


a reference manual for 

MAC / 6 5 

a Macro Assembler and Editor program for 
use with 6502-based computers built by 

Atari, Incorporated 

The programs, disks, and manuals comprising 
MAC/65 are Copyright (c) 1982, 1983 by 

Optimized Systems Software, Inc. 
and 

Stephen D. Lawrow 

This manual is Copyright (c) 1982, 1984 by 
Optimized Systems Software, Inc., of 

1221-B Kentwood Ave. 
San Jose, CA 95129 

Telephone (408) 446-3099 

Rev 1.2 

All rights reserved. Reproduction or translation of 
any part of this work beyond that permitted by sections 
107 and 108 of the United States Copyright Act without 

the permission of the copyright owner is unlawful. 





PREFACE 

MAC/65 is a logical upgrade from the OSS product EASMD 
(Edit/ASseMble/Debug) which was itself an outgrowth of 
the Atari Assembler/Editor cartridge. Users of either of 
these latter two products will find that MAC/65 has a 
very familiar "feel". Those who have never experienced 
previous OSS products in this line should nevertheless 
find MAC/65 to be an easy-to-use, powerful, and adaptable 
programming environment. While speed was not necessarily 
the primary goal in the production of this product, we 
nevertheless feel that the user will be hard pressed to 
find a faster assembler system in any home computer 
market. MAC/65 is an excellent match for the size and 
features of the machines it is intended for. 

MAC/65 was conceived by and completely executed ~y 
Stephen D. Lawrow. The current version of MAC/65 1S 
only the latest in a series of increasingly more complex 
and faster assemblers written by Mr. Lawrow following 
the lead and style of EASMD. As a measure of our 
confidence in this assembler, it is entrusted with 
assembling itself, probably a more difficult task than 
that to which most users will put it. 

TRADEMARKS 

The following trademarked names are used in various 
places within this manual, and credit is hereby given: 

DOS XL, BASIC XL, MAC/65, and C/65 are trademarks of 
Optimized Systems Software , Inc. 

Atari, Atar 400, Atari 800, Atari Home Computers, and 
Atar 850 Interface Module are trademarks of 
Atar , Inc . , Sunnyvale, CA . 





TABLE OF CONTENTS 

Introduction 

Chapter 

Chapter 

CHAPTER 

Start Up 
Warm Start 
Syntax 

1 --
1.1 
1.2 
1.3 

2 --
2.1 
2.2 
2.3 
2.4 
2.5 
2.6 
2.7 
2.8 
2.9 
2.10 
2.11 
2.12 
2.13 
2.14 
2.15 
2.16 
2.17 
2.18 
2.19 
2.20 
2.21 

3 --
3.1 
3.2 
3.3 
3.4 
3.5 
3.6 
3.7 
3.8 
3.9 

The Editor 
General Editor Usage 
TEXT Mode 
EDIT Mode 

Editor Commands 
ASM Assemble 
BLOAD Binary Load 
BSAVE Binary Save 
BYE -
DDT 
DEL 
DOS 
ENTER 
FIND 
LIST 
LOAD 
LOMEM 
NEW 
NUM 
PRINT 
REN 
REP 
SAVE 
SIZE 
TEXT 
? 

Use DDT Debug Program 
Delete lines 
exit to DOS 
Enter an ATASCII file 
Find a Text String 
List program in memory 
Load a SAVEd program 
establish new LOMEM 
Clear All Text 
Automatic Line Numbering 
(without line numbers) 
Renumber lines 
Replace Text String 
Save MAC/65 Source 
Ask About Memory Usage 
Use TEXTMODE 
Hex/Decimal Convert 

The Macro Assembler 
Assembler Input 
Instruction Format 
Labels 
Operands 
Operators 
Assembler Expressions 
Operator Precedence 
Numeric Constants 
Strings 

1 
2 
2 
3 

5 
5 
6 
7 

9 
10 
12 
12 
13 
13 
14 
14 
15 
16 
17 
18 
18 
19 
19 
20 
20 
21 
22 
22 
23 
23 

25 
25 
26 
27 
27 
28 
33 
33 
34 
34 



Chapter 4 --
4.1 
4.2 
4.3 
4.4 
4.5 
4.6 
4.7 
4.8 
4.9 
4.11" 
4.11 
4.12 
4.13 
4.14 
4.15 
4.16 
4.17 
4.18 
4.19 
4.20 
4.21 
4.22 

Chapter 5 --
5.1 
5.2 
5.3 
5.4 
5.5 
5.6 
5.7 
5.8 

Directives 
*= 

.= 

. BYTE 

.CBYTE 

.DBYTE 

.DS 

. ELSE 

. END 

.ENDIF 
• ERROR 
• FLOAT 
.IF 
• INCLUDE 
• LOCAL 
.OPT 
• PAGE 
.SBYTE 
.SET 
• TAB 
.TITLE 
.WORD 

(and .ORG) 
(and .EQU) 

(and .SBYTE) 

(see also .BYTE) 

Macro Facility 
.ENDM 
• MACRO 
Macro Expansion, part 1 
Macro Parameters 
Macro Expansion, part 2 
Macro Strings 
Some Macro Hints 
A Complex Macro Example 

Chapter 6 -- Compatibility 
6.1 Atari's Cartridge 

Chapter 7 --
7.1 
7.2 
7.3 

Chapter 8 --
8.1 
8.2 
8.3 

Appendix A 

Appendix B 

Appendix C 

65C02 Instructions 
Major Added Addressing Mode 
Variations on 6502 Instructions 
New 65C02 Instructions 

Programming Techniques 
Memory Usage by MACj65 and DDT 
Assembling With Offset: .SET 6 
Making MACj65 Even Faster 

System Equates Listing 

Sample Macro Listings 

Error Descriptions 

35 
36 
37 
37 
38 
39 
40 
40 
41 
41 
41 
41 
42 
43 
45 
46 
47 
49 
49 
50 
51 
51 
51 

53 
53 
54 
56 
57 
59 
60 
62 
63 

67 
67 

69 
70 
71 
72 

77 
77 
78 
80 

81 

85 

95 



INTRODUCTION 

This manual assumes the user is familiar with assembly 
language. It is not intended to teach assembly 
language. This manual is a reference for commands, 
statements, functions, and syntax conventions of MAC65 
It is also assumed that the user is familiar with the 
screen editor of the Atari computer. Consult Atari's 
Reference Manuals if you are not familiar with the 
screen editor. 

If you need a tutorial level manual, we would recommend 
that you aSK your local dealer or booKstore for 
suggestions. 

Although we are hesitant to suggest ANY of the booKs 
currently available (because they do not address Atari 
Computers properly), two books that have worked well 
for many of our customers are "Machine Language for 
Beginners" by Richard Mansfield from COMPUTE I books 
and "Programming the 6502" by Rodney Zaks. 

This manual is divided into two major sections. The 
first two chapters cover the Editor commands and 
syntax, source line entry, and executing source program 
assembly. The next three chapters then cover 
instruction format, assembler directives, functions and 
expressions, Macros, and conditional assembly. 

Note that DDT--the Dunion Debugging Tool--is described 
in a separate manual section, which fOllows this MAC/65 
manual. 

MAC65 is a fast and powerful machine language 
development tool. Programs larger than memory can be 
assembled. MAC65 also contains directives specifically 
designed for screen format development. With MAC65's 
line entry syntax feature, less time is spent 
re-assembling programs due to assembly syntax errors, 
allowing more time for actual program development. 

--1--



START UP 

Simply turn off the power to your computer and insert 
your HAC/65 cartridge (in the left cartridge slot if 
using an Atari see Computer). 

If you are using a disk drive. insert an appropriate 
DOS boot disk (e.g •• DOS XL or Atari DOS) into drive I 
and be sure the drive's power is on. 

Turn on your computer. If you have a drive with a 
proper diskette inserted. DOS will boot. Depending 
upon the version and kind of DOS you have. you may find 
that you need to give a command to DOS in order to 
enter the MAC/65 cartridge. If so. enter the command. 

You should be presented with MAC/65's name and 
copyright lines and an "EDIT" prompt. If not consult 
your hardware and/or DOS manuals and try again. 

You are now ready to begin using MAC/65. 

WARM START 

The user can exit to DOS XL by entering the MAC/65 
command DOS (followed by [RETURN). of course). To 
return to MAC/65. the user can use the DOS XL command 
CAR [RETURN] (or menu command 'T'). 

Unless you have used certain extrinsic commands. DOS XL 
will return to MAC/65 via a "warm start" (Le •• without 
clearing out any source lines in memory). Consult your 
DOS XL manual for details. 

Generally. when using Atari DOS. MAC/65 works much 
any other cartridge. The MAC/65 "DOS" command 
exit to Atari DOS. and the Atari DOS "B" command 
return to MAC/65. If you use a MEM.SAV file. 
MAC/65 program should stay intact. See your Atari 
manual for details. 

--2--

like 
will 
will 
your 

DOS 



SYNTAX 

The following 
descriptions in 

conventions are 
this manual: 

used in the syntax 

1. Capital letters designate commands, instructions, 
functions, etc., which must be entered exactly as shown 
(e.g., ENTER, • INCLUDE, .NOT). (But see NOTE below.) 

2. Lower case letters specify items which may be used. 
The various types are as follows: 

Ino 

hxnum 

dcnum 

exp 

string 

strvar 

- Line number between 0-65535, inclusive. 

- A hex number. It can be address or 
data. Hex numbers are treated as 
unsigned integers. 

- A positive number. Decimal numbers 
are rounded to the nearest two byte 
unsigned integer; 3.5 is 
rounded to 4 and 100.1 to 100. 

- An assembler expression. 

- A string of ASCII characters 
enclosed by double quotes (eg. 
"THIS IS A STRING"). 

- A string representation. Can be a 
string, as above, or a string variable 
within a Macro call (ego %$1). 

filespec -
OR 

A string of ASCII characters that 
refers to a particular device. See 
device reference manual for more 
specific explanation. 

file 

3. Items in square brackets denote an optional part of 
syntax (eg. [,lno]). When an optional item is 
followed by ( ... ) the item{s) may be repeated as many 
times as needed. 

Example: .WORD exp [,exp .•. ] 

4. Items in parentheses indicate that anyone of the 
items may be used, ego (,O) (,A). 

NOTE: MAC65 in EDIT mode is NOT case sensitive. 
Inverse video characters are uninverted. Lower case 
letters are converted to upper case. EXCEPTIONS: 
characters between double quotes, following a single 
quote, or in the comment field of a MAC65 source line 
will remain unchanged.Text entered in TEXT mode, 
though, will not be changed. 

--3--



+ 

+ 

---this page intentionally left blank--

+ 

+ 

--4--



CHAPTER 1: THE EDITOR 

The Editor allows the 
source code or ordinary 

user to enter and edit MAC/65 
ASCII text files. 

To the Editor, there is a real distinction between the 
two types of fi l es; so much so that there are actually 
two modes accessible to the user, EDIT mode and 
TEXTMODE. However , for either mode, source cOde/text 
must begin with a line number between 0 and 65535 
i nclusive , fol l owed by one space. 

Examples: 10 LABEL LDA '$32 
3020 This is valid in TEXT MODE 

The first example would be valid in either EDIT or 
TEXTMODE , while the second example would only be valid 
in TEXTMODE . 

The user chooses which mode he/she wishes to use for 
editing by selecting NEW (which chooses the MAC/65 EDIT 
mode) or TEXT (which allows general text entry). There 
is more discussion of the impact of these two modes 
below; but, first, there are several points in common 
to the two modes. 

1.1 GENERAL EDITOR USAGE 

The source file is manipulated by Editor commands. 
Since the Editor recognizes a command by the absence of 
a line number, a line beginning with a line number is 
assumed to be a valid source/text line. As such, it is 
merged with, added to, or inserted into the source/text 
lines already in memory in accordance with its line 
number. An entered line which has the same line number 
as one already in memory will replace the line in 
memory. 

--5--



Also, as a special case of 
be deleted from memory by 
only. (And also see DEL 
of lines.) 

the above, a source line can 
entering its line number 

command for deleting a group 

Any line that does not start with a line number is 
assumed to be command line. The Editor will examine 
the line to determine what function is to be performed. 
If the line is a valid command, the Editor will execute 
the command. The Editor will prompt the user each time 
a command has been executed or terminated by printing: 

EDIT for syntax (MAC/65 source) mode 
TEXTMODE for text mode 

The cursor will appear on the following line. Since 
some commands may take a while to execute, the prompt 
signals the user that more input is allowed. The user 
can terminate a command before completion by hitting 
the break key (escape key on Apple II). 

And one last point: 
line or a valid command. 

WHAT? 

1.2 TEXT MODE 

If the line is neither a source 
The Editor will print: 

The Editor supports a text mode. The text mode is 
entered with the command TEXT. This mode will NOT 
syntax check lines entered, allowing the user to enter 
and edit non-assembly language files. All Editor 
commands funtion in text mode. 

Remember, though, that all text lines must begin with a 
line number; and, even in TEXTMODE, the space following 
the line number is necessary. 

--6--



1 . 3 EDIT MODE 

MAC/65 is nearly unique among assembler/editor systems 
in that it allows the assembly language user to enter 
source code and have it IMMEDIATELY checked for syntax 
validity. Of course, since 'assembly language syntax is 
fairly flexible (especially when macros are allowable, 
as they are with MAC/65), syntax checking will by no 
means catch all errors in user source code . For 
example, the existence of and validity of labels and/or 
zero page locations is not and can not be checked until 
assembly time. However, we still feel that this syntax 
checking will be a boon to the beginner and experienced 
programmer alike. 

that source lines must begin with a 
must, in turn, be followed by one 
second space after the line number is 

Again, remember 
line number which 
space. Then, the 
the label column. 
The third space 
instruction column. 
at least the third 

The label must start in this column. 
after the line number is the 

Instructions may either start in 
column after the line number or at 

least one space after the label. The operand may begin 
anywhere after the instruction, and comments may begin 
anywhere after the operand or instruction. Refer to 
Assembler Section for specific instruction syntax. 

As noted, the Editor syntax checks each source line at 
entry. If the syntax of a line is in error, the Editor 
will list the line with a cursor turnerl on (i.e., by 
using an inverse or blinking character) at the point of 
error. 

The source lines are tokenized and stored in memory, 
starting at an address in low memory and building 
towards high memory. The resultant tOkenized file is 
60% to 80% smaller than its ASCII counterpart, thus 
allowing larger programs to be entered and edited in 
memory. 

SPECIAL NOTE: If, upon entry, a source line contains a 
syntax error and is so flagged by the Editor, the line 
is entered into Editor memory anyway. This feature 
allows raw ASCII text files (possibly from other 
assemblers and possibly containing one or several 
syntax errors as far as MAC/65 is concerned) to be 
ENTERed into the Editor without losing any lines. The 
user can note the lines with errors and then edit them 
later. 

--7--



+ 

+ 

---this page intentionally left blank---

+ 

+ 

+ 

--8--



CHAPTER 2: EDITOR COMMANDS 

This chap.ter lists all the valid Editor-level commands, 
in alphabetical order, along with a short description 
of the purpose and function of each. 

Again, remember that when the "TEXTHODE" or "EDIT" 
prompt is present any input line not preceded by a line 
number is presumed to be an Editor command. 

If in the process of executing a command any error is 
encountered, the Editor will abort execution and return 
to the user, displaying the error number and 
descriptive message of the error before re-prompting 
the user. Refer to Appendix for possible causes of 
errors. 

--9--



Section 2.1 

edit command: ASM 

purpose ASseMble MAC/65 source files 

usage: ASM [.filel],[.file2],[.file3],[,file4] 

ASM will assemble the specified source file and 
will produce a listing and object code output; the 
listing may include a full cross reference of all 
non-local labels. Filel is the source device, 
file2 is the list device, file3 is the object 
device, and file4 is a temporary file used to help 
generate the cross reference listing. 

Any or all of the four filespec's may be omitted, 
in which case MAC/65 assumes the following default 
filespec(s) are to be used: 

filel - user source memory. 
file2 - screen editor. 
file3 - memory (CAUTION: see below) 
file4 - none, therefore no cross reference 

A filespec (.filel, .file3, etc.) can be omitted 
by sUbstituting a comma in which case the 
respective default will be used. 

For the listing file ONLY, you may use the special 
form "'-", to indicate that you do NOT want a 
listing file at all. 

Some Examples: 

Example: ASM 'D2:S0URCE,'D:LIST,'D2:0BJECT 

In this example, the source will come from 
D2:S0URCE, the assembler will list to O:LIST, and 
the Object code will be written to 02:0BJECT. 

Example: ASM to:SOURCE , , to:OBJECT 

In this example, the source will be read from 
0: SOURCE and the object will be written to 
O:OBJECT. The assembly listing will be written to 
the screen. 

Example: ASM, 'P: , , to:TEMP 

In this example, the source will be read from 
memory, the object will be written to memory (but 
ONLY if the ".OPT OBJ" directive is in the 
source), and the assembly listing will be written 
to the printer along with the complete label cross 
reference. The file TEMP on disk drive 1 will be 
created and used as a temporary file for the cross 
reference. 

--111'--



Example: ASM tD:SOURCE , fp: 

In this example, the source will be read from 
D:SOURCE and the assembly listing will be written 
to the printer. If the ".OPT 08J" directive has 
been selected in the source, the object code will 
be placed in memory. 

Example: ASM ,t-

This produces what is probably the fastest 
possible MAC/65 assembly. Source code is read 
from memory and no listing is produced (because of 
the "'-"). If your program does not contain a II 

.OPT 08J" line, this becomes what is essentially 
simply an error checking assembly. (Though even 
if you ARE producing object code, the assembly 
speed is extremely fast.) 

SPECIAL NOTES 

Note: If assembling from a "filespec", the source 
MUST have been a SAVEd file • 

Note: Refer to the 
information on 
output. 

. OPT directive for specific 
assembler listing and object 

Note: The object code file will have the format of 
compound files created by the DOS XL SAVE command. 
See the DOS XL manual for a discussion of LOAD and 
SAVE file formats. 

Note: You may use fC: as a device for the listing 
or object files. You may NOT use fC: for the 
source or cross reference files (thus implying 
that you may not get a cross reference unless you 
have a disk drive). HOWEVER, we do not recommend 
using the cassette as the object file device, 
since you may get an excessively long leader tone 
(which will be difficult to re-BLOAD later). 
Instead, we suggest using BSAVE (after assembling 
directly to memory) whenever practicable. 

--11--



Section 2.2 

edit command: BLOAD 

purpose: allows user to LOAD Binary (memory image) 
files from disk into memory 

usage: BLOAD tfilespec 

The BLOAD command will load a previously BSAVEd 
binary file, an assembled object file, or a binary 
file created with OS/A+ SAVe command. 

Example: BLOAD tD:OBJECT 

This example will load the binary file "OBJECT" to 
memory at the address where it was previously 
saved from or assembler for. 

Example: BLOAD tC: 

This example will load a binary file from cassette. 

CAUTION: it is suggested that the user only BLOAD 
files which were assembled into MAC/65's free area 
(as shown by the SIZE command) or which will load 
into known safe areas of memory. 

Section 2.3 

edit command: BSAVE 

purpose: SAVE a Binary image of a portion of 
memory. Same as OS/A+ SAVE command. 

usage: BSAVE 'filespec < hxnuml ,hxnum2 

The BSAVE command will save the memory addresses 
from hxnuml through hxnum2 to the specified 
device. The binary file created is compatible 
with the OS/A+ SAVe command. 

Example: BSAVE 'D:OBJECT<5000,5100 

This example will save the memory addresses from 
~5000 through ~5l00 to the file "OBJECT". 

Example: BSAVE tC: < 5000,5100 

This example saves the same memory to cassette. 

--12--



Section 2.4 

edit command: BYE 

purpose: exit to system monitor level 

usage: BYE 

BYE will send you to the Atari Memo 
computer's built in diagnostics, 
which model of computer you have. 

Section 2.5 

edit command: DDT 

Pad or your 
depending on 

purpose: enter the DDT debug package which is 
part of the MAC/65 cartridge. 

usage: DDT 

Once you have entered this command, DDT is entered 
and as has control of the system. 

However, DDT saves enough of MAC/65's vital memory 
that, if you follow certain simple rules, you may 
return to MAC/65 from DDT with your source program 
still intact. 

The DDT manual gives more information on this 
subject, but as a general guide you must avoid 
locations $80 through $AF (in zero page) and the 
memory locations located within the bounds 
displayed by the SIZE command. 

See the DDT manual (which is bound with but after 
this MAC/65 manual) for many, many more details. 

--13--



Section 2.6 

edit command: DEL 

purpose: DELetes a line or group of lines from 
the source/text in memory. 

usage: DEL Inol [ ,ln02 ] 

DEL deletes source lines from memory. If only one 
Ino is entered, only the line will be deleted. If 
two Inos are entered, all lines between and 
including Inol and In02 will be deleted. 

Note: Inol must be present in memory for DEL to 
execute. 

Examples: 

Section 2.7 

DEL 100 
DEL 200,1300 

deletes only line 100 
deletes lines 200 thru 

1300, inclusive 

edit command: DOS [ or, equivalently, CP ] 

purpose: 

usage: 

exit from MAC/65 to DOS. 

DOS 
or 

CP 

Either DOS or CP returns you to DOS. If you 
booted an Atari DOS disK, you will be returned to 
the Atari DOS menu. If you booted DOS XL, you 
will be returned to either the DOS XL menu or CP 
(Command Processor), depending upon which was 
active when you entered MAC/65. 

