	2.5 Entering the Cartridge

	Section 3: The DOS XL Menu
	3.1 Entering Commands
	3.2 C - Copy Files
	3.3 D - Duplicate Disk
	3.4 E - Erase Files
	3.5 F - Files on Disk
	3.6 G - Go To Address
	3.7 I - Initialize Disk
	3.8 L - Load Binary
	3.9 P - Protect Files
	3.10 Q - Quit to DOS XL
	3.11 R - Rename File
	3.12 S - Save Binary
	3.13 T - To Cartridge
	3.14 U - Unprotect Files
	3.15 X - Xtended Command

	Section 4: Atari BASIC & DOS XL
	4.1 CLOSE
	4.2 ENTER
	4.3 GET
	4.4 INPUT
	4.5 LIST
	4.6 LOAD
	4.7 NOTE
	4.8 OPEN
	4.9 POINT
	4.10 PRINT
	4.11 PUT
	4.12 SAVE
	4.13 XIO
	RENAME
	ERASE
	PROTECT
	UNPROTECT

	Section 5: Intrinsic DOS XL Commands
	5.1 @
	5.2 CAR
	5.3 Dn:
	5.4 DIR
	5.5 END
	5.6 ERA
	5.7 LOA
	5.8 NOS
	5.9 PRO
	5.10 REM
	5.11 REN
	5.12 RUN
	5.13 SAV
	5.14 SCR
	5.15 TYP
	5.16 UNP

	Section 6: Extrinsic DOS XL Commands
	6.1 C65
	6.2 CLRDSK
	6.3 CONFIG
	6.4 COPY
	6.5 DO
	6.6 DUPDBL
	6.7 DUPDSK
	6.8 INIT
	6.9 INITDBL
	6.10 MAC65
	6.11 MENU
	6.12 RS232
	6.13 SDCOPY

	Section 7: Multiple Drives & Densities
	7.1 Setting Up Multiple Drives
	7.2 Initializing Other Densities
	7.3 Copying Between Densities, Single Disk System
	7.4 Copying with Multiple Drives
	7.5 Using 3 or More Drives
	7.6 Booting Up Directly Into a BASIC Program
	7.7 Making a Double Density Master Diskette

	Section 8: The DOS XL Boot Process
	8.1 Extended Memory DOS Systems & DOSXL.SYS
	8.2 The AUTORUN.SYS File
	8.3 The STARTUP.EXC File
	8.4 The MENU.COM File

	Section 9: Batch Processing
	9.1 Overview of Batch Processing
	9.2 .EXC File Format
	9.3 Intrinsic Commands for .EXC Files
	9.4 Stopping Batch Files
	9.4.1 Stops by DOS XL
	9.4.2 Stops by User Programs

	9.5 STARTUP.EXC: A Special File
	9.6 How Execute Files Work

	Section 10: Assembly Language & DOS XL
	10.1 Interfacing to I/O Routines
	10.1.1 Structure of the IOCB's
	10.1.2 The I/O Commands
	10.1.3 Error Codes Returned

	10.2 Manipulation of DOS XL
	10.2.1 SYSEQU.ASM
	10.2.2 CP Memory Locations
	10.2.3 Execute Parameters
	10.2.4 Default Drive Location
	10.2.5 Extrinsic Parameters
	10.2.6 RUNLOC

	10.3 Device Handlers
	10.3.1 Device Handler Table
	10.3.2 Rules for Writing Device Handlers
	10.3.3 Rules for Adding Things to OS
	10.3.4 An Example Program

	Section 11: File Structure
	11.1 Data Sectors
	11.2 Disk Directory
	11.3 Volume Table of Contents (VTOC)

	Appendix A: Customizing DOS XL
	A.1 Buffer Allocation
	A.2 Specifying Existing Drives
	A.3 Saving Your Modified Version

	Appendix B: DOS XL & The 850 Interface Module
	B.1 Loading the RS232 Handler
	B2. Bugs in the RS232 Driver

	Appendix C: System Memory Maps
	C.1 Atari Zero Page Map
	C.2 Atari System Memory Map - DOS XL Version 2

	Appendix D: Atari Writer & Other Cartridges
	Appendix E: Errors
	E.1 Types of Errors
	E.2 Error Code Listing

	====================
	OSS Bug/65 (Cover)
	Errors In Your Bug/65 Manual
	Preface
	Table of Contents
	Summary of Major Features of Bug/65
	Section 1: Command Summary
	Section 2: Notations Used in this Manual
	Section 3: Address Parameters
	3.1 Spaces as Parameter Delimeters

	Section 4: Loading & Running Bug/65
	4.1 Specifying Bug/65's Load Address
	4.2 Creating a Non-Relocatable Version

	Section 5: Command Entry
	5.1 Command Line Editing
	5.2 Normal & Immediate Type Commands
	5.3 Command Execution
	5.4 Multiple Commands on a Line

	Section 6: Command Termination
	6.1 Normal Termination
	6.2 Error Termination
	6.3 Command Suspension
	6.4 Command Abort
	6.5 The RESET Key
	6.6 Manual Restart

	Section 7: Command Descriptions
	7.1 A - Change Memory, ASCII Mode
	7.2 B - Set Relocation Base
	7.3 C - Compare Memory Block
	7.4 D - Display Memory
	7.5 E - Execute a Command File
	7.6 F - Fill a Memory Block with a Value
	7.7 G - Goto a User Program
	7.8 H - Hexadecimal Arithmetic
	7.9 I - Display Disk Directory
	7.10 J - Create a Command File
	7.11 K - Convert Hex to Decimal
	7.12 L - Locate a Hex String
	7.13 M - Move a Memory Block
	7.14 P - Select Output Devices
	7.15 Q - Quit to OS/A+ Command
	7.16 Read Commands
	7.16.1 R - Read a File
	7.16.2 R% - Read Sector(s)

	7.17 S - Change Memory, Numeric Mode
	7.18 T - Trace a User Program
	7.19 U - Call a User Subroutine
	7.20 V - Display User's Registers
	7.21 Write Commands
	7.21.1 W - Write a File
	7.21.2 W% - Write Sector(s)

	7.22 X - Change User's Registers
	7.23 Y - Disassemble Memory Block
	7.24 Z - Instant Assembler

	Section 8: Special Command Modifiers
	8.1 Repeat Last Command Line
	8.2 Repeat Command Line Forever
	8.3 Display Last Command Line

	Section 9: Bug/65 Memory Protection
	Section 10: Bug/65 Memory Usage
	10.1 Page Zero Sharing

	Section 11: Customization with the Configuration Table
	Section 12: User Command Interface
	12.1 User Command Handler Example

	Section 13: Error Messages
	Appendix

