

8.3 DDT's use of System Resources (RAM and ROM)

DDT itself occupies a portion of the MAC/65 cartridge
space. When it is called, the upper half of page zero
and certain locations in page four ($4ee-$4FF, but not
all of this range) is saved for later use by MAC/65 (see
8.1, above).

While DDT is
are used by DDT
Otherwise, the
may be used.

running, then, locations $80 through $AF
and should be avoided by user programs.
locations in the upper part of page zero

Also, DDT takes the RAM area from $3FD through $57F for
its display screen, breakpoint registers, etc. Since
the cassette buffer occupies $3FD to $47F, this implies
that you can NOT do cassette I/O from within DDT (though
you may load a tape from ¥AC/65 before entering DDT or
save to a tape after exiting).

Remember, also, that MAC/65 is NOT capable of assembling
directly into page six ($600 through $6FF). You may,
however, assemble into other (higher and safer) memory
with an offset (see the MAC/65 manual, Section %.%%) and
then use DDT's Move command to place the resultant code
in page six.

8.4 Things to Watch Out For

There are a few areas where you have to be careful in
using the DDT cartridge. In general, these occur when
you are single stepping or running interpretively.

If the code being interpreted alters the display list or
does direct access to ANTIC or CTIA/GTIA, then you might
end up with a scrambled screen. Usually this is non
fatal, just distracting. (See our example program and
debug session in Section 1 for an instance of just this
occurrence.)

To restore the normal DDT screen, press the BREAK key to
halt the interpretive mode, then press SELECT twice
(though doing so may turn off any players, etc., which
you had made active).

Trying to do I/O from disk or any other real time
activity in either interpretive mode or single step mode
will almost certainly not work.

You should set up breakpoints around the real-time code
so that this type of I/O is done in real time. For
example, try using the "N" command anytime your code
does a JSR to CIO or SIO.

--38--

8.5 Graphics Location Saved by DDT

Whenever DDT is entered (see section 7). it saves
certain memory locations pertaining to user graphics
before presenting its own display (also see Section
4.2). The locations saved are all "shadow registers" or
vectors in page two. The following are a list of the
locations saved, by label, hex address, number of bytes
saved, and very brief description. The labels given are
those used in "Mapping the Atari" (from Computel Books)
and in the Atari OS listings (part of the Atari
Technical Manual set), and we refer you to those
publications for more information.

Label Address t bytes Description
------- ------- -----------

VVBLKI $"222 2 VBI immediate vector address
VVBLKD $"224 2 VBI deferred vector address
SDLSTL $"230 2 Start address of display list
SDMCTL $"22F 1 DMA control register
GPRIOR $026F I Priority selection register
COLORI $02C5 1 Color register 1
COLOR2 $"2C6 I Color register 2
COLOR4 $"2C8 I Color register 4
CHACT $"2F3 1 Character mode register
CHBAS $"2F4 I Character set base address

If your program uses other system memory locations which
are altered by DDT, or if your program changes graphics
characteristics by direct changes to the Atari hardware
registers, DDT will NOT be able to completely restore
the screen display your program was exhibiting when DDT
was entered.

8.6 Using MAC/65 as a Mini-Assembler for DDT

Those of you who have used other debugging tools may
note that, while DDT has a fairly sophisticated
disassembler, it lacks a built-in mini-assembler.
Thanks to the integrated nature of MAC/65 and DDT,
though, you may never even notice this omission.

Let us suppose, for the moment, that you have just
assembled a small to medium sized program from source
code in memory, placed the object code in memory, and
have entered DDT. When you discover an error in your
code, you can simply pop back to MAC/65, change the
offending code, re-assemble, and be back in DDT in a
matter of a very few seconds.

--39--

But What if the code you want to patch is NOT in memory
or is not directly related to the source currently in
memory. What can you do then? We suggest the following
steps:

Exit DDT via the Q (Quit) command.
If there is a source program in MAC/65's edit

buffer. type in "RENUM 11"'9,1"
Type NUM 19.19.
Enter your patch, using "*-" to control where

the patch goes and " .OPT OBJ" to
ensure the patch really ends up in memory

Assemble via the "ASM" command.
Go back to DDT (via "DDT". of course), and your

patch is in place.
NOTE: to get rid of your patch code without

affecting your main program. you may
type "DEL 1,999" to MAC/65.