See also the Introduction to this manual for more 
information on Cold Start and Warm Start as it 
applies to MAC/65 and the DOS command. 

--14--



Section 2.8 

edit command: 

purpose: 

usage: 

ENTER 

allow entry of ASCII (or ATASCII) 
text files into MAC/65 editor memory 

ENTER #filespec [ (,M) (,A) ] 

ENTER will cause the Editor to get ASCII text from 
the specified device. ENTER will clear the text 
area before entering from the filespec. That is 
any user program is memory at the time the ENTER 
command is given will be erased. 

The parameter "M" (MERGE) will cause MAC/65 to NOT 
clear the text area before entering from the file, 
text entered will be merged with the text in 
memory. If a line is entered which has the same 
line number of a line in memory, the line from the 
device will overwrite the line in memory. 

The parameter "A" allows the user to enter 
un-numbered text from the specified device. The 
Editor will number the incoming text starting at 
line 1e, in increments of 1e. 

CAUTION: The "A" option will always clear the text 
area before entering from the filespec. You may 
NOT use "M" in conjunction with the "A" option. 

--15--



Section 2.9 

edit command: FIND 

purpose: to FIND a string of characters somewhere 
in MAC/6S·s editor buffer. 

usage: FIND /string/ [ lnol [ ,lno2 ] ] [ ,A ] 

The FIND command will search all lines in memory or the 
specified line(s) (lnol through Ino2) for the "string" 
given between the matching delimiter. The delimiter 
may be any character except a space. If a match is 
found, the line containing the match will be listed to 
the screen. 

Note: do NOT enclose a string in double quotes. 

Example: FIND/LOX/ 

This example will search for the first occurance 
of "LOX". 

Example: FIND\Label\2S,80 

This example will search for the first occurance 
of "Label" in lines 2S through 80. 

If the option "A" is specified, all matches within 
the specified line range will be listed to the 
screen. Remember, if no line numbers are given, 
the range is the entire program. 

--16--



Section 2.1" 

edit command: LIST 

purpose: to LIST the contents of all or part of 
MAC/65's editor buffer in ASCII (ATASCII) 
form to a disK or device. 

usage: LIST [ .filespec, ] [ Inol [ ,ln02 ] ] 

LIST lists the source file to the screen. or 
device when ".filespec" is specified. If no Inos 
are specified, listing will begin at the first 
line in memory and end with the last line in 
memory. 

If only lnol is specified, that line will be 
listed if it is in memory. If lnol and ln02 are 
specified, all lines between and including lnol 
and ln02 will be listed. When lnol and ln02 are 
specified, neither one has to be in memory as LIST 
will search for the first line in memory greater 
than or equal to lnol. and will stop listing when 
the line in memory is greater than ln02. 

EXAMPLE: 

EXAMPLE: 

LIST 'Pt 
will list the current contents 
of the editor memory to the P: 
(printer) device. 

LIST 'D2:TEMP, 1"3", 18"" 
lists only those lines lying 
in the line number range from 
1"3" to 18"", inclusive, to the 
diSK file named "TEMP" on diSK 
drive 2. 

NOTE: The second example points out a method of 
moving or duplicating large portions of text or 
source via the use of temporary diSK files. By 
suitably RENumbering the in-memory text before and 
after the LIST, and by then using ENTER with the 
Merge option, quite complex movements are 
possible. 

--17--



Section 2.11 

edit command: LOAD 

purpose: to reLOAD a previously SAVEd MAC/65 token 
file from disk to editor memory. 

usage: LOAD ,filespec [ ,A ] 

LOAD will reload a previously SAVEd tokenized file 
into memory. LOAD will clear the user memory 
before loading from the specified device unless 
the ",A" parameter is appended. 

The parameter "A" (for APPEND) causes the Editor 
to NOT clear the text area before loading from the 
file. Instead, the load file will be appended 
with the current file in memory. 

Note: The Append option will NOT renumber the file 
after loading. It is possible to have DUPLICATE 
LINE NUMBERS. Use the REN command if there are 
duplicate line numbers. 

Section 2.12 

edit command: LOMEM 

purpose: change the lower bound of editor memory 
usable by MAC/65 . 

usage: LOMEM hxnum 

LOMEM allows the user to select the address where 
the source program begins. 

CAUTION I Executing LOMEM 
currently in memory~ as if 
tlNEW". 

--18--

clears out any source 
the user had typed 



Section 2.13 

edit command: NEW 

purpose: clears out all editor memory, sets syntax 
checking mode. 

usage: NEW 

NEW will clear all user source code from memory 
and reset the Editor to syntax mode. The "EDIT" 
prompt appears, reminding the user that syntax 
checking is now active. If the user needs to 
defeat the syntax checking, he/she must use the 
TEXT command. 

Section 2.14 

edit command: NUM 

purpose: initiates automatic line NUMbering mode 

usage: NUM [ dcnuml [ ,dcnum2 ] ] 

NUM will cause the Editor to auto-number the 
incoming text from the Screen Editor (E:). A 
space is automatically printed after the line 
number. If no dcnums are specified, NUM will 
start at the last line number plus 13. NUM dcnuml 
will start at the last line number plus "dcnuml" 
in increments of "dcnuml". NUM dcnuml, dcnum2 
will start at "dcnuml" in increments of "dcnum2". 

EXAMPLE: NUM 1333,23 
will cause the Editor to prompt the user with 
the number "1303" followed by a space. When 
the user has entered a line, the next prompt 
will be "1320", etc. 

The NUM mode will 
which would be next 
memory. 

terminate if the line number 
in sequence is present in 

You may terminate NUM mode by pressing the BREAK 
key or by typing a CONTROL-3. Optionally, you may 
press CONTROL-C followed by a [RETURN1. 

--19--



Section 2.15 

edit command: PRINT 

purpose: to PRINT all or part of the Editor text 
or source to a disk file or a device. 

usage: PRINT [ 'filespec, J ( lnol ( ,lno2 J J 

Print is exactly like LIST except that the line 
numbers are not listed. If a file is PRINTed to a 
disk, it may be reENTERed into the MAC/65 memory 
using the ENTER command with the Append line 
number option. 

Section 2.16 

edit command: REN 

purpose: RENumber all lines in Editor memory. 

usage: REN (dcnuml ( ,dcnum2 ] ] 

REN renumbers the source lines in memory. If no 
dcnums are specified, REN will renumber the 
program starting at line 10 in increments of 10. 
REN dcnuml will renumber the lines starting at 
line 10 in increments of dcnuml. REN dcnum1, 
dcnum2 will renumber starting at dcnuml in 
increments of dcnum2. 

--20--



Section 2.17 

edit command: REP 

purpose: REPlaces occurrence(s) of a given string 
with another given string. 

usage: 
REP fOld string/new string/ [lnol [,ln02 ] ] [(,A)(,O)] 

The REP command will search the specified lines 
(all or lnol through ln02) for the "old string". 

The "A" option will cause all occurrences of "old 
string" to be replaced with "new string". The "0" 
option will list the line containing the match and 
prompt the user for the change (y followed by 
RETURN for change, RETURN for skip this 
occurrance.) If neither "A" or "0" is specified, 
only the first occurrence of "old string" will be 
replaced with "new string". Each time a change is 
made, the line is listed. 

Example: REP/LOY/LOA/200,250,0 

This example will search for the string "LOY" 
between the lines 200 and 250, inclusive, and 
prompt the user at each occurrence to change or 
skip. 

Note: Hitting BREAK (ESCape on Apple II) will 
terminate the REP mode and return to the Editor. 

Note: If a change causes a syntax error in the 
line, the REP mode will be terminated and control 
will return to the Editor. Of course, if TEXTMODE 
is selected, there can be no syntax errors. 

--21--



Sect i o n 2 .18 

ed i t command: SAVE 

purpose: SAVEs the interna l (tokenized ) form o f 
the user's i n- memory text / source to a 
d i sk f i le . 

usage: SAVE .fi lespec 

SAVE will save the tokenized user source file to 
the specified device. The format of a t okenized 
file is as follows: 

File Header 
Two byte number (LSB,MSB) specifies the 
size of the f i le i n bytes. 

For each l i ne i n the file: 

Section 2.19 

Two byte line number (LSB,MSB) 
followed by 

One byte length of line (actually offset 
to next line) 

followed by 
The tokenized line 

ed i t command: S I ZE 

p urpose : determi nes a nd d i sp l ays t he SIZ E of 
var i o us portions of memory used by 
t he MAC/65 Edito r. 

usage : SIZE 

SIZE will print the user LOMEM address, the 
highest used memory address, and the highest 
usable memory address, in that order, using 
hexadecimal notation for the addresses. 

These memory addresses are especially helpful in 
determining what areas of memory to avoid when 
assembling programs directly to memory. Remember, 
though, that MAC/65 needs a certain amount of room 
above the middle address shown for the symbol 
table (when an assembly is made). See also the 
DDT manual for hints on memory usage. 

--22--



Section 2.20 

edit command: TEXT 

purpose: allow entry of arbitrary ASCII (ATASCII) 
text without syntax checking. 

usage: TEXT 

TEXT will clear all user source code from memory 
and put the Editor in the text mode. After this 
command is used, the Editor will prompt the user 
for new commands and text with the word "TEXTMODE" 
(instead of "EDIT"), indicating that no syntax 
checking is taking place. 

TEXTMODE may be terminated by the NEW command. 
CAUTION: there is no way to go back and forth 
between syntax (EDIT) mode and TEXTMODE without 
clearing the Editor's memory each time. 

Section 2.21 

edit command: ? 

purpose: makes hexadecimal/decimal conversions 

usage: ? ($hxnum) (dcnum) 

? is the resident hex/decimal decimal/hex 
converter. Numbers in the range 0 - 65535 decimal 
(0000 to FFFF hex) may be converted. 

Example: ? $1200 
? 8190 

--23--

will print =4608 
will print =$lFFE 



+ 

---this page intentionally left blank--

+ 

+ 

--24--



CHAPTER 3: THE MACRO ASSEMBLER 

The Assembler is entered from MAC/65 with the command 
ASM. For ASM command syntax, refer to section 2.1 (in 
the Editor commands). Assembly may be terminated by 
hitting the BREAK key. MAC/65 properly closes files 
and "cleans up" before terminating the assembly. 

3.1 ASSEMBLER INPUT 

The ASsembler will get a line at a time from the 
specified device or from memory. If assembling from a 
device, the file must have been previously SAVEd by the 
Editor. All discussions of source lines and syntax 
will be at the Editor line entry level. The tokenized 
(SAVEd) form is discussed in general terms under the 
SAVE command, section 2.19. 

Source lines are in the form: 

line number + mandatory space + source statement 

The source statement may be in one of the following 
forms: 

[label] [(6502 instruction) (directive)] [comment] 

The following examples are valid source 1 ines:. 

100 LABEL 
120 :Comment line 
140 LOA #5 and then any comment at all 
150 DEY 
160 ASL A double number in accumulator 
170 GETNUM LOA (AOORESS),Y 
180 . PAGE "directives are legal, too" 

In general, the format is as specified in the MOS 
Technology 6502 Programing Manual. We recommend that 
the user unfamiliar with 6502 assembly language 
programming should purchase: 

"Machine Language for Beginners" by R. Mansfield 
or 

"Programing the 6502" by Rodney Zaks 
or 

any other book which seems compatible with the 
users current knowledge of assembly language. 

SPECIAL NOTE: The assembler of MAC/65 understands only 
upper case labels, op codes, etc. HOWEVER, the editor 
(see expecially section 1.3) will convert all lower 
case to upper case (except in comments and quoted 
strings), so the user may feel free to type and edit in 
whichever case he/she feels most comfortable with. 

--25--



3.2 INSTRUCTION FORMAT 

A) Instruction mnemonics are as described in the MOS 
Technology Programing Manual. 

B) Immediate operands begin with "t". 

C) "(operand,X)" and "(operand),Y" designate indexed 
indirect and indirect indexed addressing, respec
tively. 

0) 

E) 

"operand,X" 
addressing. 

and "operand, Y" designate indexed 

Zero page operands cannot be forward 
Attempting to do so will usually 
"PHASE ERROR" message. 

referenced. 
result in a 

F) Forward equates are evaluated within the limits of 
a two pass assembler. 

G) "." designates the current location counter. 

H) Comment lines may begin with ";" or ..... 
I) A semicolon (";") anywhere in a line indicates the 

beginning of the comment field for that line. 

J) Hex constants begin with "$". 

K) The "A" operand is reserved for accumulator 
addressing. 

L) The addressing formats available are extended 
allow the new addressing modes available with 
NCR 6Sce2 microprocessor. See Chapter 7 for 
descriptions of 6SCe2 instructions not included 
the standard 6Se2 set. The extensions include: 

to 
the 
the 

in 

1. "(operand)", indicating indirect addressing, is 
now legal with AOC, AN~, CMP, EOR, LOA, ORA, 
SBC, and STA. The operand must be in zero page. 

2. "(operand,X)" is now legal when used with JMP. 
The operand here may be any absolute address. 

3. The BIT instruction is allowed the addressing 
mode "operand,x". The operand may be either a 
zero page or absolute address. 

4. The mnemonics BRA, DEA, INA, PHX, PHY, PLX, 
PLY, STZ, TRB, and TSB are now recognized. 

--26--



3.3 LABELS 

Labels must begin with an Alpha character, "@", or "7". 
The remaining characters may be as the first or may be 
""''' to "9" or ".". The characters must be uppercase 
(but remember that 'the editor always converts lowercase 
for you) and cannot be broken by a space. The maximum 
number of characters in a label is 127, and ALL are 
significant. 

Labels beginning with a question mark ("7") are 
assumed to be "LOCAL" labels. Such labels are 
"visible" only to code encountered within the current 
local region. Local regions are delimited by 
successive occurrences of the .LOCAL directive, with 
the first region assumed to start at the beginning of 
the assembly source, whether or not a .LOCAL is coded 
there or not. There are a maximum of 62 local regions 
in anyone assembly. Of course, if a .LOCAL is not 
encountered anywhere in the assembly, then all labels 
are accessible at all times. In any case, labels 
beginning with a question mark will NOT be listed in 
the symbol table. 

The following are examples of valid labels: 

TESTl @.INC LOCATION LOC22A WHAT 7 
ADDRESS1.l EXP •• SINE45TAB. 

3.4 OPERANDS 

An operand can be a label, a Macro parameter, a numeric 
constant, the current program counter (*), "A" for 
accumulator addressing, an expression, or an ASCII 
character preceded by a single quote (e.g., '?). The 
following are examples of the various types of operands: 

1'" LDA 'VALUE label 
15 ROR A accumulator addressing 
2'" • BYTE 123,$45 numeric constants 
25 .IF %'" Macro parameter 
3'" CMP , 'A ASCII character 
35 THISLOC * , current PC 
4'" • WORD PMBASE+[PLNO+4]*256 : expression 

--27--



3.5 OPERATORS 

The following are the operators currently supported by 
MAC/65: 

[ ] 
+ 

/ 
\ 
* 
& 

I 

> 
< 
<> 
>= 
<= 
.OR 
• AND 

. NOT 

.DEF 

.REF 

> 

< 

pseudo parentheses 
addition 
subtraction 
division 
modulo (remainder after integer division) 
multiplication 
binary AND 
binary OR 
binary EOR 

equality, logical 
greater than, logical 
less than, logical 
inequality, logical 
greater or equal, logical 
less or equal, logical 
logical OR 
logical AND 

unary minus 
unary logical. Returns true (1) if ex
pression is zero. Returns false (0) if 
expression is non-zero. 
unary logical label definition. Returns 
true if label is defined. 
unary logical label reference. Returns 
true if label has been referenced. 
unary. Returns the high byte of the 
expression. 
unary. Returns the low byte of the 
expression. 

Logical operators will always return either TRUE (1) or 
FALSE (0). However, any non-zero value is considered 
true when making a conditional test. Also, undefined 
labels are given a value of zero (False). 

Some of these operators perhaps need some explanation 
as to their usage and purpose. The operators are thus 
described in groups in the following subsections. 

--28--



3.5.1 Operators: + - 11 / \ 

These are the familiar arithmetic operators, though "\" 
may be new to you, even if the modulus operation is 
not. Remember, though, that they perform 16-bit signed 
arithmetic and ignore any overflows. Thus, for 
exampl~, the value of $FF00+4096 is $0F00, and no error 
is generated. 

COMMENT: "opl \ op2" is exactly equivalent to 
"opl - [ op2 11 [ opl / op2 J J" 
and is the remainder after integer division 
is performed. Example: 11\4 is 3. 

3.5.2 Operators: & I A 

These are the binary or 
operate on values as 16 
bit-by-bit ANDs, ORs, or 
hit equivalents of the 6502 

"bitwise" operators. They 
bit words, performing 

EXCLUSIVE ORs. They are 16 
opcodes AND, ORA, and EOR. 

EXAMPLES: $FF00 & $00FF is $0000 
$03 I $0A is $0008 
$003F $011F is $0120 

3.5.3 Operators: = ) < <) )= <= 
-------------------------------------
These are the familiar comparison operators. They 
perform 16 bit unsigned compares on pairs of operands 
and return a TRUE (1) or FALSE (0) value. 

EXAMPLES: 3 < 5 
5 < 5 
5 <= 5 

returns 1 
returns 0 
returns 1 

CAUTION: Remember, these operators always work on PAIRS 
of operands. The operators H)" and "<" have quite 
different meanings when used as unary operators. 

3.5.4 Operators: .OR • AND • NOT 

These operators also perform logical operations and 
should not be confused with their bitwise companions. 
Remember, these operators always return only TRUE or 
FALSE. 

EXAMPLES: 3 .OR " 
3 .AND 2 
6 .AND 0 
.NOT 7 

--29--

returns 1 
returns 1 
returns 0 
returns " 



3.5.5 Operator: (unary) 

The minu8 8ign may be u8ed as a unary operator. It8 
effect is the same as if a minus sign had been used in 
a binary operation where the first operator is zero. 

EXAMPLE: 

3.5.6 Operators: 

-2 is $FFFE (same as 8-2) 

< > (unary) 

These UNARY operators are extremely useful when it is 
desired to extract just the high order or low order 
byte of an expression or label. Probably their most 
common use will be that of 8upplying the high and low 
order bytes of an address to be used in a "LOA I" or 
similar immediate instruction. 

EXAMPLE: 

3.5.7 Operator: 

FLEEP z: $3456 
LOA I<FLEEP (same as LOA 1$56) 
LOA I>FLEEP (same as LOA 1$34) 

.OEF 

This unary operator tests whether the following label 
has been defined yet, returning TRUE or FALSE as 
appropriate. 

CAUTION: Defining a label AFTER the use a .DEF which 
references it can be dangerous, particularly if the 
.DEF is used in a .IF directive . 

EXAMPLE: . IF .DEF ZILK 
.BYTE "generate some bytes" 
.ENDIF 

ZILK - $3888 

In this example, the .BYTE string will NOT be generated 
in the first pass but WILL be generated in the second 
pass. Thus, any following code will almost undoubtedly 
generate a PHASE ERROR. 

--38--



3.5.8 Operator: .~F 

This unary operator tests whether the following label 
has been referenced by any instruction or directive in 
the assembly yet: and, in conjunction with the .IF 
directive, produces the effect of returning a TRUE or 
FALSE value. ' 

Obviously, the same cautions about .OEF being used 
before the label definition apply to .REF also, but 
here we can obtain some advantage from the situation . 

EXAMPLE: • IF .REF PRINTMSG 
PRINTMSG 

(code to implement 
the PRINTMSG 
routine) 

.ENDIF 

In this example, the code implementing PRINTMSG will 
ONLY be assembled if something preceding this point in 
the assembly has referred to the label PRINTMSGI This 
is a very powerful way to build an assembly language 
library and assemble only the needed routines. Of 
course, this implies that the library must be .INCLUDEd 
as the last part of the assembly, but this seems like a 
not too onerous restriction. In fact, OSS has used 
this technique in writing the libraries for the C/65 
compiler. 

CAUTION: note that in the description above it was 
implied that .REF only worked properly with a .IF 
directive. Not only is this restriction imposed, but 
attempts to use .~F in any other way can produce 
bizarre results . ALSO, .REF cannot effectively be used 
in combination with any other operators. Thus, for 
example, 

. IF . REF ZAM .OR .REF BLOOP is ILLEGAL I 

--31--



The only operator which can legally combined with .REF 
is .NOT, as in .IF .NOT .REF LABEL. 

Note that the illegal line above could be simulated 
thus: 

EXAMPLE: DOlT ." 0 
.IF .REF ZAM 

DOlT .- I 
.ENDIF 
.IF .REF BLOOP 

DOlT .= 1 
.ENDIF 
.IF DOlT 

3.5.9 Operator: [ ] 

MAC/65 supports the use of the square brackets as 
"pseudo parentheses". Ordinary round parentheses may 
NOT be used for grouping expressions, etc., as they 
must retain their special meanings with regards to the 
various addressing modes. In general, the square 
brackets may be used anywhere in a MAC/65 expression to 
clarify or change the order of evaluation of the 
expression. 

EXAMPLES: 
LOA GEORGE+5*3 

LOA (GEORGE+5)*3 
LOA [GEORGE+5]*3 

LOA ( [GEORGE+5]*3 

This is legal, but 
it multiplies 3*5 
and adds the 15 to 
GEORGE ..• probably 
not what you wanted. 
Syntax Error 1 1 1 
OK .. . the addition 
is performed before 
the multiplication 

) , Y : See the need 
for both kinds of 
"parentheses"? 

REMEMBER: Operators in MAC/65 expressions follow 
precedence rules. The square brackets may be used to 
override these rules. 

--32--



3.6 ASSEMBLER EXPRESSIONS 

An expression is any valid combination of operands and 
operators which the assembler will evaluate to a l6-bit 
unsigned number with any overflow ignored. Expressions 
can be arithmetric or logical. The following are 
examples of valid expressions: 

10 
55 
200 
300 
305 
400 
440 

• WORD TABLEBASE+LINE*COLUNM 
.IF .DEF INTEGER .AND [ VER=l 
• BYTE >EXPLOT-l, >EXDRAW-l, 
LDA t ( [ ( ADDRESSA-l ] + 
CMP t -1 
CPX t 'A 
INC %1+1 

3.7 OPERATOR PRECEDENCE 

.OR VER >=3 
>EXFILL-l 

1 

The following are the precedence levels (high to low) 
used in evaluating assembler expressions: 

[ ] (pseudo parenthesis) 
> (high byte), « low byte), 
• NOT 

.DEF, .REF, - (unary) 

* , 
+, 
&, 

/, , 
I, 

=, >, <, <=, >=, <> (comparison operators) 
• AND 
.OR 

Operators grouped on the same line have 
precedence and will be executed in left-to-right 
unless higher precedence operator(s) intervene. 

equal 
order 

Generally, the operator precedences are what you would 
expect on a mathematical basis. Care must be taken, 
however, with the '(' and '>' unary operators . 

For Example: 
TABLE = $45FE 

LDA t > TABLE + 3 
LDA t > [TABLE+3] 

--33--

A receives $48 
A receives $46 



3.8 NUMERIC CONSTANTS 

MAC/65 accepts three types of numeric constants: 
decimal, hexadecimal, and characters. 

A decimal constant is simply a decimal number in the 
range e through 65535: an attempt to use a decimal 
number beyond these bounds mayor may not work and will 
certainly produce unexpected and undesired results. 

EXAMPLES: 1 234 652ee 32767 
(as used:) .BYTE 2,4,8,16,32,64 

LOA U 

A hexadecimal constant consists of a dollar sign 
followed by one to four legal hexadecimal digits 
(e,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F). Again, usage of 
more than £our digits may produce unwanted results. 

EXAMPLES: $1 $EA $FF00 $7FFF 
(as used:) . WORD $100,$200,$400,$800,$1000 

AND #$7F 

A character constant is an apostrophe followed by any 
printable or displayable character. The value of a 
character constant is the ASCII (or ATASCII) value of 
the character following the apostrophe. 

EXAMPLES: 'A '. ' " '= 
(as used:) CMP t ' = 

CMP #'Z+l 
CMP t'J+3 

same as t$5B 
same as #'M 

3.9 STRINGS 

Strings are of two types. String literals (example: 
"This is a string literal"), and string variables for 
Macros (example: %$5) . 

Example: 10 

Example: 20 

NOTE that there 
string is legal in 
macro or as the 
.TITLE, or .PAGE. 

. BYTE "A STRING OF CHARACTERS" 
or 

.SBYTE %$1 

are really only six places where a 
MAC/65: as a parameter to a called 

operand to .BYTE, .CBYTE, .SBYTE, 

--34--



As noted 
assembled 
(instead 
will list 
all the 
directives 
separately 

CHAPTER 4: DIRECTIVES 

in Section 3.1, the instruction field of an 
line may contain an assembler directive 

of a valid 6502 instruction). This chapter 
and describe, in roughly alphabetical order, 
directives legal under MAC/65 (excepting 
specific to macros, which will be discussed 
in Chapter 5). 

Directives may be classified into three types: (1) 
those which produce object code for use by the 
assembled program (e.g., • BYTE, .WORD, etc.): (2) those 
which direct the assembler to perform some task, such 
as changing where in memory the object code should go 
or giving a value to a label (e.g., *=, =, etc.): and 
(3) t hose which are provided for the convenience of the 
programmer, giving 'him/ her control over listing format, 
location of source, etc. (e.g., .TITLE, .OPT, 
.INCLUDE). 

Obviously, we could in theory do without the type 3 
directives: but, as you read the descriptions that 
follow, you will soon discover that in practice these 
directives are most useful in helping your 6502 
assembly language production. Incidentally, all the 
macro-specific directives could presumably be 
classified as type 3. 

Three of the directives which follow (.PAGE, .TITLE, 
and .ERROR) allow the user to specify a string 
(enclosed in quotes) which will be printed out. For 
these three directives, the user is limited to a 
maximum string length of 70 characters. Strings longer 
than 70 characters will be truncated. 

--35--



Section 4.1 

directive: *= and .ORG 

purpose: change current origin of the assembler's 
location counter 

usage: [label] *= expression 
[label] .ORG expression 

The *= (or, equivalently, .ORG) directive will assign 
the value of the expression to the location counter. 
The expression cannot be foward referenced. (*= must 
be written with no intervening spaces.) 

Example: 50 

135 

*= $1234 

.ORG $1234 

sets the location 
counter to $1234 
ditto 

Another common usage of *= is to reserve space for data 
to be filled in or used at run time. Since the single 
character "*,, may be treated as a label referencing the 
current location counter value, the form "*= *+exp" is 
thus the most common way to reserve "exp" bytes for 
later use. 

Example: 70 LaC *= *+1 assigns the current 
value of the location 
counter to LOC and 
then advances the 
counter by one. 

70 LOC .ORG *+1 ditto 

(Thus LOC may be thought of as a one byte 
reserved memory cell.) 

CAUTION: Because any label associated with this 
directive is assigned the value of the location counter 
BEFORE the directive is executed, it is NOT advisable 
to give a label to "*=" or ".ORG" unless, indeed, it is 
being used as in the second example (i.e., as a memory 
reserver) • 

NOTE: Some assemblers treat the label on an "ORG" or 
".ORG" directive differently. That is, they assign the 
Label to the location counter AFTER it has been changed 
by the directive. Use caution when converting from and 
to such assemblers: pay special attention to label 
usa.ge. When in doubt, move the label to the next 
preceding or next following line, as appropriate. 

SPECIAL NOTE: Although the form "label *= *+exp" is 
standard 6502 usage, you may find MAC/65's ".OS" 
directive (section 4.7) easier to read and understand. 

--36--



Section 4.2 

directive: 

purpose: 

usage: 

and .EQU 

assigns a value to a label 

label expression 
label .EQU expression 

The "_N directive will equate "label" with the value of 
the expression. A "label" can be equated via "=" only 
once within a program. 

Example: 10 PLAYER0 PMBASE + $200 
20 PLAYERI .EQU PMBASE + $280 

Note: If a "label" is equated more than once. "label" 
will contain the value of the most recent equate. This 
process will. however. result in an assembly error. 

Section 4.3 

directive: 

purpose : 

usage: 

.= 
assign a possibly transitory value to 
a label 

label .= expression 

The .- directive will SET "label" with the value of the 
expression. Using this directive. a "label" may be set 
to one or more values as many times as needed in the 
same program. 

EXAMPLE: 
10 LBL .= 5 
20 LOA 'LBL same as LOA .5 
30 LBL .= 3+'1'. 
40 LOA tLBL same as LOA '68 

CAUTION: A label which has been equated (via the "=" 
directive) or assigned a value through usage as an 
instruction label may not then be set to another value 
by ".=11 

--37--



Section 4.4 

directive: 

purpose: 

usage: 

• BYTE [and .SBYTE] 

specifies the contents of individual 
bytes in the output object 

[label] .BYTE [+exp,] (exp) (strvar) [,(exp)(strvar) ..• J 
[label] .SBYTE [+exp,J (exp)(strvar) [,(exp)(strvar) .• . J 

The . BYTE and .SBYTE directives allow the user to 
generate individual bytes of memory image in the output 
object. Expressions must evaluate to an 8-bit 
arithmetic result . A strvar will generate as many 
bytes as the length of the string. • BYTE simply 
assembles the bytes as entered, while .SBYTE will 
convert the bytes to Atari screen codes . 

Example: 199 . BYTE "ABC" , 3 , -1 

This example will produce the following output bytes: 
41 42 43 93 FF. 

Note that the negative expression was truncated to a 
single byte value. 

Example: 59 .SBYTE "Hellol" 

On the Atari, this example will produce the following 
screen codes: 

28 65 6C 6C 6F 91. 

SPECIAL NOTE: Both .BYTE and .SBYTE allow an additive 
Modifier. A Modifier is an expression which will be 
added to all of bytes assembled. The assembler 
recognizes the Modifer expression by the presence of 
the "+" character . The Modifier expression will not 
itself be generated as part of the output . 

Example: 5 . BYTE +$89 , "ABC" , -1 

This example will produce the following bytes: 
Cl C2 C3 7F. 

--38--



Example: .BYTE +$Se,"DEF",'G+$Se 

This example will produce: C4 C5 C6 47. 

(Note especially the effect of adding $BB via the 
modifier and also addin9 it to the particular byte. 
The result is an unchanged byte, since we have added a 
total of 256 ($lee), which does not change the lower 
byte of a 16 bit result.) 

Example: 55 .SBYTE +$4e , "A12" 

This example will produce: 61 51 52 

Example: se .SBYTE +$Ce, 'G-$Ce,"REEN" 

This example will produce: 27 F2 E5 E5 EE 

Note: .SBYTE performs its conversions 
numerical algorithm and does NOT 
control characters, including BELL, 
characters ARE converted. 

Section 4 . 5 

directive: . CBYTE 

according to a 
special case any 
TAB, etc.--these 

purpose: same as .BYTE except that the most 
significant bit of the last byte of a 
string argument is inverted 

usage: 
[label] .CBYTE [+exp,] (exp)(strvar) [,(exp)(strvar) •.. ] 

The .CBYTE directive may often be used to advantage 
when building tables of strings, etc., where it is 
desirable to indicate the end of a string by some 
method other than, for example, storing a following 
zero byte. By inverting the sense of the upper bit of 
that last character of the string, a routine reading 
the strings from the table could easily do a BMI or BPL 
as it reads each character. 

Example: ERRORS .CBYTE 1,"SYSTEM" 

The line shown would produce these object bytes: 
01 53 59 53 54 45 CE 

(continued on next page) 

--39--



(.CBYTE, continued) 

And a subroutine might access the characters thus: 
LOY #1 

LOOP LOA ERRORS,Y 
BMI ENDOFSTRING 
I~ 

BNE LOOP 

ENDOFSTRING 

Sect i on 4 . 6 

d i rective: 

purpose: 

usage : 

.DBYTE [ see also .WORD ] 

specifies Dual BYTE values to be 
pla ced in the output object . 

[label] .DBYTE exp [ ,exp ] 

Both the .WORD and .DBYTE directives will put the value 
of each expression into the object code as two bytes. 
However, while .WORD will assemble the expression(s) in 
6502 address order (least significant byte, most 
significant byte), .DBYTE will assemble the 
expression(s) in the reverse order (i.e., most 
significant byte, least significant byte) . 

. DBYTE has limited usage in a 6502 environment. and it 
would most probably be useo in building tables where 
its reversed order might be more desirable. 

EXAMPLE: .DBYTE $1234,1,-1 

Section 4.7 

directive: 

purpose: 

usage: 

produces: 12 34 00 01 FF FF 
. WORD $1234,1,-1 

produces: 34 12 01 00 FF FF 

.DS 

reserves space for data without initializing 
the space to any particular value(s). 

[label] .DS expression 

Using " .DS expression" is exactly equivalent to using 
*= *+expression" . That is, the label (if it is 

given) is set equal to the current value of the 
location counter . Then the value of the expression is 
added to the location counter. 

Example: BUFFERLEN . DS 1 : reserve a single byte 
BUFFER .DS 256 : reserve 256 bytes 

--40--



Section 4.8 

directive: .ELSE 

purpose: SEE description of .IF for purpose and usage. 

Section 4 •. 9 

directive: • END 

purpose: terminate an in-memory assembly 

usage: [label] . END 

The .END directive will terminate the assembly ONLY if 
the source is being read from memory. Otherwise, .END 
will have no effect on assembly. 

This "no effect" is handy in that you may thus .INCLUDE 
file(s) without having to edit out any .END statements 
they might contain. In truth, .END is generally not 
needed at all with MAC/65. 

Section 4.10 

directive: .ENDIF 

purpose: terminate a conditional assembly block 

SEE description of .IF for usage and details. 

Section 4.11 

directive: • ERROR 

purpose: force an assembler error and message 

usage: [label] • ERROR [string] 

The .ERROR directive allows the user to generate a 
pseudo error. The string specified by . ERROR will be 
sent to the screen as if it were an assembler-generated 
error. The error will be included in the count of 
errors given at the end of the assembly • 

Example: 100 • ERROR "MISSING PARAMETER'" 

--41--



Section 4.12 

directive: . FLOAT 

purpose: specifies floating point constant values 
to be placed in the output object. 

usage: 
[label] .FLOAT floating-constant [,floating-constant •.• ] 

This directive would normally only be used by the 
programmer wishing to access the built-in floating 
point routines of the Atari Operating System ROM's. 

Each floating point constant following the . FLOAT 
directive will produce 6 bytes of output object code, 
in a format consistent with the above-mentioned 
floating point routines. In particular, the first byte 
contains the exponent portion of the number, in 
excess-64 notation representing powers of 100. The 
upper bit of the exponent byte designates the sign of 
the mantissa portion. The following 5 bytes are the 
mantissa, in packed BCD form, normalized on a byte 
boundary (consistent with the powers-of-100 exponent). 

EXAMPLES: 
.FLOAT 3.14156295,-2.718281828 

The above example would produce the following bytes in 
the output object code: 

40 03 14 15 62 95 
C0 27 18 28 18 28 

NOTE: Only floating point constants, NOT expressions, 
are legal as operands to .FLOAT. Generally, this is 
not a problem, since the user may perform any constant 
arithmetic on a calculator (or in BASIC) before placing 
the result in his/her MAC/65 program. 

--42--



Section 4.13 

directive : 

purpose : 

usage : 

usage note: 

. IF 

chooses to perform or not perform some 
portion of an assembly based on the 
"truth" of an expression . 

. IF exp 
[.ELSE ] 

.ENDIF 

there may be any number of lines of 
assembly language code or directives 
between .IF and .ELSE or .ENDIF and 
simi larly between . ELSE and .ENDIF . 

The .IF. .ELSE . and • ENDIF directives control 
conditional assembly. 

When a .IF i s encountered. the following expression is 
evaluated. If it is non-zero (TRUE) . the source lines 
following .IF will be assembled. continuing until an 
.ELSE or .ENDIF is encountered. If an .ELSE is 
encountered before an .ENDIF. then all the source lines 
between the .ELSE and the corresponding .ENDIF will not 
be assembled. If the expression evaluates to zero 
(false). the source lines following .IF will not be 
assembled. Assembly will resume when a corresponding 
.ENDIF or an .ELSE is encountered. 

The . IF-.ENDIF and .IF-.ELSE-.ENDIF constructs may be 
nested to a depth of 14 levels. When nested. the 
"search" for the "corresponding" .ELSE or .ENDIF skips 
over complete .IF-.ENDIF constructs if necessary. 

Examples: 

l~ 

2~ 

3~ 

4~ 

.IF 1 
LDA t '7 
JSR CHAROUT 
.ENDIF 

--43--

non-zero. therefore true 
these two lines will 
be assembled 



Section 4.13 ( .IF continued) 

EXAMPLE: 

Ie .IF e expression is false 
11 LOX t >ADDRESS these two lines will 
12 LOY t <ADDRESS not be assembled 
13 .IF 1 
14 .ERROR "can't get here" 
15 likewise. this can't be assembled because it 
16 is "nested" within the .IF e structure 
17 
18 . ELSE 
19 
2e LOX t <ADDRESS these lines will 
21 LOA t >ADDRESS be assembled 
22 .ENDIF 
23 JSR PRINTSTRING: go print the string 

Note: The assembler resets the conditional stack at the 
begining of each pass. Missing .ENDIF{s) will NOT be 
flagged. 

--44--



Section 4.14 

directive: 

purpose: 

usage: 

usage note: 

• INCLUDE 

allows one assembly language program to 
request that another program be included 
and assembled in-line 

.INCLUDE ,fi1espec 

this directive should NOT have a label 

The .INCLUDE directive causes the assembler to begin 
reading source lines from the specified "filespec". 
When the end of "filespec" is reached, the assembler 
will resume reading source from the previous file (or 
memory) • 

CAUTION: The .INCLUDEd file MUST be a properly SAVEd 
MAC/65 tokenized program. It can NOT be an ASCII file. 

Note: A .INCLUDED file cannot itself contain a .INCLUDE 
directive. 

EXAMPLE: .INCLUDE 'D:SYSEQU.M65 

This example line will include the system equates file 
supplied by OSS. 

--45--



Section 4.15 

directive: 

purpose: 

usage: 

usage note: 

• LOCAL 

delimits a local label region 

• LOCAL 

this directive should not be associated 
with a label. 

This directive serves to end the previous local region 
and begin a new local region. It is assumed that the 
first local region begins at the beginning of the 
assembly, and the last local region ends at the end of 
the assembly. 

Within each local region, any label beginning with a 
colon (":") or question mark ("?") is assumed to be a 
"local label". As such, it is invisible to code, 
equates, references, etc., outside of its own local 
region. 

This feature is es~ecially handy when using automatic 
code generators or when several people are working on a 
single project. In both these cases, the coder may use 
labels beginning with ":. or "?" and be sure that 
there will be no duplicate label errors produced. 

EXAMPLE: H' .... $41!!1!!1!! 
11 LOX .3 establish a counter 
12 ?LOOP 
13 LDA FROM,X get a byte 
14 STA TO,X put a byte 
15 OEX more to do? 
16 BPL ?LOOP goes to label on line 12 
17 
18 • LOCAL : another local regionl 
19 
2 I!! ?LOOP - 6 
21 
22 LOY '?LOOP same as LOY '6 
23 (etc. ) 

FEATURE: Local labels MAY be forward referenced, just 
like any other label. 

NOTE: Local labels do not appear in the symbol table 
listing. Except see Chapter 9. 

--46--



Section 4.16 

directive: • OPT 

purpose: selects various assembly control OPTions 

usage: .OPT option [, [NO) option ... J 
(or) 

.OPT NO option [, [NO) option ... ) 

usage notes: the valid options are as follows: 
LIST ERR EJECT OBJ 
MLIST CLIST NUM XREF 

The .OPT directive allows the user to control certain 
functions of the assembly. Generally, coding ".OPT 
option" will invoke a feature or option, while ".OPT NO 
option" will "turn off" that same feature. 

You may use any number of options (or NO options) on a 
single source line. For example, it is legal to use: 

.OPT NO LIST, NO XREF, OBJ, ERR 

The following are the descriptions of the individual 
opt.ions: 

LIST controls the entire assembly listing. 
NO LIST turns off all listing except error lines. 

ERR will determine if errors are returned to the 
user in the listing and/or the screen. 

NO ERR is thus dangerous. 

EJECT controls the title and page listing. 
NO EJECT only turns off the automatic page 
generation: it has no effect on .PAGE requests. 

OBJ determines if the object code is written to the 
device/memory. 

NO OBJ is useful during trial assemblies. 
OBJ is NECESSARY when the object code is to 
placed in memory. 

NUM will auto number the assembly listing instead of 
using the user line numbers. NUM will begin at 100 
and increment by 1. 

NUM is generally not useful except for final, 
"pretty" assemblies. 

--47--



Section 4.16 (.OPT continued) 

MLIST controls the listing of Macro expansions. 
NO MLIST will list only the lines within a Macro 
expansion which generate object code. MLIST 
will expand the entire Macro. 

Note that NO MLIST is extraordinarly useful 
in producing readable listings. 

CLIST controls the listing of conditional assembly. 
NO CLIST will not list source lines which are 
not assembled. CLIST will list all lines within 
the conditional construct. 

XREF allows the user, when a cross reference has been 
specified in the ASM command line, to control 
which portions of the source program will be 
cross referenced during the assembly. 

Any lines of source code between a .OPT NO XREF 
and the next suceeding .OPT XREF will not be 
cross referenced. 

By combining NO XREF and NO LIST, you can list 
and cross reference even ex t remely large 
programs in pieces. Or you might use NO XREF to 
avoid indexing entries out of an INCLUDEd file . 
XREF and NO XREF are useless and inoperative 
(but do not generate errors) if you have not 
specified a cross referen'ce file name in the ASM 
corrunand line. 

NOTE: Unless specified otherwise by the user, all of 
the options will assume their default settings. The 
default settings for . OPT are: 

LIST listing IS produced 
ERR errors are reported 
EJECT pages are numbered and ejected 
NO NUM use programmer's line numbers 
MLIST all macro lines are listed 
CLIST all failed conditionals list 
XREF 
NO OBJ 

continous cross reference 
SEE CAUTION 11111 

CAUTION: The OBJ option is handled in a special way: 
IF assembling to memory the object default is NO OBJ. 
IF assembling to a device the object option is OBJ. 

NOTE; Macro expansions with the NO NUM option will not 
be listed with line numbers. 