There ARE some things to watch out for if you use this
method. Primarily. you want to ensure that MAC/65
doesn't wipe out the program you are trying to debug.
There are two possible ways this could happen.

First. remember that MAC/65 destroys the lower half of
page 6 ($699 through $67F). If you are using page six.
then, you should use the Move command to move page six
to someplace "safe" before going to MAC/65 (then move it
back when you return to DDT).

Second, the very process of editing (writing) even a
small program will overwrite some of memory. However.
we direct your attention to the MAC/65 LOMEM and SIZE
commands. You can use LOMEM to set the bottom of the
memory that MAC/65 will use. You can use SIZE to
determine what memory MAC/65 is. indeed. using. We
suggest. if you intend to use the method we have
outlined. that you use LOMEM when you first enter
MAC/65.

The other major problem you can encounter relates to the
way DDT saves the state of MAC/65 when it is entered.
Since the two programs (and they really do operate as
almost totally separated programs) share some of the
same memory space. DDT saves part of page zero and part
of page four ($89-$FF, $489-$4FF) when it is entered.
It saves these locations at the start of MAC/65's
"buffer" space.

You can determine where the buffer space is by using
SIZE: the first number displayed in response to SIZE is
the hexadecimal address of this buffer. You can change
where this buffer is by using LOMEM.

--49--

	Document
	Document (2)
	Document (3)
	Document (4)
	Document (5)
	Document (6)
	Document (7)
	Document (8)
	Document (9)
	Document (10)
	Document (11)
	Document (12)
	Document (13)
	Document (14)
	Document (15)
	Document (16)
	Document (17)
	Document (18)
	Document (19)
	Document (20)
	Document (21)
	Document (22)
	Document (23)
	Document (24)
	Document (25)
	Document (26)
	Document (27)
	Document (28)
	Document (29)
	Document (30)
	Document (31)
	Document (32)
	Document (33)
	Document (34)
	Document (35)
	Document (36)
	Document (37)
	Document (38)
	Document (39)
	Document (40)
	Document (41)
	Document (42)
	Document (43)
	Document (44)
	Document (45)
	Document (46)
	Document (47)
	Document (48)
	Document (49)
	Document (50)
	Document (51)
	Document (52)
	Document (53)
	Document (54)
	Document (55)
	Document (56)
	Document (57)
	Document (58)
	Document (59)
	Document (60)
	Document (61)
	Document (62)
	Document (63)
	Document (64)
	Document (65)
	Document (66)
	Document (67)
	Document (68)
	Document (69)
	Document (70)
	Document (71)
	Document (72)
	Document
	Document (2)
	Document (3)
	Document (4)
	Document (5)
	Document (6)
	Document (7)
	Document (8)
	Document (9)
	Document (10)
	Document (11)
	Document (12)
	Document (13)
	Document (14)
	Document (15)
	Document (16)
	Document (17)
	Document (18)
	Document (19)
	Document (20)
	Document (21)
	Document (22)
	Document (23)
	Document (24)
	Document (25)
	Document (26)
	Document (27)
	Document (28)
	Document (29)
	Document (30)
	Document (31)
	Document (32)
	Document (33)
	Document (34)
	Document (35)
	Document (36)
	Document (37)
	Document (38)
	Document (39)
	Document (40)
	Document (41)
	Document (42)
	Document (43)
	Document (44)
	Document (45)
	Document (46)
	Document (47)
	Document (48)
	Document (49)
	Document (50)
	Document (51)
	Document (52)
	Document (53)
	Document (54)
	Document (55)
	Document (56)
	Document (57)
	Document (58)
	Document (59)
	Document (60)
	Document (61)
	Document (62)
	Document (63)
	Document (64)
	Document (65)
	Document (66)
	Document (67)
	Document (68)
	Document (69)
	Document (70)
	Document (71)
	Document (72)
	Document (73)
	Document (74)
	Document (75)
	Document (76)
	Document (77)
	Document (78)
	Document (79)
	Document (80)