--48--



Section 4.17 

directive: 

purpose: 

usage: 

usage note: 

• PAGE 

provides page headings and/or moves 
to top of next page of listing 

.PAGE [ string] 

no label should be used with .PAGE 

The .PAGE directive allows the user to specify a page 
heading. The page heading will be printed below the 
page number and title heading . 

. PAGE will eject the next page, and prints the most 
recent title and page headings • 

Example: 300 . PAGE "EXECUTE LABEL SEARCH" 

Note: The assembler will automatically eject and print 
the current title and page headings after 61 lines have 
been listed. 

Section 4.18 

directive: .SBYTE 

purpose: produces "screen" bytes in output object 

usage: see .BYTE description, section 4.4 

--49--



Section 4.19 

directive: .SET 

purpose: controls various assembler functions 

usage: .SET dcnuml , dcnum2 

The .SET directive allows the user to change specific 
variable parameters of the assembler. The dcnuml 
specifys the parameter to change, and dcnum2 is the 
changed value. The following table summarizes the 
various .SET parameters. Defaults for each parameter 
are given in parentheses, followed by the allowable 
range of values. 

dcnuml 

o 

1 

2 

3 

4 

5 

6 

***** 

dcnum2 

(4) 1-4 

(0) 0-31 

(80) 40-132 

(12) 0,12 

(66) 20-255 

(0) 0-255 

(0) 0-$FFFF 

function 

sets the .BYTE and .SBYTE 
listing format. 1 to 4 
bytes can be printed in 
the object code field of 
the listing. 

sets the assembly listing 
left margin. The speci
fied number is the number 
of spaces which will be 
printed before the assem
bled source line. 

set width for listing, 
adjust for your printer. 

form feed select. 0 implies 
no form feed on printer--use 
multiple line feeds. Any 
other used as form feed char. 

number of lines per page for 
listing. 

number of spaces from semi
colon in comment field to 
where remainder of comment 
is printed. 

an offset, which is added to 
the location counter when 
an object byte is stored or 
written to diSK. You can 
thus assemble code for one 
address while storing or 
loading it another address. 

SPECIAL NOTE: See Chapter 8 for a complete 
discussion of the capabilities of .SET 6 

***** 

--50--



Section 4.20 

directive: . TAB 

purpose: sets listing "tab stops" for readability 

usage: .TAB dcnuml ,dcnum2 ,dcnum3 

The .TAB directive allows the user to specify the 
starting column for the listing of the instruction 
field, the operand field, and the comment field 
respectively. The defaults are 8,12,20 . 

Example: 200 

1200 

• TAB 16,32,50 

.TAB 8,12,20 ; restores defaults 

Section 4.21 

directive: .TITLE 

purpose: specify assembly listing heading 

usage: . TITLE string 

The .TITLE directive allows 
assembly title heading. 
printed at the top of every 
number. 

the 
The 

page 

user to specify a 
title string will be 

following the page 

Section 4.22 

directive: .WORD [see also .DBYTE] 

purpose: place 16 bit word values in output object 

usage: [label] .WORD exp [,exp ... ] 

The . WORD and .DBYTE directives both put the value of 
each following expression into the object code as two 
bytes. But where .WORD will assemble the expression(s) 
in 6502 address order (least significant byte, most 
significant byte), .DBYTE will as semble the 
expression(s) in reverse order (most significant byte, 
least significant byte). 

Generally, for 6502 programs, .WORD is the more useful 
of the two, and is more compatible with the code 
produced by assembled 6502 instructions. 

EXAMPLE: .DBYTE $1234,1,-1 
produces: 12 34 00 01 FF FF 

• WORD $1234,1,-1 
produces: 34 12 01 00 FF FF 

--51--



+ 

---this page intentionally left blank---

+ 

+ 

+ 

--52--



CHAPTER 5: MACRO FACILITY 

A MACRO DEFINITION is a series of source lines grouped 
together, given a name, and stored in memory. When the 
assembler encounters the corresponding name in the 
instruction (opcode, directive) column, the saved lines 
will be sQbstituted for the Macro name and assembled. 
Effectively, this allows the user to define and then 
use new assembler instructions. Depending upon the 
code stored in its definition, a macro might be thought 
of as either an "extra" directive or a "new" opcode. 

The process of finding a macro in the table when its 
name is used, and then assembling the code it was 
defined with, is called a MACRO EXPANSION. The unique 
facility of Macro Expansions is that they may have 
PARAMETERS passed to them. These parameters will be 
substituted for the "formal parameters" during the 
expansion of the Macro. 

The use (expansion) of a Macro in a program requires 
that the Macro first be defined . To the set of 
directives already discussed in chapter 4, then, must 
be added two new directives used for defining new 
macros : 

. MACRO 

.ENDM 

This chapter will first discuss these two direct i ves. 
show how to invoke a macro (cause its expansion) and 
then examine the use of formal and calling parameters, 
including string parameters. 

Section 5.1 

directive: 

purpose: 

usage : 

usage note: 

.ENDM 

end the definition of a macro 

.ENDM 

generally, the .ENDM directive should 
not be labelled. 

This directive is used solely to terminate the 
definition of a macro. When invoking a macro, do NOT 
use this directive . Basically, the concept of macros 
requires that all source lines between the .MACRO 
directive and the .ENDM directive be stored in a 
special section of memory (the macro table). Thus, 
encountering an improperly paired .ENDM directive is 
considered a severe assembly error. See the 
description of .MACRO for further information. 

--53--



Section 5.2 

directive: 

purpose: 

usage: 

usage note: 

. MACRO 

initiates a macro definition 

.MACRO macroname 

"macroname" may be any valid MAC/65 
label. It MAY be the same name as 
a program label (without conflict). 

The .MACRO directive will cause the lines following to 
be read and stored under the Macro name of "macroname". 
The definition is terminated with the .ENDM directive. 

All instructions except another .MACRO directive are 
valid Macro source lines. A Macro definition can NOT 
contain another Macro definition. 

A simple example of a MACRO DEFINITION: 

19 
11 
12 
13 
14 
15 
16 
18 
19 

.MACRO PUSHXY ; The name of this Macro is "PUSHXY" 
When this Macro is used (expanded), the following 
instructions will be substituted for "PUSHXY" 
and then assembled. 

TXA 
PHA 
TYA 
PHA 
.ENDM The terminator for "PUSHXY" 

SPECIAL NOTE: ALL labels used within a macro are 
assumed to be local to that macro. MAC/65 accomplishes 
this by performing a "third pass" of the assembly 
during macro expansions. Thus, a label defined within 
a macro expansion is available to code which follows 
the macro; but another expansion of the same macro with 
the same label will reset the labels value. The action 
is similar to the ".-" directive, except that forward 
references to internal macro labels ARE legal. 

An example follows, on the next page. 

--54--



Section 5.2 (.MACRO continued) 

• MACRO MOVE6 
LOX '5 

EXAMPLE: 
28 
21 
22 
23 
24 
25 
26 
27 

LOOP 
LOA FROM,X 
STA TO,X 
OEX 
BPL LOOP 
.ENDM 

The label -LOOP" is local to this macro usage, and yet 
it may (if needed) be referenced outside the macro 
expansion (although not in another macro expansion). 
(Note that if a macro label is only defined once by a 
single macro usage, the effect is the same as if the 
label were defined outside any macro.) Although the 
. LOCAL-produced local regions may be used by and with 
macros, the user is limited to a maximum of 62 local 
regions . No such restriction applies to the number of 
possible local usages of a label in a macro expansion. 

--55--



5.3 MACRO EXPANSION, PART 1 

As stated above, a macro is expanded when it is used. 
And the "use" of a macro is simplicity itself. 

To invoke (use, expand--all equivalent words) a macro, 
simply place its name in the opcode/directive f ield of 
an assembler line. Remember, though, that macros MUST 
be defined before they can be used. 

For example, to invoke 
examples in the previous 
simply type them in as 
assemble: 

the two macros 
section (5.2), 
shown and then 

EXAMPLE: 
21'.100 
2010 
2020 
2030 
2040 
2050 
2060 
2070 
2080 

ALABEL PUSHXY 
and pushxy generates the code 

TXA PHA TYA PHA 

MOVE6 
similarly, MOVE6 is used 

JMP LOOP 
and LOOP refers to the label 
defined in the MOVE6 macro 

defined in 
one could 
enter and 

Note that the use of a label on the macro invocation is 
optional. The label is assigned the current value of 
the location counter and is not dependent upon the 
contents of the macro at all. 

There are many more "tricks" and features usable with 
macros, but we will continue this discussion after an 
examination of macro parameters as used in a macro 
definition. 

--56--



5.4 MACRO PARAMETERS 

Macro parameters can be of two types: expressions 
(which are evaluated as 16 bit words) or strings. The 
parameters are passed via the macro expansion 
(invocation, use, etc.) and are stacked in memory in 
the order of occurance. A maximum of 63 parameters can 
be stacked by a macro expansion, including expansions 
within expansions. 

However, before a parameter can be used in an 
expansion, there must be a way of accessing it in the 
MACRO DEFINITION. Parameters are referenced in a macro 
definition by the character "%" for expressions and the 
characters "%$" for strings. The value following the 
character refers to the actual parameter number. 

SPECIAL NOTE: The parameter number can be represented 
by a decimal number (e.g., %2) or may be a label 
enclosed by parentheses (e.g., %$ (LABEL) ). Of course, 
strings may be similarly referenced, as in %$(INDEX) or 
%$1. 

Examples: 

H' 
15 
20 

LOA 
CMP 
. BYTE 
NOTE: 

25 SYMBOL .= 
30 LOX 

t >%1 : get the high byte of parameter 1. 
(%11 ,X) : yes, that really is number 11 . 
%2-1 : value of parameter 2 less 1. 
the above is NOT equivalent to using 
parameter %1. Parameter substitution 
has highest precedence I 

SYMBOL + 1 
t -%(SYMBOL) : see the power available? 

40 .BYTE %$1,%$2,0 ; string parameters, ending 0. 

Remember, in theory the parameters are numbered from 1 
to 63. In reality, the TOTAL number of parameters in 
use by all active (nested) macro expansions cannot 
exceed 63. This does NOT mean that you can have only 
63 parameter references in your macro DEFINITIONS. The 
limit only applies at invocation time, and even then 
only to nested (not sequential) macro usages. 

--57--



SPECIAL NOTE: In addition to the "conventional" 
parameters, referred to by number, parameter zero (%0) 
has a special meaning to MAC/65. Parameter zero 
allows the user to access the actual NUMBER of real 
parameters passed to a macro EXPANSION . 

This feature allows the user to set default parameters 
within the Macro expansion, or test for the proper 
number of parameters i n an expansion, or more. The 
following example illustrates a possible use of %0 and 
shows usage of ordinary parameters as well . 

EXAMPLE: 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 

. MACRO BUMP 

This macro will i ncrement the specified word 

The calling format i s : 
BUMP address [ , increment ]. 

If increment is not given, 1 is assumed 

.IF %0=0 .OR %0 >2 
.ERROR "BUMP : Wrong number· of parameters" 

. ELSE 

this is only done if 1 or 2 parameters 

.IF %~>l : did user specify "increment" ? 
this is assembled if user gave two parameters 

LOA %1 add "increment" to "address". 
CLC 
AOC t <%2 
STA %l 
LOA %l +l 
ADC t >%2 
STA %l +1 

.ELSE 

low byte of the increment 
low byte of result 
high byte of location 
add in high byte of increment 
and store rest of result 

this is assembled if only one parameter given 
INC %1 : just increment by 1. 
BNE SKIPHI : implicitly local label 
INC %1 +1 must also increment high byte 

SKIPHI 
.ENOIF 

.ENOIF 

.ENDM 

matches the .IF %0>1 (line 24) 
matches the .IF of line 18 
terminator. 

--58--



5.5 MACRO EXPANSION, PART 2 

We have shown how macro definitions may include 
specifications of particular parameters (the 
specifications might also be called "formal 
parameters"). This section will show how to pass 
actual parameters (equivalently "value parameters", 
"calling parameters", etc.) to the definition. 

The concept is simple: on the same line as the macro 
invocation (by use of its name, of course) and 
following the macro's name, the user may place 
expressions (or strings, see section 5.6). MAC/65 
simply assigns each of these values a number, from 1 to 
63, and then, during the macro expansion, replaces the 
formal parameters (%1, %2, %(label), etc.) with the 
corresponding values. 

Does that sound too complicated? Internally, it is. 
Externally, it is as easy as this: 

EXAMPLE: 

Assume that the BUMP macro has been defined (as above, 
section 5.4), then the user may invoke it as needed, 
thus: 

100 ALABEL BUMP A.LOCATION 
110 INCR .: 7 
120 BUMP A.LOCATION,3 
130 BUMP A.LOCATION,INCR-2 
140 BUMP 
150 BUMP A.LOCATION,INCR,7 
160 A.LOCATION .WORD 0 

note: lines 140 and 150 will each cause the 
BUMP error to be invoked and printed 

Of course, you can also do silly things, which will no 
doubt produce some pretty horrible (and hard to debug) 
code: 

170 BUMP INCR,A.LOCATION 
will try to increment address 7 by something 

180 BUMP PORTS 
assuming that PORTS is some hardware port, 
strange and wonderful things could happen 

--59--



5.6 MACRO STRINGS 

String parameters are represented in a macro definition 
by the characters "%$". All numeric parameters have a 
string counterpart, not all of which are useful. All 
string parameters have a numeric counterpart (their 
length) . 

As a special case, %$e always returns the ma~ro NAME. 

The following table shows the various string and 
numeric values returned for a given parameter: 

As appears in 
Macro call: 

"A String 1 2 3" 
NUMERIC SYMBOL 

string returned 
(in quotes): 

numeric value 
returned: 

"A String 1 2 3" length of string 
"NUMERICSYMBOL" value of label 
"SYMBOL" value of expr SYMBOL+l 

%$4 the string of parameter 4 value of orginal 
(above would be used by a macro calling another macro) 

-LABEL 
GEORGE*HARRY+PETE 
.DEF CIO 
2 + 2 * 65 

"LABEL" value -of expr 
undefined value of expr 
"CIO" value of expr 
undefined value of expr 

--60--



A Macro string example: 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
2" 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

.MACRO PRINT 

This Macro will print the specified string, 
parameter 1, but if no parameter string is 
passed, only an EOL will be printed. 

The calling format is: PRINT [string] 

.IF %0 = 1 : is there a string to print? 
JMP PASTSTR : yes, jump over string storage 

STRING .BYTE %$l,EOL : put string here. 

PASTSTR 
LOX '>STRING : get string address into X&Y 
LOY '<STRING: for JSR to 'print string' 
JSR STRINGOUT 

.ELSE 
no string ... just print an EOL 

LOA 'EOL 
JSR CHAROUT 

.ENDIF 

. ENDM terminator . 

To invoke this macro, then, the following calls would 
be appropriate: 

100 PRINT "this is a string" 
110 PRINT 
120 PRINT MESSAGE 

Line 120 is strange: The macro facility assumes that 
"MESSAGE" is a string (because of its usage), and so 
will print it exactly as if it had been placed in 
quotes. However, if the label MESSAGE is not defined 
elsewhere, the line will also generate an "Undefined 
Label" error. Generally, we do not suggest using this 
form. Use the quoted string instead. 

--61--



5.7 SOME MACRO HINTS 

Each person will soon develop his/her own style of 
writing macros, but there are certain common sense 
rules that we all should heed. 

A. When a macro is defined, its entire definition must 
be stored in memory (in a macro table). Since memory 
space is obviously finite, it is a good idea to keep 
macros as short as possible. One way to do this is to 
avoid putting comments (remarks) within the body of the 
macro. If you do document your macros (and we hope you 
do), place the comments in the file BEFORE the . MACRO 
directive. The assembler will then do nothing at all 
with them and they will occupy no additional space. 

B. Don't use a caller's macro parameter unless you are 
sure that it is there. Using a parameter that the 
caller left out will produce a MACRO PARAMETER error. 
Depending upon the macro definition, this mayor may 
not also produce undesired results. An example of 
unsafe coding: 

.IF %~)l .OR %2=~ 
.WORD %1 

.ENDIF 

The danger here occurs if the caller invokes the macro 
with only one parameter. Since %2 is non-existent (and 
hence undefined), the sub-expression "%2=~· is indeed 
true and the effect of ·%~)l" is nullified. Of course, 
the lack of parameter 2 will produce a "PARAMETER 
ERROR", but it will already be too late. A better 
coding of the above would be: 

.IF %~>l 
.IF %2<>~ 

.WORD %1 
.ENDIF 

.ENDIF 

C. Even though labels defined within macros are local 
to each invocation, they are still "visible" outside 
the macro(s). Thus, it might be a good idea to have a 
special form for labels defined in macros and avoid 
that form outside macros. The macro library supplied 
with MAC/65 uses labels beginning with "@" as local 
labels to macros. 

CAUTION: You should NOT define a label beginning with 
a question mark inside a macro. Neither should you use 
a .LOCAL directive within a macro. (You may USE labels 
that start with question marks, so long as you don't 
DEFINE them within the macro.) 

--62--



5.8 A COMPLEX MACRO EXAMPLE 

The following set of macros is designed to demonstrate 
several of the points made in the preceding sections. 
Aside from that, though, it is a good, usable macro 
set. Study it carefully, please. (The line numbers 
are omitted for the sake of brevity. Any numbers will 
do, of course.) 

the first macro, "@CH", is designed to load an 
IOCB pointer into the X register. If passed a 
value from e to 7, it assumes it to be a constant 
(immediate) channel number. If passed any other 
value, it assumes it to be a memory location which 
contains the channel number. 

NOTE that these comments are outside the body of 
the macro, thus saving valuable table space • 

• MACRO @CH 
.IF %1>7 
LOA U 
ASLA 
ASLA 
ASLA 
ASLA 
TAX 
.ELSE 
LOX #%1*16 
.ENOIF 
.ENOM 

where is channel number? 
channel t is in memory cell 
so load it and 
multiply it 
16 via 
these shifts 
then move it to X register 

: channel t times 16 goes in X 

this next macro, "@CV", is designed to load a 
Constant or Value into the A register. If 
passed a value from ~ to 255, it assumes it 
to be a constant (immediate) value. If passed 
any other value, it assumes it to be a memory 
location (non-zero page) • 

• MACRO @CV 
.IF %1<256 
LOA t%1 
.ELSE 
LOA %1 
.ENOIF 
.ENOM 

is this a constant value? 
yes ••• so load it immediately 

no ..• so get it from memory 

--63--



The third macro is H@FL", designed to establish 
a filespec. If passed a literal string, @FL 
will generate the string in line, jumping around 
it, and place its address in the IOCB pointed to 
by the X register. If passed a non-zero page 
label, @FL assumes it to be the label of a valid 
filespec string and uses it instead . 

. MACRO @FL 

.IF %1<256 is this a literal string? 
JMP *+%1+4 yes . • . so jump around the string 

@F . BYTE %$1,0 • .. and store the string here 
LOA '<@F then get address of the string 
STA ICBAOR,X: put in IOCB's address field 
LOA '>@F also high byte of address 
STA ICBAOR+l,X 
• ELSE 
LOA '<%1 not a literal string 
STA ICBAOR,X: but still get its address 
LOA '>%1 (both bytes) 
STA ICBAOR+l,X; to IOCB's address field 
.ENOIF 
.ENOM 

--64--



The main macro here is "XIO". a macro to 
implement a simulation of BASIC's XIO command. 
The general syntax of the usage of this macro is: 

XIO command,channel [,auxl,aux2) [,filespec) 

where channel may be a constant from 0 to 7 
or a memory location. 

where command. auxl. and aux2 may be a constant 
from 0 to 255 or a non-zero page location 

where filespec may be a literal string or 
a non-zero page location 

if auxl and aux2 are omitted. they are assumed 
to be zero (you may not omit aux2 only) 

if the filespec is omitted. it is assumed to 
be "S:" 

.MACRO XIO 

.IF %0<2 .OR %0>5 : just checking 

.ERROR "XIO: wrong number of parameters" 
• ELSE 

@CH %2 process the channel number 
@CV %1 : and the XIO command number 
STA ICCOM.X : ••• putting command t in IOCB 
.IF %0>-4: 4 or 5 arguments given? 

@CV %3 : yes .•• so process 
STA ICAUX1.X aux 1 
@CV %4 
STA ICAUX2.X and aux 2 

.ELSE : 2 or 3 arguments given 
LOA 10 : so assume value of zero 
STA ICAUXI.X : for aux 1 
STA ICAUX2.X : and aux 2 

.ENOIF 

.IF %0=2 .OR %e~4 : was filename given? 
@FL "S:": no ... assume name is "S:" 

.ELSE but if yes ..• 
@FPTR .~ %0 : get parameter number of name 

@FL %$(@FPTR) : and process it 
.ENOIF 
JSR CIO : call the os 

.ENDIF 

.ENOM 

--65--



Did you follow all that? The trick is that, the way 
"XIO· is specified, it is legal to pass it 2, 3, 4, or 
5 arguments: but each of those numbers represents a 
unique combination of parameters, to wit: 

XIO command, channel 
XIO command, channel, filespec 
XIO command,channel,auxl,aux2 
XIO command,channel,auxl,aux2,filespec 

This is not a trivial macro example. Perhaps you will 
not have occasion to write something so complex. But 
MAC/65 provides the tools to do many things if you need 
them. 

SPECIAL NOTE: Appendix B contains a fairly complete set 
of I/O macros which you may type in and use. 

ALSO: You may inquire about the availability of the OSS 
MAC/65 Programmers ' Aid Disk, which should include all 
the macros in Appendix B and many more. 

--66--



CHAPTER 6: COMPATIBILITY 

There are many different 6502 assemblers available, and 
it seems that each has a few foibles, bugs, or whatever 
that are uniquely its own (and, of course, they are 
called "features" by their promoters). Well, MAC/65 is 
no different. 

This chapter is devoted to telling you of some of the 
things to watch out for when converting from another 
6502 assembler to MAC/65. We will restrict ourselves 
to such things as directives and operators. We will 
NOT go into a discussion of how to convert the actual 
6502 opcodes (equivalently: instructions, mnemonics, 
etc.). We consider it mandatory that any good 6502 
assembler will follow the MOS Technology standard in 
this regard. 

Example: We know of some antique 6502 assemblers that 
specify the various addressing modes via special 
opcodes. Thus the conventional "LOA #3" becomes 
"LDAIMM 3" and "LOA (ZIP),Y" becomes "LDAIY ZIP". 
Unfortunately, there was never any standard established 
for such distortions, so we shall ignore them as 
antique and outmoded . In any case, unless you are 
entering a program out of an older magazine, you are 
unlikely to run into one of these strange beasts. 

The rest of this chapter pays homage to our birthright. 
MAC/65 is a direct descendant of the Atari 
assembler/editor cartridge (via EASMD). As much as 
possible, we have tried to keep MAC/65 compatible with 
the cartridge. Unfortunately, in the interest of 
providing a more powerful tool, a few things had to be 
changed . The next section of this chapter, then, 
enumerates these changes. 

6.1 ATARI'S ASSEMBLER/EDITOR CARTRIDGE 

This section presents all known functional differences 
between the Atari cartidge and MAC/65. Obviously, 
MAC/65 also has many more features not enumerated here, 
but they will not impact the transferrance of code 
originally designed for the cartridge (or, for that 
matter, EASMD). 

--67--



6 . 1.1 .OPT OBJ / NOOBJ 

By default, the Atari cartridge produces object code, 
even when the destination of the object is RAM memory. 
This is a dangerous practice, at best: it is too easy 
to make a mistake in a program and write over DOS, the 
user's source, the screen memory, or even (horror of 
horrors) some of the hardware registers. 

MAC/65 makes a special case of object in memory: you 
don't get it unless you ask for it. You MUST have a 
".OPT OBJ" directive before the code to be generated or 
the code will not be produced. 

6.1.2 OPERATOR PRECEDENCE 

The Atari cartridge assigns no precedence to arithmetic 
operators. MAC/65 uses a precedence similar to 
BASIC's. Most of the time, this causes no problems: 
but watch out for mixed expressions. 

LOA 'LABEL-3/256 Example: 
seen as 
seen as 

LOA '{LABEL-3} / 256 by the cartridge 
LOA 'LABEL - {3/256} by MAC/65 

6.1.3 THE .IF DIRECTIVE 

The implementation of .IF in the cartridge is clumsy 
and unusable. MAC/65's implementation is more 
conventional and much more powerful. Rather than try 
to offer a long example here, we will simply refer you 
to the appropriate sections of the two manuals. 

6.1.4 ZERO PAGE FORWARD REFERENCES 

MAC/65 can not properly assemble a forward 
a zero page label (usually, you will 
ERROR) . The Atari cartridge generally can, 
other limitations on addressing modes which 
not suffer under. 

reference to 
get a PHASE 
but it has 
MAC/65 does 

You can usually avoid phase errors simply by moving 
your equates for zero page locations to the head of 
your assembled code. 

--68--



CHAPTER 7: ADDED 65Ca2 INSTRUCTIONS 

MAC/65, as originally produced, supported the 
"standard" 65a2 instruction set as well as the 
directives and addressing mode designators recommended 
by MOS Technology (the originators of the 65~2 chip). 

This version of MAC/65 supports all features of the 
original version along with added support for one of 
the more popular enhanced versions of the 65~2 chip. 
In particular, MAC/65 supports all new instructions and 
addressing modes available on the 65C~2 chip as 
produced by NCR Corporation. 

We describe here the primary added addressing mode. the 
instructions with variants added, and the completely 
new instructions. 

But before we start, we should note that these 
instructions will only work properly on your computer 
if you have installed an NCR 65Ca2 in place of the 65a2 
which came in the machine as purchased. Also, remember 
that a program using these instructions may work great 
in your machine. It will not work properly in your 
friend's machine unless he/she also installs a 65C~2. 

--69--



7.1 A Major Added Addressing Mode 

The standard 6Se2 chip supports two forms of indirect 
addressing for what might be considered its primary 
instructions. The forms appear in assembly listings as 

Ida (indirect,X) 
and 

Ida ( indirect) , Y 
(where "Ida" is only one of several valid mnemonics 
that can be used with these addressing modes). 

The latter of these modes, often referred to as the 
"indirect-Y" mode, is perhaps the most useful and 
flexible of all 6Se2 addressing modes. And, yet, it 
suffers from one flaw: it ties up two registers (A and 
Y) . And, as importantly, probably a full Se% or more 
of the time the Y-register is loaded with zero before 
instructions in this mode are executed. 

The NCR 6SCe2 instruction set as supported by MAC/6S 
provides a help here: you may code instructions 
allowing Indirect-Y addressing in "Indirect" mode as 
well. With Indirect mode, the assembler format is 
simply 

Ida (indirect) 
where, as with Indirect-Y, the indirect location must 
be in zero page. 

Generally, the effect of using this instruction will be 
the same as coding the sequence: 

LOY Ie 
Ida (indirect),Y 

EXCEPTING that the Y-register remains intact and 
untouched and may be used for other purposes. 

The following, then, are ALL of the 6SCe2 instructions 
which allow and support this new addressing mode: 

ADC (indirect) ADd with Carry 
AND (indirect) bitwise AND 
CMP (indirect) compare with A-reg 
EOR (indirect) Exclu s ive OR 
LOA (indirect) LoaD the A-register 
ORA (indirect) inclusive OR 
SBC (indirect) SuBtract with Carry 
STA (indirect) STore the A-register 

REMINDER: while the "indirect" location may be any zero 
page location, you should probably restrict yourself to 
the available locations documented in the DDT manual. 

--7e--



7.2 Minor variations on 6582 Instructions 

The "BIT" instruction has added two new addressing 
modes, and "JMP" has added one new mode. They are 
described here individually: 

Original allowed forms of 6502 BIT instruction were: 
BIT absolute 
BIT zeropage 

New 65C02 forms available are: 
BIT absolute,X 
BIT zeropage,X 

The ability to use the X register as in index with the 
BIT instruction greatly enhances its power for testing 
tables, etc. The "indexed-x" address modes function as 
they do for other 6582 instructions (e.g.,LOA and CMP). 

Original allowed forms of 6502 JMP instruction were: 
JMP absolute 
JMP (indirect) 

New 65C82 form available is: 
JMP (indirect,X) 

Note that the JMP instruction alone in both the 6502 
and 65c02 instructions sets uses an absolute (i.e., 16 
bit, 2 byte) address for its indirect value. The new 
"indirect-X" form is no different: the location 
specified as the indirect address may be anywhere in 
memory. 

This "indirect-X" address mode ia unique and new. Its 
effect is as follows: add the contents of the 
X-register to the AODRESS (not the contents) specified 
by the given indirect address; use the result as the 
address of the true operand for this instruction; JuMP 
to the address contained in the word-sized location 
accessed via the true operand . 

An example is in order: 

TABLE .WbRO SUB1,SUB2,SUB3 

LOA value 

ASL A 
TAX 
JMP (TABLE,X) 

--71--

assume that "value" 
contains 0,1, or 2 
double the value 
••. to X-register 
and go to SUBl, SUB2, 
SUB3 depending on "value" 



7.3 ALL-NEW 65C~2 Instructions 

We detail here, in what we hope are logical groupings, 
the 65C~2 instructions which are truly "new" to the 
65~2 world. 

7.3.1 BRA 

Mnemonic: 

Read as: 

Format: 

Comments: 

BRA 

BRAnch 

BRA addr 
where addr must be in the range *-126 
to *+129 (* is the current value of 
the location counter) 

BRA joins the Branch family (BNE, BEQ, BMI, 
etc.) and adds the powerful capability of 
ALWAYS branching. It thus becomes 
equivalent to a JMP instruction with the 
advantage that it occupies one less byte in 
memory and is inherently relocatable. Its 
address range is restricted in a fashion 
identical with the other members of the 
"branch" family. 

7.3.2 DEA and INA 

Mnemonics: DEA 
INA 

Read as: DEcrement Accumulator 
INcrement Accumulator 

Formats: DEA 
INA 

Comments: These simple instructions add a capability 
long lacking in the 65~2. Until now, if 
you wished to change the contents of the 
accumulator by one, you had to either use 
TAX/INX/TXA (or something similar) or 
CLC/ADC (or SEC/SBC), three byte 
substitutes for what should (and now is\ a 
single byte instruction. 

Processor status flags (i.e., Nand Z), 
timings, etc., are all identical to the 
very similar INX/INY/DEX/DEY set of 
instructions. 

--72--



7.3.3 PHX, PRY, PLX, and PLY 

Mnemonics: 

Read as: 

Formats: 

Comments: 

PHX 
PHY 
PLX 
PLY 

PusH 
PusH 
PulL 
PulL 

PHX 
PHY 
PLX 
PLY 

X 
Y 
X 
Y 

onto CPU stack 
onto CPU stack 
from CPU stack 
from CPU stack 

Again, these instructions are provided as 
short cuts for the cumbersome sequences 
necessary on the standard 6502. As an 
example, PHX can replace a sequence of 
instructions as complex as this: 

STA temp 
TXA 
PHA 
LOA temp 

By giving you direct access to the stack 
from the X and Y registers, it is possible 
and desirable to right more compact and 
more relocatable code. Processor status 
flag usage, timings, etc., are identical to 
the very similar PHA and PLA instructions. 

--73--



7.3.4 STZ 

Mnemonic: 

Read As: 

Formats: 

Comments: 

STZ 

STore Zero 

STZ 
STZ 
STZ 
STZ 

absolute 
absolute, X 
zeropage 
zeropage,X 

Yet another short cut, STZ simply replaces 
the sequence 

LOA 111' 
STA address 

with the difference that it does not affect 
the contents of the A register. In fact, 
to properly simulate this instruction on an 
ordinary 6502, the following code would be 
needed in the general case: 

PHA 
LOA #0 
STA address 
PLA 

7.3.5 TRB and TSB 

Mnemonics: 

Read As: 

Formats: 

Comments: 

TRB 
TSB 

Test and Reset Bits 
Test and Set Bits 

TRB absolute 
TRB zeropage 
TSB absolute 
TSB zeropage 

These instructions have many uses, not the 
least of which would be synchronization of 
background and foreground 
(interrupt-driven) routines. In boolean 
terms, the instructions might be thought of 
thus: 

TRB: 
TSB: 

Memory := (Not A) and Memory 
Memory := A or Memory 

In words, we might describe the operation 
of these instructions as follows: 

--74--



For TRB: The complement of the contents of 
the Accumulator is bit-wise AND-ed with the 
contents of the memory cell addressed by 
this instruction (either an absolute or 
zero-page location). The result of this 
AND-ing is placed back in the addressed 
memory cell. 

For TSB: The contents of the Accumulator is 
bit-wise OR-ed with the contents of the 
memory cell addressed by this instruction. 
The result of this OR-ing is placed back in 
the addressed memory cell. 

If the result of the AND-ing or OR-ing is 
zero, the Zero processor status flag is 
set. The N and V flags are set to the 
contents of bits 6 and 7 (similar to the 
usage and results of the BIT instruction) 
of the addressed memory cell as those 
contents were BEFORE the bit-wise operation 
took place. 

Examples: 
FLAG .BYTE 3 
TEST .BYTE $FF 

LDA '$FF 
TRB FLAG 

LDA fill 
TSB TEST 

--75--

resets all bitsl 

just tests value 



+ 

+ 

---this page intentionally left blank--

+ 

+ 

- -76--



CHAPTER 8: PROGRAMMING TECHNIQUES WITH MAC/65 

This chapter will present you with a couple of hints 
about how to use MAC/65 to more advantage. 

8.1 Memory Usage by MAC/65 and DDT 

The following memory locations are used by MAC/65 
and/or DDT for the purposes shown: 

range of used by 
addresses MAC/65 DDT used for 
--------- --------
$80-$AF yes yes pointers and temporaries 
$B0-$D3 yes no pointers and temporaries 
$D4-$FF yes no floating point registers. etc. 
$H'l0-$lFF yes yes normal 6502 CPU stack 
$3FD-$47F no yes buffers and display area 
$480-$57F yes yes buffers and work area 
$580-$67F yes no input buffers. etc. 
"size" yes * program text. etc. 

Note that "size" refers to the memory area delineated 
by the lowest and middle numbers displayed when the 
"SIZE" command is used from the MAC/65 editor. The * 
in DDT's column indicates that DDT saves MAC/65's zero 
page memory (and other. related. locations) in the area 
actually shown to be part of the "size" memory. 

The worst implication of the memory map above 
(especially for Atari BASIC users) is that page 6 is 
NOT completely available to you. Since many magazine 
articles assume that page 6 is available. they will not 
run AS IS under MAC/65 and DDT. But see the next 
section for methods to use if you MUST use page 6. 

--77--



B.2 Assembling With An Offset: .SET 6 

In Section 4.19, we noted that the assembler directive 
".SET 6,value" could be used to specify an additive 
offset for the storage address vis-a-vis the location 
counter address. In this section. we present a method 
for using this capability in a practical sense. 

Let us assume that we wish to assemble a small program 
which will reside in page 6 ($600 through $6FF). The 
program which we will assemble is presented here: 

10 *= $600 
20 COLOR4 $2CB 
30 
40 START 
50 PLA remove count of parameters 
60 CMP .0 any parameters? 
70 BEQ * if yes, loop forever 
B0 LDA COLOR4 get current background color 
90 CLC 

100 ADC '$10 change to next hue 
110 STA COLOR4 •.• by changing shadow reg 
120 INC COUNT and count the number of times 
130 RTS 
140 COUNT • BYTE 0 just a simple counter 
150 • END 

If you assemble this routine, you shoud get an error 
free assembly. (And those of you who are BASIC users 
will recognize this as a routine callable from Atari 
BASIC. thanks to the PLA and check on number of 
parameters at the beginning.) 

But it is 
do? Answer: 
listing: 

12 
14 

designed to reside in page 6. What can we 
simply add the following two lines to the 

.OPT OBJ we do want object code 

.SET 6,$3000 ; and we will offset 

Now, if you assemble this code, you will notice that 
the addresses shown start at $3600. And, indeed, the 
assembler is placing the code in memory at the 
addresses shown. But look at line 120. Notice that 
the object code generated does NOT show that location 
$3612 is being incremented I Instead, location $0612 is 
affected. Also note that in the symbol table listing 
START is shown to be at location $600 and COUNT at 
$612. 

--7B--



Now use the "DDT" command to enter DDT. From DDT, 
enter the command 

M 3600060000S0 [RETURN] 
which will move $S0 (128) bytes from location $3600 to 
location $600. Use the command 

* 0600 [RETURN] 
to view the contents of locations $600 and beyond. Use 
the up and down arrows (remember, WITHOUT pushing CTRL) 
to view the code. Lo and behold, your code has been 
successfully deposited where you wanted it, waiting for 
you to debug. 

Some final notes on this subject: M~C/65 will generate 
this "offset" kind of code either directly to memory 
(as we did here) or to an object file (on disk, 
presumably). When the file is reloaded (via MAC's 
BLOAD command or via some load command from the DOS you 
are using), it will be loaded at the address shown in 
the listing. It is your responsibility to then somehow 
move it to the desired location. The technique is not 
necessarily easy, but using these methods you can 
overwrite DOS or even produce code designed to run in 
the cartridge space. In the latter case, you may wish 
to use a negative offset with .SET 6. This is 
perfectly legal and reasonable. 

--79--



8.3 Making MAC/65 Even Faster 

If you .INCLUDE a file consisting ONLY of equates 
and/or macro definitions (NOT macro callsl), there is a 
technique you can use which will speed up assembly 
somewhat. 

In particular, since equates need be made only once and 
macros need be only defined once, there is no reason to 
read such .INCLUDED files on pass two. The following 
code shows a workable technique: 

*= '" 
PASS .s PASS+l : do this only once per assembly 

.IF PASS"l 

.INCLUDE #D:equatesfile 

.ENDIF 
*= beginning 

Why this works: Normally, an undefined label has a 
value of zero. The " ... " directive, however, causes a 
mildly strange thing to happen: an undefined label used 
on the right side of ".m" takes on the current value of 
the location counter. Hence the need for the" *= "''' 
line at the beginning of the above example. 

In any case, thanks to this mechanism, the first time 
the second line is assembled (in pass 1), PASS takes on 
a value of 1 (of course, the line also generates an 
"undefined label" error, but such errors are not 
printed in pass 1). The next time it is assembled, 
PASS receives a value of 2. Simple and neat. 

Note that if the ".=" used in the second line above is 
placed ahead of any "*=" (or " . ORG") lines, then the 
first line shown is not needed, since the location 
counter is assumed to start at zero unless told 
otherwise. 

--8"'--



Appendix A: System Equates 

We present here a listing of certain system locations 
Which we find useful and necessary when programming on 
the Atari Computer. 

Many of the equates shown here are noted as applying to 
DOS XL. Generally, if you are working with system 
resources (such as lOCB's and ClO and such), the equates 
will be identical for Atari DOS. We have tried to 
specially mark the locations which apply only to DOS XL 
(especially batch execution and the command line). 

Some of the labels on these equates may vary slightly 
from those used by Atari (in the operating system 
listings) or in published books (such as "Mapping The 
Atari", from Compute I books). The differences are 
minimal (e.g., lCAXl instead of lCAUX1). 

You may type in this entire listing and SAVE the result 
to disk or tape. If you save it to disk, you may later 
.INCLUDE it for use by your program(s). If you save it 
to disk, you will have to merge it with (or append it 
to) your programs. 

You may also simply use this listing as a reference, 
typing in only the equated labels that your program 
actually uses '. 

(The listing begins on the next page.) 

--81--



1999 
1919 

.PAGE MOSS SYSTEM EQUATES FOR ATARI" 

1929 
1939 
1949 
1959 
1969 

Recommended File Name: SYSEQU.M65 

I/O CONTROL BLOCK EQUATES 

1965 SAVEPC = * 
1967 
1979 
1075 IOCB 
1989 

$0340 

ICHlD .DS 1 
ICDNO .DS 1 
ICCOM .DS 1 
ICSTA .DS 1 
ICBADR .DS 2 
ICPUT .DS 2 
ICBLEN .DS 2 
ICAUX1 .DS 1 
ICAUX2 .DS 1 
ICAUX3 .DS 1 
ICAUX4 .DS 1 
ICAUX5 .DS 1 
ICAUX6 .DS 1 

1099 
1199 
1119 
1129 
1130 
1149 
1159 
1169 
1170 
1189 
1190 
129~ 

1219 
1229 • 

: SAVE CURRENT ORG 

:START OF SYSTEM IOCBS 

:DEVICE HANDLER IS {SET BY 
:DEVICE NUMBER (SET BY OS) 
:1/0 COMMAND 
:1/0 STATUS 
:BUFFER ADDRESS 
:DH PUT ROUTINE (ADR-1) 
:BUFFER LENGTH 
:AUX 1 
:AUX 2 
:AUX 3 
:AUX 4 
:AUX 5 
:AUX 6 

1239 IOCBLEN - *-IOCB :LENGTH OF ONE IOCB 
1249 
1259 : IOCB COMMAND VALUE EQUATES 
1269 
1270 
1289 
1299 
1390 
1319 
1320 
1339 
1349 

COPN" 3 
CGBINR - 7 
CGTXTR - 5 
CPBINR - 11 
CPTXTR .. 9 
CCLOSE - 12 
CSTAT .. 13 

:OPEN 
:GET BINARY RECORD 
:GET TEXT RECORD 
:PUT BINARY RECORD 
: PUT TEXT RECORD 
: CLOSE 
:GET STATUS 

OS) 

1359 : DEVICE DEPENDENT COMMAND EQUATES FOR FILE MANAGER 
1369 
1379 
1380 
1390 
1409 
1419 
1429 
1430 

CREN - 32 
CERA - 33 
CPRO - 35 
CUNP - 36 
CPOINT .. 37 
CNOTE .. 38 

: RENAME 
: ERASE 
: PROTECT 
:UNPROTECT 
: POINT 
: NOTE 

1449 : AUX1 VALUES REQD FOR OPEN 
1459 
1469 OPIN - 4 
1479 OPOUT .. 8 
1480 
1490 
1590 
1510 

OPUPD .. 12 
OPAPND = 9 
OPDIR .. 6 

OPEN 
OPEN 
OPEN 
OPEN 
OPEN 

INPUT 
OUTPUT 
UPDATE 
APPEND 
DIRECTORY 

--82--



• PAGE 1529 
1539 
1549 
1559 
1569 
1579 
1589 
1599 
1699 
1619 
1629 

EXECUTE FLAG DEFINES 

EXCYES $89 
EXCSCR = $49 
EXCNEW = $19 
EXCSUP = $29 

EXECUTE IN PROGRESS 
ECHO EXCUTE INPUT TO SCREEN 
EXECUTE START UP MODE 
COLD START EXEC FLAG 

~ MISC ADDRESS EQUATES 

1639 CPALOC = $9A 
1649 WARMST = $98 
1659 MEMLO - $92E7 
1669 MEMTOP - $92E5 
1679 APPMHI = $9E 
1689 INITADR = $92E2 
1699 GOADR c $92E9 
1799 CARTLOC = $BFFA 
1719 CIO - $E456 
1729 EOL - $9B 
1739 

POINTER TO CP 
WAR, START (9=COLD) 
AVAIL MEM (LOW) PTR 
AVAIL MEM (HIGH) PTR 
UPPER LIMIT OF APPLICATION 
ATARI LOAD/INIT ADR 
ATARI LOAD/GO ADR 

~ CARTRIDGE RUN LOCATION 
~CIO ENTRY ADR 
: END OF LINE CHAR 

CP FUNCTION AND VALUE DISPLACEMSNT 
(INDIRECT THROUGH CPALOC) 

IE. (CPALOC) , Y 

NAME 
(3 BYTES) 

MEMORY 

GET NEXT FILE 
DEFAULT DRIVE 
CMD BUFF NEXT 
EXECUTE FLAG 

CHAR POINTR (1 BYTE) 

1749 
175" 
176" 
177" 
178" 
179" 
1899 
1819 
1829 
183" 
1849 
185" 
1869 
187e 
1880 
1899 
1999 

CPGNFN .. 3 
CPDFDV .. $"7 
CPBUFP .. $9A 
CPEXFL 0: $9B 
CPEXFN - $9C 
CPEXNP - $IC 
CPFNAM = $21 
RUNLOC = $30 
CPCMDB = $3F 
CPCMDGO .. $F3 

EXECUTE FILE NAME (16 BYTES) 
EXECUTE NOTE/POINT VALUES 
FILENAME BUFFER 
CP/A LOAD/RUN ADR 
COMMAND BUFFER (69 BYTES) 

*= SAVEPC RESTORE PC 

--83--



+ 

+ 

---this page intentionally left blank---

+ 

+ 

+ 

--84--



Appendix B: Some Useful Macros 

In the pages which follow, we present the listings of 
several macros. These macros are designed to make i t 
easy for you to perform Input/Output operations. If you 
type all of them in exactly as shown, you will have a 
useful macro library. 

We suggest that you type them in and then SAVE them (to 
disk or tape). If you save them to disk, you can later 
use .INCLUDE to allow your program access to their ease 
and power. If you save them to tape, you will have to 
merge them with your program in memory in order to use 
them. 

CAUTION: These macros use many of the equates given in 
the SYSTEM EQUATES listing of Appendix A. You may 
either .INCLUDE the entire set of equates as presented 
or simply type in the ones which these macros need. 
(You can find out which labels they need by assembling 
your program without the equates. The undefined labels 
will causes errors during the assembly.) 

Before we present the listings, we present here a 
summary of each macro along with notations on how to use 
it. Remember, using a macro requires simply coding its 
name in the operator (mnemonic) field of a line along 
with any parameters in the operand field(s). 

The macros are presented here in expected order of 
usage: 

OPEN chan,auxl,aux2,filename 
Opens the given filename on 
channel using auxl and aux2 as 
specifications. 

the given 
per OS/A+ 

PRINT chan [,buffer [,length] ] 
If no buffer given, prints just a CR on 
chan. If no length given, length assumed 
to be 255 or position of CR, whichever is 
smaller. Buffer may be literal string, in 
which case length is ignored if given . 

INPUT chan,buffer [,length] 

BGET 

If no length given, defaults to 255 bytes. 

chan,buffer, length 
Binary read, a la BASIC 
number of bytes i nto the 
address . 

- - 85--

XL, of l ength 
given buffer 



NOTES: 

BPUT chan, buffer, length 
Binary write of length number of bytes from 
the given buffer address. 

CLOSE chan 
Closes the given file. 

XIO command,chan [,auxl,aux2][,filename] 
As described in chapter 5. 

"chan" may be a literal channel number (0 through 
7) or a memory location containing a channel 
number (0 through 7). 

Itauxl", tlaux2", 
either literal 
locations. 

"length" , 
numbers 

and "command" may all be 
(0 to 255) or memory 

"filename" may be either a literal string (£>.g., 
"O:FILEI.OAT") or a memory location, the latter 
assumed to be the address of the start of the 
filename string. 

Where memory locations are given instead of 
literals, they must be non-zero page locations 
which are defined BEFORE their usage in the 
macro(s). The following example will NOT work 
properly 11 : 

PRINT 3,MESSAGEl ; WRONG I 

MESSAGEl .BYTE "This WON'T WORK III " 

These macros are useful instruments, but they really 
are meant only as examples, to show you what you can do 
with MAC/65. Please feel free to study them and change 
them as you need. 

(The listings start on the next page.) 

--86--



1000 
1010 
1020 
1030 
1040 
1050 
1060 
1070 
1080 
1090 
1100 
1110 
1120 
1130 
1140 
1150 
1160 
1170 
1180 
1190 
1200 
1210 
1220 
1230 
1240 
1250 
1260 
1270 
1280 
1290 
130'" 
1310 
1320 
1330 
1340 
1350 

.TITLE "IOMAC.LIB -- OSS system I/O macros" 

. PAGE " Support Macros" 
.IF .NOT .OEF loeB 
.ERROR "You must include SYSEQU.M65 ahead of thisll" 
.ENOIF 

These macros are called by the actual I/O macros 
to perform the rudimentary register load functions. 

MACRO: @CH 

Loads loeB number (parameter 1) into X register. 

If parameter value is 0 to 7. immediate channel number 
is assumed. 

If parameter value is ) 7 then a memory location 
is assumed to contain the channel number. 

.MACRO @CH 
.IF U>7 
LOA U 
ASL A 
ASL A 
ASL A 
ASL A 
TAX 
. ELSE 
LOX "1*16 
.ENOIF 

.ENOM 

MACRO: @cv 

1360 I Loads Constant or Value into accumu1tor (A-register) 
1370 
1380 
1390 
1400 

If value of parameter 1 is 0-255. @CV 
assumes it's an (immediate) constant, 

1410 Otherwise the value is assumed to 
1420 I be a memory location (non-zero page). 
1430 
1440 
1450 
1460 
1470 
1480 
1490 
150111 
1510 
1520 
1530 
1540 
1550 

.MACRO @CV 
.IF U<256 
LOA tU 
• ELSE 
LOA U 
.ENOIF 

.ENOM 

--87--



1560 
1570 
1580 
1590 
1600 
1610 
1620 
1630 
1640 
1650 
1660 
1670 
1680 
1690 
1700 
1710 
1720 
1730 
1740 
1750 @F 
1760 
1770 
1780 
1790 
1800 
18H' 
1820 
1830 
1840 
1850 
1860 
1865 

MACRO: @FL 

@FL is used to establish a filespec (file name) 

If a literal string is passed, @FL will 
generate the string in line, jump 
around it, and place its address 
in the IOCB pointed to by the X-register. 

If a non-zero page label is passed 
the MACRO assumes it to be the label 
of a valid filespec and uses it instead. 

.MACRO @FL 
.IF %1<256 
JMP *+%1+4 
.BYTE %$1,0 
LOA t <@F 
STA ICBAOR,X 
LOA t >@F 
STA ICBAOR+l,X 
.ELSE 
LOA t <%1 
STA ICBADR,X 
LDA t >%1 
STA ICBADR+l,X 
.ENOIF 

.ENDM 

--88--



1970 
188e 
19ge 
1900 
191e 
192e 
1930 
1940 
195e 
196e 
197e 
198e 
19ge 
2000 
2e1e 
2e2e 
2030 
2e41'1 
2050 
21'160 
2"70 
2"90 
2"9" 
2l"" 
211" 
212" 
213" 
214" 
2150 
2160 
217" 
219" 
219" 
n00 
221e 
222" 
223" 
2240 
225" 
2260 
227" 
228" 
2295 

.PAGE " XIO macro" 

MACRO: XIO 

FORM: XIO cmd,ch[,aux1,aux2][,fi1espec] 

ch is given as in the @CH macro 
cmd, aux1, aux2 are given as in the @CV macro 
filespec is given as in the @FL macro 

performs familiar XIO operations with/for OS/A+ 

If aux1 is given, aux2 must also be given 
If aux1 and aux2 are omitted, they are set to zero 
If the filespec is omitted, "S:" is assumed 

.MACRO XIO 
.IF %1'1<2 .OR %">5 
.ERROR "XIO: wrong number of arguments" 
.ELSE 

@CH %2 
@CV U 

STA ICCOM,X COMMAND 
.IF %">=4 

@CV %3 
STA ICAUX1,X 

@CV %4 
STA ICAUX2,X 
• ELSE 

LOA '" 
STA ICAUX1,X 
STA ICAUX2,X 
.ENDIF 
.IF %"=2 .OR %"=4 

@FL "S:" 
• ELSE 

@@IO • = %" 
@FL %$(@@IO) 

.ENDIF 
JSR CIO 
.ENDIF 

.ENDM 

--99--



2299 
2399 
2319 
2329 
2339 
2349 
2359 
2369 
2379 
2389 
2399 
2499 
2419 
2429 
2439 
2449 
2459 
2469 
2479 
2489 
2499 
2500 
2510 
2529 
2539 
2535 

.PAGE " OPEN macro" 

MACRO: OPEN 

FORM: OPEN ch,auxl,aux2,filespec 

ch is given as in the @CH macro 
auxl and aux2 are given as in the @CV macro 
filespec is given as in the @FL macro 

will attempt to open the given file name on 
the given channel. using the open "modes" 
specified by auxl and aux2 

.MACRO OPEN 
.IF '9()4 
.ERROR "OPEN: wrong number of arguments· 
• ELSE 

• IF M<256 
XIO COPN,%1,%2,%3,%$4 

• ELSE 
XIO COPN.'1.%2.%3,%4 

.ENDIF 
.ENDIF 

.ENDM 

--90--



254e 
255e 
256e 
257e 
258e 
25ge 
26ee 
26le 
262~ 
263e 
264e 
265e 
266e 
267e 
26813 
26ge 
27e13 
27113 
27213 
273e 
27413 
275e 
27613 
277e 
27813 
27913 
2813e 
28113 
28213 
28313 
28413 
28513 
28613 
287e 
28813 
28913 
291313 
29113 
29213 
29313 
29413 
29513 
29613 
29713 
29813 
29913 
3131313 
3ell" 
313213 
313313 

.PAGE .. BGET and BPUT macros" 

MACROS: BGET and BPUT 

FORM: BGET ch,buf,len 
BPUT ch,buf,len 

ch is given as in the @CH macro 
len is ALWAYS assumed to be an immediate 

and actual value •.• never a memory address 
buf must be the address of an appropriate 

buffer in memory 

puts or gets length bytes to/from the 
specified buffer, uses binary read/write 

first: a common macro 

.MACRO @GP 
@CH %l 

LOA #%4 
STA ICCOM,X 
LOA t <%2 
STA ICBAOR,X 
LOA # >%2 
STA ICBAOR+l,X 
LOA # <%3 
STA ICBLEN,X 
LOA t >%3 
STA ICBLEN+l,X 
JSR CIO 
.ENOM 

.MACRO BGET 
• IF %13<>3 
.ERROR "BGET: wrong number of parameters" 
. ELSE 

@GP %l,%2,%3,CGBINR 
.ENOIF 

.ENOM 

.MACRO BPUT 
. IF %0<>3 
.ERROR "BPUT: wrong number of parameters" 
.ELSE 

@GP %l,%2,%3,CPBINR 
.ENOIF 

.ENOM 

--91--



.PAGE " PRINT macro" 

MACRO: PRINT 

3£14£1 
3£15£1 
3£16£1 
3£17£1 
3£18£1 
3£19£1 
31£1£1 
311£1 
312£1 
313£1 
314£1 
315£1 
316£1 
317£1 
318£1 
319£1 
32£1£1 
321£1 
322£1 
323£1 
324£1 
325£1 
326£1 
327£1 
328£1 @IO 
329£1 
33£1£1 
331£1 
332£1 
333£1 
334£1 
335£1 
336£1 
337£1 
338£1 
339£1 @IO 
34£1£1 
341£1 
342£1 

FORM: PRINT ch[,buffer[,length]] 

ch is as given in @CH macro 
if no buffer, prints just a RETURN 
if no length given, 255 assumed 

used to print text. To print text without RETURN, 
length must be given. See OS/A+ manual 

EXCEPTION: second parameter may be a literal 
string (e.g., PRINT eJ,"test"), in which 
case the length (if given) is ignored. 

.MACRO PRINT 
.IF %£1<1 .OR %£1>3 
.ERROR "PRINT: wrong number of parameters" 
.ELSE 

.IF %£1>1 
.IF %2<128 
JMP *+4+%2 
.BYTE %$2,$9B 

@GP %1,@IO,%2+1,CPTXTR 
.ELSE 

.IF %£1=2 
@GP %1,%2,255,CPTXTR 

.ELSE 
@GP %1,%2,%3,CPTXTR 

.ENDIF 
.ENDIF 

. ELSE 
JMP *+4 
.BYTE $98 

@GP %l,@IO,l,CPTXTR 
.ENDIF 

.ENDIF 
3430 .ENDM 
344£1 

--92--



3450 
3460 
3470 
3480 
3490 
3500 
3510 
3520 
3530 
3540 
3550 
3560 
357'" 
3580 
3590 
3600 
3610 
3620 
3630 
3640 
3650 
3660 
3670 
3680 
3690 
3700 
3710 
3720 
3730 
3740 
3750 
3760 
3770 
3780 
3790 
3800 
3810 
3820 
383'" 
3840 
3850 
3860 
3870 
3880 
3890 
3900 
3910 

.PAGE " INPUT macro" 

MACRO: INPUT 

FORM: INPUT ch.buf.1en 

ch is given as in the @CH macro 
buf MUST be a proper buffer address 
len may be omitted, in which case 255 is assumed 

gets a line of text input to the given 
buffer. maximum of length bytes 

.MACRO INPUT 
.IF %0<2 .OR %0>3 
.ERROR "INPUT: wrong number of parameters" 
.ELSE 

.IF %0=2 
@GP %1,%2.255,CGTXTR 

.ELSE 
@GP %1.%2,%3.CGTXTR 

.ENDIF 
.ENDIF 

.ENDM 

.PAGE " CLOSE macro" 

MACRO: CLOSE 

FORM: CLOSE ch 

ch is given as in the @CH macro 

closes channel ch 

.MACRO CLOSE 
.IF %0<>1 
.ERROR "CLOSE: wrong number of parameters" 
. ELSE 

@CH %1 
LDA tCCLOSE 
STA ICCOM.X 
JSR CIO 
.ENDIF 

.ENDM 

:::::::::: END OF IOMAC.LIB 

--93--

............ 
I '" I "" I I' 



+ 

+ 

+ 

---this page intentionally left blank---

+ 

+ 

+ 

--94--



Appendix C: ERROR DESCRIPTIONS 

When an error occurs, the system will print 
*** ERROR-

followed by the error number (unless the error was 
generated with the .ERROR assembler directive) and, for 
most errors, a descriptive message about the error. 

Note: The Assembler will print up to 3 errors per line. 

The format used in the listing of descriptions which 
follows is simply ERROR NUMBER, ERROR MESSAGE, 
description and possible causes. 

I MEMORY FULL 
All user memory has been used. If issued by the 
Editor, no more source lines can be entered. If 
issued by the Assembler, no more labels or macros 
can be defined. 

NOTE: If memory full occurs during assembly and 
the source code is located in memory, SAVE the 
source to disk, type NEW, and assemble from the 
disk instead. Now the assembler can use all of 
the space formerly occupied by your source for 
macro and symbol tables, etc. 

2 INVALID DELETE 
Either the first line number is not present in 
memory, or the second line number is less than the 
first line number. 

3 BRANCH RANGE 
A relative instruction references an address 
displacement greater than 129 or less than 126 
from the current address. 

4 NOT Z-PAGE / IMMEDIATE MODE 
An expression for indirect addressing or immediate 
addressing has resolved to a value greater than 
255 ($FF). 

5 UNDEFINED 
The Assembler has encountered a undefined label. 

6 EXPRESSION TOO COMPLEX 
The Assembler's operator stack has overflowed. If 
you must use an expression as complex as the one 
which generated the error, try breaking it down 
using temporary SET labels (Le., using ".="). 

--95--



7 DUPLICATE LABEL 
The Assembler has encountered a label in the label 
column which has already been defined. 

8 BUFFER OVERFLOW 
The Editor syntax buffer has overflowed. Shorten 
the input line. 

9 CONDITIONALS NESTING 
The .IF-.ELSE-.ENDIF construct is not properly 
nested. Since MAC/65 cannot detect excess 
.ENDIFs, the problem must be an EXTRA .ELSE or 
.ENDIF instead. 

13 VALUE > 255 
The result of an expression exceeded 255 when only 
one byte was needed and allowed. 

11 CONDITIONAL STACK 
The .IF-.ELSE-.ENDIF nesting has gone past the 
number allowed. Conditionals may be nested a 
maximum of 14 levels. 

12 NESTED MACRO DEFINITION 
The Assembler encountered a second . MACRO 
directive before the .ENDM directive. This error 
will abort assembly. 

13 OUT OF PHASE 
The address generated in pass 2 for a label does 
not match the address generated in pass 1. A 
common cause of this error are foward referenced 
addresses. If using conditional assembly (with or 
without macros), this error can result from a .IF 
evaluating true during one pass and false during 
the other. 

14 *= EXPRESSION UNDEFINED 

15 

The program counter was forward referenced. 

SYNTAX OVERFLOW 
The Editor is unable to syntax 
Simplify complex expressions or 
into multiple lines. 

the source line. 
break the line 

16 DUPLICATE MACRO NAME 
An attempt was made to define more than one Macro 
with the same name. Only the first definition 
will be valid. 

17 LINE t ) 65535 
The Editor cannot accept line numbers greater than 
65535. 

--96--



18 MISSING .ENDM 
In a Macro definition, an 
the corresponding .ENDM 
definitions cannot cross 
error will abort assembly. 

EOF was reached before 
terminator. Macro 

file boundrys. This 

19 NO ORIGIN 

23 

The *= directive is missing from the program. 
Note: This error will only occur if the assembler 
is writing object code. 

NUM/REN OVERFLOW 
On the REN or NUM command, the 
generated was greater than 65535. 
the error, entering a valid REN will 
problem. If NUM issued the 
auto-numbering will be aborted. 

line number 
If REN issued 
correct the 
error, the 

21 NESTED .INCLUDE 

22 

An included file cannot itself contain an .INCLUDE 
directive. 

LIST OVERFLOW 
The list output buffer has 
characters. Use smaller numbers 
directive. 

exceeded 255 
in the .TAB 

23 NOT SAVE FILE 
An attempt was made to load or assemble a file not 
created with the SAVE command. 

24 LOAD TOO BIG 
The load file cannot fit into memory. 

25 NOT BINARY SAVE 
The file is not in a valid binary (memory image, 
assembler object, etc.) format. 

27 INVALID .SET 
The first dcnum in a .SET specified a non-existant 
Assembler system parameter. 

33 UNDEFINED MACRO 
The Assembler encountered a reference to a Macro 
which is not defined. Macros must first be 
defined before they can be expanded. 

31 MACRO NESTING 
The maximum level of Macro nesting has exceeded 14 
levels. 

--97--



32 BAD PARAMETER 
In a Macro expansion, a reference was made to a 
nonexistent parameter, or the parameter number 
specified was greater than 63. 

128 - 255 [operating system errors] 
Error numbers over 127 are generated in the 
operating system. Refer to the OS/A+ manual for 
detailed descriptions of such errors and their 
causes. 

--98--







a reference manual for 

DDT 

"Dunion's Debugging Tool" 

a screen-oriented debugging program for 
use with the OSS MAC/65 Macro-Assembler 

on computers built by Atari, Inc. 

The programs and manuals comprising 
DDT are Copyright (cl 1982, 1983 by 

James J. Dunion 
and 

Optimized Systems Software, Inc. 

This manual is Copyright (cl 1984 by 
James J. Dunion and 

Optimized Systems Software, Inc. 

Please contact Mr. Dunion or OSS, Inc., at 
1221-B Kentwood Ave., San Jose, CA 95129 
Telephone (408) 446-3099 

Rev 1.0 

All rights reserved. Reproduction or translation of 
any part of this work beyond that permitted by sections 
107 and 108 of the United States Copyright Act without 

the permission of the copyright owner is unlawful. 





PREFACE 

DDT is the original design and product of Mr. James J. 
Dunion. Versions of DDT have been produced for disk 
based systems (sold through the Atari Program Exchange), 
but this version marks the first time DDT has been 
integrated with an assembler. 

We at OSS like to think that it is especially 
appropriate that Mr. Dunion chose to allow us to link 
the fastest macro assembler for Atari computers with the 
most exciting concept in debugging tools. We hope you 
enjoy this powerful package as much as we have enjoyed 
preparing it for you. 

TRADEMARKS 

The following trademarked names may be used in various 
places within this manual, and credit is hereby given: 

DOS XL, BASIC XL, MAC/6S, and C/6S are trademarks of 
Optimized Systems Software, Inc. 

Atari, Atari 4ee, Atari see, Atari Home Computers , and 
Atari sse Interface Module are trademarks of 
Atari , Inc., Sunnyvale, CA. 





Table of Contents 

Section 1 : An Introduction to DDT 
1.1 What DDT Is 
1.2 An Overview of the Workings of DDT 
1 . 3 An Example of Using DDT and MAC/65 

Section 2 . : The DDT Screen Display 
2.1 Register Display 
2.2 Display Window 
2 . 3 Breakpoint Table 
2.4 Command Window 

Section 3 : An 
3.1 
3.2 

Overview of the DDT Commands 
A Summary of the Keyboard Commands 
Legend 

Section 4 

3.2 . 1 Specific Selections 
3.2.2 Hexadecimal Values 
3 . 2 . 3 Delimiters 

3.3 Special Characters: '.' and ')' 

: Command 
4. 1 B 
4. 2 D 
4.3 E 
4.4 G 
4 . 5 I 
4.6 M 
4. 7 N 
4 . 8 Q 
4.9 R 
4.10 S 
4.11 W 
4.12 .. 
4.13 t 
4.14 • 

Descriptions 
Set or Reset a Breakpoint 
Deposit Value(s) in Memory 
Examine Memory 
Go to a Program at a Given Address 
Interpretive Mode 
Move Memory 
Next 
Quit DDT, Reenter MAC/65 
Register Modify 
Search for a String of Bytes 
Window Change 
Move Display Window Down/Higher 
Move Display Window Up/Lower 
Set Contents of Program Counter 

Section 5 : Push Button Controls 
5.1 The START Button 
5.2 The SELECT Button 
5.3 The OPTION Button 

Section 6 : Breakpoints 

Section 7 I DDT Entry Points 
7.1 Main Entry to DDT 
7.2 Flash Entry to DDT 
7 . 3 Breakpoint Entry to DDT 
7.4 RESET Entry to DDT 

1 
1 
2 
3 

9 
10 
11 
12 
12 

13 
13 
14 
14 
15 
16 
16 

17 
17 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
28 
29 
29 

31 
31 
31 
32 

33 

35 
35 
35 
36 
36 

Section 8 I Technical Details of DDT 37 
8.1 Interaction with MAC/65 37 
8.2 Keyboard Scanner 37 
8.3 DDT's Use of System Resources 38 
8.4 Things to Watch Out For 38 
8.5 Graphics Locations Saved by DDT 39 
8.6 Using MAC/65 as a Mini-Assembler for DDT 39 





Section 1: An Introduction to DDT 

1.1 What DDT Is 

The name "DDT" (a software analog to the biological bug 
killer of the same name?) has been used for many other 
debug programs on other systems (where it usually stands 
for "Dynamic Debugging Tool"). We at OSS are proud to 
offer the best and most "authentic" DDT, "Dunion's 
Debugging Tool", by Jim Dunion. 

DDT has become one of the most popular debugging tools 
ever invented for use with Atari computers. In this 
version, OSS and Mr. Dunlon have attempted to keep the 
spirit and flavor of DDT while scaling its size down 
enough to fit in an OSS SuperCartridge with MAC/65. 
This combination of MAC/65 and DDT is truly an 
all-in-one development system for assembly language 
programmers. 

The heart of DDT is its ability to show what is 
happening inside the computer on a special display 
screen. This special screen is kept completely separate 
from your program's screen, whether you are using 
sophisticated graphics or simply Atari standard 
character I/O. 

In effect, then, DDT tries to be 
possible to your Atari computer's 
screen display handlers, keyboard 
importantly, though, DDT attempts to 
without interfering with your program. 

as invisible as 
operating system, 
handler. More 

perform its tasks 

This extraordinary separation of debugger and user 
program is coupled with the ability to easily change and 
monitor the internal state of "your" machine's 
environment, so that you can get a much clearer picture 
of exactly what's going on inside your system and 
program at any instant. 

As with any software-based debugger, there are 
limitations on speed, instruction and memory tracing, 
and interrupt processing. All in all, though, DDT comes 
close to providing you with the best possible debugging 
environment, probably matched only by hardware logic 
analyzers costing hundreds of times more. 

--IH--



1.2 An Overview of the Workings of DDT 

DDT is separated into four major functional parts: a 
display generator, a breakpoint handler, an instruction 
interpreter, and a user command processor. 

Generally, when you enter DDT ' from MAC/65 (via the "DDT" 
command, of course), you are presented with an arbitrary 
display of a portion of memory with the values of the 
6502 registers (at the time DDT was entered). 
Naturally, if you intend to debug your own program, you 
must first tell DDT where it is ". You do this via the 
command processor (but we won't discuss exactly how at 
this point). 

If you are reasonably cautious, you will probably wish 
to step through your program a line at a time. You can 
do this thanks to DDT's instruction interpreter. 

Once you have a subroutine or set of routines reasonably 
debugged through the use of single stepping, you will 
probably wish to execute them without full trace . Or 
you may wish to allow your program to run up to a 
certain point before you examine registers, memory 
locations, etc. DDT's breakpoint handler accomplishes 
both these tasks. 

With a few exceptions, you accomplish all these tasks by 
using the command processor of DDT. By simple, easy to 
remember commands, you can ask DDT to interpret your 
program, show you the contents of memory in either 
instruction or memory dump formats, change memory or 
register values, and (in general) control the flow and 
environment of the program you are debugging. 

--02--



1.3 An Example of Using DDT and MAC/65 

We will present here a short and simple program, written 
in MAC/65, which we ask you to type in to the MAC/65 
editor. We will then assemble and debug this program 
using DDT. We will not perform the more complex 
operations of DDT, but we hope that we will give you at 
least a feel for using DDT and its flexible commands. 

+------------------------------------------------------+ 
I NOTE: We assume here that you have read the MAC/65 I 
I manual and can use the MAC/65 editor and its I 
I commands. For this example, though, we will I 
I callout every keystroke to be used with DDT, I 
I including [RETURN] keys, unless we note I 
I otherwise I 
+------------------------------------------------------+ 
To begin, then, boot your DOS (if you are using a disk) 
and enter the MAC/65 cartridge. To the "EDIT" prompt, 
type "NOM" and enter the following program: 

HI 
20 
30 
40 
50 
60 
70 
80 

: EQUATES 
HPOSP" .. 
PCOLR0 .. 
CHSET 
PMBASE • 
SOMCTL .. 
GRACTL .. 

-- FROM 
$0""" 
$02C0 
$E00" 
$0407 
$022F 
$0010 

'AMPPING THE ATARI' 
:Hort. POSn, Player" 
:Player COLoR 0 
:addr of std char. set 
:Player/Missile BASE addr 
:Set DMa ConTroL 
:GRAphicS ConTroL 

\ 

90 
0100 
0110 
0120 
0130 
IH40 
0150 
0160 
017" 
0180 

*. $3800 :an arbitrary address 
SET UP FOR PM GRAPHICS 

"19" 
0200 

. 
SETUP 

LOA 
STA 
LOA 
STA 
LOA 
STA 
LOA 
STA 

LOX 
0210 
"220 
"230 
"24" 
"25" 
"260 
8278 
0280 
029" 
"3"" 1 "31" 8328 

LOOP 
STX 
LOY 

DELAY 
DEY 
BNE 

INX 
JMP 

0338 1 
8348 • END 

, >CHSET 
PMBASE 
'4*16+4 
PCOLR" 
1S2A 
SDMCTL 

'2 
GRACTL 

1108 

HPOSP" 
110 

DELAY 

LOOP 

:we use the char. set 
: •.. as data for player 
:color: hue 4, intensity 4 
:for our player 
:std playfield,DMA,players 
: . • . are all enabled 
:the bit for players 
: ..• is turned on 

:init our hort. pos'n 

:where we want the player 

:just wait for awhile 

:to next position 

--03--



When you are satisfied that you h ave entered the program 
correctly, you might save it to disk or cassette and 
then assemble it. We used 

ASM ,IPI 
t o get the list i ng which a ppears below. Of course, 
using the ',p:' Fequires that you have a printer hooked 
up to your computer, so you may wish to modify this 
command t o suit your system's set-up ( and see your 
MAC/65 manual for details on how to do so). 

Verify that your listing is essentially identical (we 
have omitted the symbol table listing here). 

38121121 

-0121121121 
"'12I2CI2I 
=EI2II2II2I 
:041217 
~12I22F 

=O'HD 

38121121 A9EI2I 
381212 8DI2I7D4 
381215 A944 
381217 BOCI2I12I2 
38121A A92A 
3BI2IC B02FI2I2 
3BI2IF A91212 
3811 BDIDDI2I 

3B14 A264 

3B16 
3B16 BEI2II2IDI2I 
3819 AI2II2IA 
3BlB 
3BlB 88 
3BlC OI!lFO 

3BlE E8 
3BlF 4C163B 

3B22 

, EQUATES 
HPOSPI2I '" 
PCOLRI2I -
CHSET 
PMBASE '" 
SDMCTL '" 
GRACTL EO 

-- FROM 
$DI2II2II2I 
$12I2C9 
$E000 
$D407 
$12I22F 
$Dl!IlD 

'MAPPING THE ATARI' 
:Hort. POSn , Player 121 
:Player COLoR 0 
:addr of std char. set 
:P1ayer/Missile BASE addr 
:Set DMa ConTrol 
:GRAphics ConTroL 

ll!l 
2121 
31!1 
4121 
51!1 
6121 
71!1 
81!1 
91!1 
I!Ill!ll!l 
I!Illl!l 
12112121 
12113121 
12114121 
12115121 
12116121 
12117121 
I!IlBI!I 
121191!1 
1212121121 
£121121 
£1220 
£1230 
024121 
£1250 
0260 
027£1 
121280 
1!1299 
1!1300 
9310 
0320 
033121 
12134121 

*= $3BI2II2I Ian arbitrary address 
SET UP FOR PM GRAPHICS 

SETUP 
LOA 
STA 
LDA 
STA 
LDA 
STA 
LDA 
STA 

LDX 

LOOP 
STX 
LDY 

DELAY 
DEY 
BNE 

INX 
JMP 

• END 

t >CHSET 
PM BASE 
14*16+4 
PCOLRI2I 
'$2A 
SDMCTL 

'2 
GRACTL 

HPOSPI2I 
U0 

DELAY 

LOOP 

--1214--

:we use the char. set 
: ••• as data for player 
: color: hue 4, intensity 4 
:for our player 
:std p1ayfield,DMA,p1ayers 
: •• • are all enabled 
: the bit for players 
: ••• is turned on 

:init our hort. pos'n 

:where we want the player 

:just wait for awhile 

ItO next position 



Presuming that you have 
program correctly, it 
debugging process. 

typed in and assembled this 
is time to lead you through the 

So give MAC/6S the "DDT" command, and you will be 
presented .with a display similar to the one given below 
(though the screen version will be easier to read than 
our printed copy, thanks to inverse video, etc.). 

+--------------------------------+ 
1 LOC. VAL INSTRUCTION 1 
+--------------------------------+ 
1 DDT (c) 1984 JAMES J. DUNION 1 
+--------------------------------+ I >BED4 A9 LDA t $04 1 
1 BEDS 04 I 
I BED6 48 PHA I 
1 BED? 20 JSR $AS0E 1 
1 BED8 0E 1 
1 BED9 AS I 
1 BEDA 68 PLA 1 
1 BE DB 38 SEC 1 
1 BEDC E9 SBC t $01 1 
I BEDD 01 I 
+--------------------------------+ 
IBKPI BKP2 BKP3 BKP4 NV BDIZC 1 
+--------------------------------+ 
10000 0000 0000 0000 10110000 1 
+--------------------------------+ 
1 PC A X Y S ENTER COMMAND I 
+--------------------------------+ 
IBED4 80 FF 00 FF I 
+--------------------------------+ 

For now, let's not worry about what all that means. 
Suffice to say, DDT thinks that your program's PC is at 
location $BED4 and is showing you the code that it finds 
at that location. 

But our assembly placed our main code at location $3800, 
so let's tell DDT to change what it is displaying. We 
do that by entering a command (which will be shown under 
the words "ENTER COMMAND") as follows: 

• 3800[RETURN] 
NOTE that we do NOT type in the space between the '.' 
and the '3'. DDT does that for us. 

Now look at the main display window. The '>' symbol 
should be pointing to location 3800. Do you see your 
code listed there? If you typed in the program exactly 
as we specified, and if you started from a "cold" 
(power-on) machine, you will probably find nothing but a 
series of 'BRK' instructions being displayed. 

--05--



What went 
should go 
(just push 
following: 

wrong? Actually, nothing. At this time, you 
back to MAC/65 by typing the DDT command '0' 

the 0 key, nothing else). Now type the 

1 .OPT OBJ 
This line is necessary if you wish MAC/65 to assemble 
code and place the resultant object directly in memory. 
So, once again, you need to assemble your program. You 
may do so by simply typing 

ASM 
as a command to MAC/65. And, when the assembly is 
finished, you can go to DDT with the DDT command. 

This time, after giving the 
* 3811HIJ[RETURN] 

command, you should see the beginning of your program 
displayed in DDT's main display window. Compare what 
you see to either your printed listing or the listing of 
Figure 1.2 to be sure that all is okay. 

At last we are ready to try debugging our little 
program. 

The first thing we will do is single step through the 
first part of our program. At this time, push the 
[OPTION] key one time. What happened? Presumably, the 
')' is now pointing to location 3802. Also, the value 
of the PC (displayed under the letters 'PC') should be 
3802. Notice expecially that the A-register now 
contains E0. In other words, we just executed the 
instruction 'LOA #$E0' which was at location 3800, and 
DDT is telling us what the new state of the CPU is. 

Now push [OPTION] four more times, observing changes to 
the PC, display window, and A register. If you have 
done everything the same way we did, the A-register 
should contain 2A and the PC should be set at 380C. IF 
NOT, CHECK TO BE SURE YOUR PROGRAM MATCHES OURS I 

Now comes the fun part. Push [OPTION] one more time. 
Did your display change dramatically? Remember, in 
section 1.1 we said there were a few limitations on 
display processing, etc.? We have just run into one of 
these limitations. 

With this instruction (a STore A-register into SDMCTL, 
the system DMA control), we altered the width of the 
Atari's "playfield". DDT normally uses a narrow 
display. We requested a "normal" display. DDT accepts 
our choice and allows the change in display formats. 

Surprisingly, 
are willing to 
you can even 
(Simply ignore 
line.) 

DDT continues to function I And, if you 
ignore some of the junk on the screen, 

read and understand most of the display. 
the last 8 charactr positions on each 

--06--



We could "fix" the display (by pushing the [SELECT) 
button twice), but let us NOT do so at this time. (If 
we did, we wouldn't be able to see what happens next.) 

Push the [OPTION) key four more times. Presto, an Atari 
"player" stripe full of character shapes appears. Since 
this is a demo of ' OOT, not an explanation of the Atari 
hardware characteristics, we don't want to spend too 
much time here explaining what has happened, but a very 
brief explanation will probably help you if now if you 
are not experienced with Atari hardware . The 
explanation which follows is given by address(es) from 
our little program. 

3800-3804 By using the built-in character set 
as player 'data' we eliminate the 
to make player shapes for this demo. 

3805-3809 This is the same as BASIC XL's 
PMCOLOR 0,4,0 and similar to 
SETCOLOR 0,4,0 

380A-380E We enable players and use a "standard" 
width playfield (character display) 

380F-38l3 This is a "must", to enable the player 
data registers. Actually, at this 
time the player is turned on and 
active. It's simply too far left of 
the screen to see. 

3814-3818 Move the player stripe to horizontal 
position 100, which is a little left 
of the middle of the screen. 

Now simply hold down the [OPTION] key. Watch the 
display of the registers. In particular, watch the 
values for the X and Y registers (displayed under the 
letters 'X' and 'Y'). Y seems to be decreasing at about 
one count per second. When it gets to zero, X is 
incremented and the player is moved right a little bit. 
Why? Because we stored X in the horizontal position 
register for our player. 

If you continue to hold down [OPTION), the process will 
continue, albeit very slowly, and the player will move 
right across the screen. When you are tired of watching 
this, release the [OPTION] key. 

Let's try something new. Push the 'I' key. What 
happened? Actually, what you are seeing is the same 
thing you saw when you held down the [OPTION] key, it's 
just happening much faster. You get to watch the 
registers changing, the instruction being executed 
moving (apparently up and down in the DEY loop, but 
that's an illusion), and the resultant movement of the 
player. Again, when you are tired of this, push the 
[BREAK] key. 

--07--



So now we have seen two different speeds of instruction 
interpretation. But there is yet a third. First, 
though, push the [SELECT) key twice to restore DDT's 
normal display. 

Again, enter the command sequence: 
* 3S00[RETURN] 

And the PC and '>' displays should both again refer to 
location 3S00. Push the [SELECT] key. The MAC/65 
screen should reappear, just as you left it. CAUTION: 
you are NOT back in MAC/65J This ' simply demonstrates 
the independent screen display of DDT. Cute, yes? 

Now, very carefully, push just the 'I' key. Once again, 
the player should appear and start moving across the 
screen. But now it is much, much faster. Why? Simply 
because DDT knows that it does not need to continually 
update its display of the registers, instructions, etc. 
Yet STILL your program is being interpretedJ 

When you 
control. 

are ready, press [BREAK] and DDT will regain 
For our last experiment, let's enter the DDT 

command sequence: 
G 3S00[RETURN] 

Again, remember that DDT puts the space in for you. Do 
NOT type it in. 

What happened? Presumably you have a 
smeared player moving impossibly fast 
display. This demonstrates the true speed 
language: the TV screen is not fast enough 

very messy, 
across your 
of assembly 

to keep upJ 

Push [CTRL][ESC] (hold down the [CTRL] key while pushing 
[ESC]). You should be back in DDT. 

One final experiment: use the DDT command sequence: 
E 38lA[RETURN) 

to move the display pointer '>' to location 3SlA. 
enter the sequence: 

o 00[RETURN) 
which alters the contents of 3SlA. Finally, again 
the command: 

G 3S00[RETURN] 

Then 

use 

And observe the player, 
rapidly across the screen. 
the slowest we can move 
single register delay loop 

in more visible form, moving 
Believe it or not, this is 

the player if we use a simple 
(the code from 3818 to 3810). 

And now we are done with our demonstration. You may use 
[CTRL][ESC] to get back to DDT. Use '0' to return to 
MAC/65. Or simply reboot your system if you are done 
using DDT at this time. 

--0S--



Section 2: THE DDT SCREEN DISPLAY 

The DDT Screen Display shows a user the i nternal state 
of the machine. The display screen is d i v i ded i nto 
several displ~y areas which show different aspects of 
what is going on inside the computer. 

Please refer to Figure 1.1 in the previous section for a 
rough picture of a typical display. Remember, to view 
the DDT display simply type the command 'DDT' from the 
editor of MACj65. 

The display areas are called : 

- REGISTER DISPLAY 

- DISPLAY WINDOW 
- BREAKPOINT TABLE 

- COMMAND WINDOW 

Shows the current contents 
of the 6502 registers 
A window into memory 
Shows the settings of 
DDT's breakpoint registers 
Where you enter DDT 
commands from the keyboard 

The following sections describe each of these display 
areas in more detail. However, for a full understanding 
of the capabilities of these deceptively simple 
displays, you must read this entire manual. And, of 
course, you should try using DDT. Only then will you 
understand how these displays can be used to their best 
advantage. 

--09--



2.1 Register Display 

The left side of the lowest part of the display screen 
is used to display the current contents of the 6582 
processor registers. Excepting that the status flag 
register is shown on the right side of the lines next to 
the bottom, on the same line as the breakpoints. 

Whenever DDT is entered, the contents of the processor 
registers are copied into register shadows which are 
then displayed. These shadows are used to restore the 
6582 registers before control is released back to the 
program being tested. 

In the next to last line of the DDT display, the names 
of the 6582 registers are displayed. The current 
user-program values (contents) of these registers are 
shown (in hexadecimal notation) in the Register Display 
area directly beneath their names: 

PC Program counter 
A • Accumulator 
X X index register 
y = y index register 
S Stack pointer 

Excepting for the PC, the values (contents) shown for 
these registers are all single byte values, thus 
displaying two hexadecimal digits. This is, of course, 
because all registers on the 6582 CPU chip are a single 
byte in size . The sole exception is the Program Counter 
(PC), which is 16 bits (two bytes) in size and is 
displayed with four hexadecimal digits. 

Not shown in the basic Register Display area is the 
processor status register. In order to allow you to 
more easily view and understand the value of the status 
register, it is shown in binary form. That is, each bit 
of the status register's contents is displayed in °a 
special area of the DDT screen. 

The legend "NV BDIZC" on the screen indicates that the 
bit values shown directly under the legend correspond to 
the various CPU status bits. In particular, the letters 
stand for (and the bit values are to be interpreted as): 

N Negative flag 
V Overflow flag 
B BRK instruction flag 
D Decimal mode flag 
I - Interrupt disable flag 
Z Zero flag 
C Carry bit 

The blank in the legend (and the corresponding bit under 
it) is an unused bit in the 6582 status register and 
should be ignored. 

--18--



2.2 Display Window 

The display window forms a window into the system memory 
address space. This window is located in the top 
portion of the display screen, and occupies most of the 
screen. The window is set to an arbitrary address upon 
entry to DDT, but the initial address shown in the 
window may be changed by sever~l commands (as described 
in later sections). 

This display window may be thought of as having one of 
two possible filters in front of it. 

The Disassembly Filter 

The first filter, which is set upon initial entry to DDT 
is a disassembly filter. A GREATER THAN sign (» points 
to what is called the current position. 

In the disassembly display, each line from the current 
position down is shown in a similar format: the 
hexadecimal address of a locat i on, its contents and then 
a disassembly readout. Standard 6502 mnemonics are 
used, with conventional address mode indications. 

Note that the NCR 65C02 additional instructions and 
address modes are supported . 

Several features have been added to aid debugging . If a 
mnemonic is shown in inverse video , it indicates that a 
breakpoint has been set at that location. In fact, if 
you look at the actual contents of that location, it 
will be a 0. 

If the mnemonic in inverse video is a BRK instruction, 
that particular BRK instruction was not placed there by 
DDT. This would occur, for instance, in looking at 
memory that contains all zeros. 

Secondly, if the instruction is one of the branch 
instructions, the computed target branch address is 
shown. An arrow (t or +) is used to indicate the 
direction of the conditional branch. 

The Hexadecimal Filter 

The second filter is a hexadecimal filter. This filter 
causes the display window to show the hexadecimal value 
and ATASCII representation of up to 40 memory locations. 
Again, the> sign indicates the current position. 

If the hexadecimal filter is in place, each line after 
the current position line will start on an even 4 byte 
boundary. 

--11--



This means the current position line can have 1 to 4 
values on it. The current position line values will 
always be left justified. 

2.3 Breakpoint Table 

The Breakpoint table is located just above the register 
display. 

There are four user definable breakpoints (labeled 
'BKPl', BKP2', 'BKP3' and 'BKP4' in the display), each 
of which will be shown with its current setting. 

If a register is clear (i.e., not set), then the value 
shown will be ~~~~. 

If a breakpoint register is set, the value in that 
register will be the location (address) in memory where 
DDT has placed a BRK instruction. 

2.4 Command Window 

The extreme right hand part of the bottom of the screen 
is devoted to the command window. This is the area that 
shows the command that a user is typing in. 

Often, a DDT command will consist of simply a single 
keystroke. Since DDT executes commands very quickly, 
you may never see the key appear in the command window. 
Be assured, however, that every key you type (other than 
the [OPTION], [SELECT], and [START] buttons) is echoed 
in this window. 

Note that DDT commands requiring a following value, 
etc., automatically display a space after the first 
keystroke you type. This is for ease of understanding 
only. You do NOT type the space. 

--12--



Section 3: An Overview of the DDT Commands 

The command interpreter allows a user to issue keyboard 
commands to DDT. You may recall from Section 2 that the 
command window is shown in the lower right hand portion 
of the display screen. 

Each DDT command requires only a single keystroke. If 
the ke~ typed is not a valid DDT command, it will be 
ignored. If a key is a valid command and requires no 
additional arguments, the command which the key 
represents is executed immediately. Again, recall from 
Section 2 that most DDT commands execute so quickly that 
you may never see the command key echoed in the command 
window; but it really does go there, however briefly . 

Some DDT commands, though, require one or more 
additional arguments. If you request a DDT command 
which needs one or more parameters, DDT will wait for 
you to enter the arguments it needs before proceeding. 

SPECIAL NOTE: DDT 
key when i t echoes 
do NOT type the 
automatica l ly. 

always puts a space after the command 
the key in the command window. You 

space key. DDT places it the r e 

COMMENT: In addition to the keyboard commands, DDT 
understands three "pushbutton commands" , which are 
described in Section 5. 

3.1 A Summary of the Keyboard Commands 

The DDT Keyboard Commands are : 

B <l,2,3,4>,<addr> • . (l] 
o <hstring> .. • • . •... (2J 
E <addr> ••.•.•.•. •.• [3J 
G <addr> •.••..• • ..•• (4] 
I • • •.•••• • •• • •.• • •• (5 J 
M <addr><addr><len> . (6J 
N ••• • • • • • • •• •• • •••• (7] 
o • .. • • • ••. .• • • •• •• • (8] 
R <P,A,X,Y,S>,<val>.(9J 
S <hstring> • •..... . . (le] 
W .•.• .. .• • . •. •... • . [llJ 
+ ... ... ..... .. ..... (12] 
t . .. . .... .. ... . . . .. (13J 
* <addr> ...••..• • ••. (14J 

Breakpoint 1-4 set to given addr 
Deposit hex string 
Examine address addr 
Go at address addr 
Interpretive mode 
Move memory 
Next instruction 
Ouit, return to MAC XL 
Register selected receives val 
Search for hex string 
Window filt er toggle 
Move d i splay window down/higher 
Move display window up/lower 
Set Program counter 

In the list above, the numbers in squa r e brackets (e.g . , 
[3) indicate the subsection number i n chapter 4 where a 
full description of the command may be found . 

The abbreviations enclosed in <ang l e brackets> are 
described in the LEGEND (in section 3.2), starting on 
the next page . 

--13--



3.2 Legend 

In the summary of section 3.1, certain abbreviations 
were enclosed in angle brackets (e.g., <addr». In this 
section we explain the meanings and legal range of 
values for the data these abbreviations represent. 

Also, these same abbreviations are used in Section 4, 
where each DDT command is described in detail. 

You may recall that the abbreviations were as follows: 
<1,2,3,4> <addr> <hstring> <val> <len> <P,A,X,Y,S> 

We explain these abbreviations in two groups and then 
follow with some comments about delimiters. 

3.2.1 Specific Selections: <1,2,3,4> and <P,A,X,Y,S> 

When the commands 'B' or 'R' are used, each expects to 
be followed immediately by a single character. The 
characters between the angle brackets are the ONLY 
characters which will be accepted by DDT in each of 
these cases. 

That is, if you type a 'B' as a DDT command, you MUST 
follow it with a '1', a '2', a '3', or a '4'. Any other 
characters are illegal. 

If you type in the wrong character (e.g., you type 'B4' 
when you meant to type 'B3'), you may push the delete 
(back space) key. DDT will back up and delete the 
offending entry, and you may re-enter it. 

See the descriptions of the 'B' and 'R' commands in 
Section 4 for more details. 

--14--



3.2.2 Hexadecimal Values: <addr>, <val>, <hstring>, <len> 

First, we must note that the abbreviations <addr>, 
<byte>, <hstring>, and <len> all represent hexadecimal 
values which you, the user, must type in. When DDT is 
expecting a hexadecimal value, it ONLY recognizes the 
characters ~,1,2,3,4,5,6,7,8,9,A,B,C,D,E, and F (the 
traditional hexadecimal ' 'numeric' characters). 

Specifically, DDT expects a certain number of hex 
digits, as noted in the following list: 

<addr> 

<byte> 

<hstring> 

<len> 

address value, 1 to 4 
digits (i.e., 2 bytes) 

a single byte value, 
hexadecimal digits 

hexadecimal 

1 or 2 

a hex string up to 12 digits long 
(i.e., 6 bytes) 

a two byte length specification, 
must be either 3 or 4 hex digits 

Generally, although DDT will accept fewer than the 
max1mum number of digits, it will NOT accept MORE hex 
digits than it expects. Thus, if the legend <addr> 
appears in the summary of a DDT command, you will 
usually find that you will be unable to enter more than 
4 characters (each of which must, of course, be a hex 
digit). 

You can however, delete characters, and then enter new 
characters. Deleting back past the starting point of 
the value field will result in the previous item in the 
command being erased. 

There are a couple of special cases in the above rules 
about field sizes, but they will be clearly described in 
Section 4, where individual commands are detailed. 

--15--



3.2.3 Delimiters 

There are two usages for delimiters. 

First, the commands 'B' and 'R' require both a specific 
selection and a hexadecimal entry. You MUST separate 
the selection from the hex entry. 

You may use either a [SPACE], a [COMMA), or a [RETURN) 
as a delimiter (separator). However, whichever you 
choose, DDT always DISPLAYS a comma as the delimiter. 

Second, every hexadecimal value must terminated by a 
delimiter (except see Section 3.3 for the special cases 
of '.' and ')'). If DDT did not wait for such a 
delimiter, you would not be able to correct mistakes. 

Again, you may use a [SPACE), a [COMMA), or a [RETURN]. 
Since a hexadecimal value is always the last item in the 
command entry, your delimiter is NOT displayed in the 
command window. Instead, the command is immediately 
executed. 

Once a command has been executed, the command window is 
cleared to make room for your next command • 

3.3 Special Characters I •• ' and • >' 

For input convenience, there are two special characters, 
'.' and ')'. These are used as shorthand ways of 
entering addresses (i.e., where the summary above calls 
for an <addr». 

'.' means the current value of the PC (as you might 
expect if you are familiar with 6Se2 assembly language). 
Generally, when an <addr) is called for, you may type 
just a single asterisk (.), and DDT will supply the 
current value of the PC (as displayed in the register 
display) for you. 

Similarly, ')' means the current position of the Examine 
window pointer (the ') ' symbol on the screen). Anytime 
an address is expected, you may type just a single 
greater than sign (», and DDT will supply the address 
which the Examine window pointer (» is pointing to. 

In the command descriptions in Section 4, special note 
will be made if either or both of these characters are 
not legal for a given command. 

SPECIAL NOTEI When either of these special characters is 
used as shorthand for an address, the command is 
immediately executed. DDT does NOT expect nor wait for 
a delimiter in this case. 

CAUTION I Note that '.' is itself a legitimate DDT 
command. Do NOT confuse its usage as an address marker 
with its usage as a command. 

--16--



Section 4: Command Descriptions 

In this section, we present a more detailed description 
of each of the DDT keyboard commands . For the meaning 
and legal values of items enclosed in angle brackets 
(e.g., <addr», please refer to Section 3.2. For usage 
of delimiters (shown in this section as commas), see 
Section 3.3. 

The commands are presented in alphabetical order, as 
presented in the summary table in section 3 . 1. 

4.1 B -- Set or Reset a Breakpoint 

Format: 

Examples: 

B <1 ,2,3,4>,<addr> 

B 1,4000 
B 1" 
B 2,* 
B 4,> 

You use the Breakpoint command to set (or reset) one of 
DDT's four breakpoint registers to a memory location 
(presumably an instruction byte) of your choice. 

Note that two values (the breakpoint register number, 
and the breakpoint location) are required for this 
command. Both fields must be terminated with a 
delimiter. 

To enter the command given in the first example, above, 
you could type 'B' then '1' then SPACE then '4000' then 
RETURN. (Remember, though, that all delimiters--SPACE, 
COMMA and RETURN--are treated identically . Remember, 
also, that DDT automatically supplies the space 
following the B. You do not type it in.) 

If a value other than a 1,2,3, or 4 is entered for the 
breakpoint register, it will usually be ignored. If, 
however, you type in some other valid hexadecimal digit, 
the command will be terminated when you enter the 
following delimiter . 

When a breakpoint is set, the location you specified 
shows up in the breakpoint register display under the 
breakpoint register number you specified. 

If an Examine command i s issued to look at a 
memory where a breakpoi nt has been set, 
(instruction code) value will be seen, even 
proper mnemonic is shown in the disassembly. 

--17--

location in 
a ' 00' data 
though the 



Also, if a breakpoint is set at an Examined location, 
the mnemonic will be shown in inverse video. This is a 
special feature of DDT, to make it easier for you to 
graphically see where a breakpoint is Eet and how. 

If a breakpoint register is already in use when - a new 
breakpoint is requested, the instruct.ion at the old 
breakpoint location is first restorE:d to its original 
value. 

To clear a breakpoint register and I·estore the source 
code, type any delimiter after selecting the desired 
breakpoint register (e.g. typing 'B' then 'I' then 
COMMA then COMMA will clear breakpoint 1 and restore the 
source code). 

Trying to clear a breakpoint that is not set will not 
harm anything. Note, however, that trying to set a 
breakpoint in ROM, in hardware registers, or in 
non-existant RAM will have unpredictable (and possibly 
disastrous) results. 

SPECIAL NOTE: Remember, you may use ,*, and '>' as 
shorthand notations for the current value of your PC and 
the display window pointer. Thus you might examine 
memory until you find a location where you want a 
breakpoint. Then simply enter the command 

B 2,> [RETURN] 
(as an example only) to set breakpoint number two at the 
displayed location. 

COMMENTARY: Physically, a 'gg' value (a BRK instruction) 
is stored in memory at the requested location. When DDT 
performs a disassembly and encounters a BRK instruction, 
it searches its breakpoint table to see if it had set 
that particular BRK. If so, it recovers the instruction 
for the disassembly but displays the mnemonic in inverse 
video. 

--18--



4.2 0 -- Deposit value(s) in memory 

Format: o <hstring> 

Examples: o ~ 
o 313233343536 
o 1234 

The Deposit command is used to place one through six 
in memory. 

bytes 

A string of hexadecimal values (up to 12 characters, 6 
hex bytes) may be entered. The values entered will be 
placed in successive locations starting at the current 
position indicated in the display window (i.e., the 
address pointed to by the '>'), replacing whatever was 
there. 

The input string is decoded two characters per hex byte 
at a time. If there is an odd character left at the 
end, it will be interpreted as the low order nibble of a 
hex value. 

For example, entering a string of 0lAAB0 will result in 
three bytes (01, AA, and B~) being placed in memory. 
However, entering 01AAB will result in ~l, AA, and 0B 
being deposited. 

Note that depositing a byte or a series of bytes will 
NOT move the display window. This must be done with the 
examine or the move window up or down commands. 

SPECIAL FEATURE II 

DDT is able to switch screens by saving 13 locations the 
operating system uses in managing the system graphics. 
Thus, before each value is deposited, it is examined to 
see if it should be deposited to these graphics 
locations. If so, the value is placed instead in an 
internal save table . Thus, for example, you can deposit 
values directly to the color shadow registers and affect 
the color of the user screen and not the DDT screen. 

See Section 8.5 for a list of the locations saved in 
this fashion . 

--19--



4 . 3 E -- Examine memory 

Format : 

Examples ": 

E <addr> 

E 5""" 
E * 
E " 

The Examine command is used to set the display window to 
view an area of memory. The extreme left hand edge of 
the display window has a GREATER THAN sign (» in the 
3rd row. This points to what we refer to as the 
"current position" in the display window . 

Unless you have used the 
current position will be the 
last 'E ' command. 

';" or 
address 

't, commands, the 
entered via the 

Note that 
the display 
instruction 
command. 

the 'E' command does NOT change the state of 
window filter, nor will it affect which 
will next be executed by a single step 

Since you may specify any arbitrary address as the 
location to be Examined, and (if you are using the 
disassembly filter) since you may accidentally 
disassemble a nonsense intruction byte, we recommend one 
or more of the following: 

1. Examine only locations known to contain valid 
instruction bytes. Refer to a printer listing 
to be sure you are doing so. 

2. After using 'E', move the display window up 
(lower in memory) a few bytes and then back down 
(via the ,t' and ';.' commands), to ensure 
that you are displaying instructions which are 
on true instruction boundaries. 

3. Examine a few bytes ahead of where you really 
want to be. Then move down (via the ';.' 
command) to the proper position. 

(See also the SPECIAL NOTE in Secti9n 4.2.) 

--2"--



4.4 G -- Go to a Program at a Given Address 
--------------------------------------------
Format: 

Examples: 

G <addr> 

G SeIeIeI 
G * 
G > 

The Go command is used to begin execution of your 
program at a specific location in memory. 

Before control is transferred ·to this location, several 
actions take place: 

1. All registers are updated based upon the current 
contents of the displayed registers. 

2. The 13 locations saved for the graphics display 
(see Section 4.2, above, and Section 8.5) are 
restored, thus restoring your display and 
removing DDT's display from the screen. 

3. Vertical Blank Interrupts and Display 
Interrupts are BOTH enabled. 

List 

Obviously, since Going to your program can be dangerous 
(e.g., your program may wipe out all of memory, attempt 
to illegal I/O, or other miscellaneous nasties). We 
therefore urge caution on your part (including, at the 
least, saving your latest version of your program to 
disk or cassette) before using this command. 

For all intents and purposes, once you issue a Go 
command your program has complete control of the Atari 
computer. There are two methods of returning to DDT: 
(1) If your program executes a BRK instruction (a zero 
instruction byte), DDT is entered at its breakpoint 
entry (see Section 7.3). (2) If you push [CTRL][ESC] 
(hold down the [CTRL] key while hitting (ESC]), DDT is 
entered at its "flash" entry point (see Section 7.2). 

Method 1 is the most common method and is commonly used 
when debugging. Method 2 is an emergency method, 
reserved for when your program starts looping and 
nothing else will get you out. 

Breakpoints are discussed in some detail in Section 6. 
The "Flash" entry point to DOT is discussed in Section 
7.2. 

NOTE: The special command sequence 'G *' 
equivalent to pushing the [START] button. 
5.1 for usage of the [START] button. 

--21--

is exactly 
See Section 



4.5 I -- Interpretive Mode 

Format a I 

Example: I 

The Interpretive Mode command is used to place DDT in an 
automatic single step mode. 

Interpretive mode will run with either the user screen 
or the DDT screen being shown, but you pay a severe time 
penalty for selecting the DDT screen. After each 
instruction is interpreted, the screen display is 
updated if the DDT screen is turned on . The display 
window is automatically placed in the disassembly mode, 
and all registers are displayed along with the updated 
disassembly. 

Interpretive mode runs much faster if the user screen is 
selected, because DDT does not have to update it ' s 
screen if it is not active . See Section 5 . 2 for 
information on how to enable and disable your display 
screen when using DDT. 

Pressing the BREAK key halts the interpretive mode. 
Encountering and attempting to execute a BRK instruction 
halts the interpretive mode. 

COMMENTARY: When in interpretive mode, DDT attempts to 
execute your program as true to form as possible . To 
this end, DDT moves the instruction pointed to by your 
PC to a special working area and executes it at that 
location. Although, i f the instruction is one which 
transfers control (e.g . , JMP , JSR, BEQ, etc.), DDT truly 
"interprets" it. 

Also, before DDT executes each instruction, it restores 
all your registers to the values shown in the register 
display . After executing (or interpreting) the 
instruct i on, DDT restores the proper reg i ster values in 
the register display. 

SPECIAL NOTE 

t he way interpretive mode works , you MAY 
t hrough ROM-based code . You should NOT, 

attempt to interpret any real-time I/O code 
in ROM or not ) , including d i sk and other serial 

Because of 
interpret 
however, 
(whether 
I/O. 

--22--



4.6 M -- Move memory 

Format: 

Examples: 

M <addr><addr><len> 

M E~~e6~e~~4e~ 
M 6ee~6~~1~~4~ 

The Move memory command simply does what its name 
implies: it moves one or more bytes of memory from one 
location to another. 

This command requires 
values. Specifically. 
and the <len» MUST be 
put ANY delimiter(s) 
values. 

a somewhat special format for its 
all three values (both <addr>'s 
given. but you are NOT allowed to 

(including spaces) between the 

Both the <addr> values MUST be specified with EXACTLY 
four hexadecimal digits (using leading zeroes if 
needed) • 

The <len> may be any number from 3331 to 
disastrous results will obviously occur 
move all--or even major significant 
memory). but even <len> must be specified 
four hexadecimal digits. 

FFFF (though 
if you try to 
portions--of 

with three or 

The first <addr> given is assumed to be the 
"from" address. The second <addr> is 
destination or "to" address. And. of course. 
specifies the number of bytes to move. 

source or 
thus the 

the <len> 

Thus. the first example shown above will move $3433 
(1~24 decimal) bytes from memory location $E~3~ (through 
$E3FF--the main character set area of ROM) to memory 
location $6~e3 (through $63FF). 

DDT does NOT check for possibility of overlapping "from" 
and "to" memory areas before it does the move. so an 
attempt to use a Move as in the second example above may 
or may not work the way you expect it to. 

--23--



4.7 N -- Next 

Format: N 

Example, N 

The Next command is really a shorthand method of program 
tracing which combines some of the best features of 
breakpoints with the ease of interpretive mode. 

Using the Next command is equivalent to visually 
examining the disassembly display, determining the 
address of the next instruction (after the one the '*' 
is pointing to), setting a breakpoint at that address, 
and (finally) executing a 'G *' command (or [START] 
pushbutton command--see Section 5.1). 

Most of the time, then, using N is 
interpreting a single instruction (as 
the [OPTION] button--see Section 5.3). 
are several important differences: 

equivalent to 
may be done via 
However, there 

1. The Next command uses its own internal 
breakpoint and places it after the next 
instruction to be executed. This internal 
breakpoint is never displayed. 

2 . The user's screen is restored (as 
command, Section 4 . 4, above) 
instruction is being executed. 

with the Go 
while the 

3. The instruction is truly executed, not 
interpreted, so you may not use 'N' when your PC 
pOints to ROM code. 

4. If the instruction being pointed to by your PC 
(the '*') is a JSR, then the entire subroutine 
will be executed before DDT regains controll 
This allows you to execute ROM code or real-time 
I/O code at full processor speed and yet view 
the results immediately after the called routine 
finishes. 

CAUTION: If your subroutine performs an error 
exit and does not "properly" return (presumably 
via an RTS instruction) to the calling program, 
the breakpoint set by 'N' may never be executed. 

5. If the instruction being pointed to by your PC 
is a JMP or branch instruction, you should 
usually NOT use the 'N ' command, since the 
program may never reach the point where the 
internal breakpoint has been set. 

--24--



4.8 Q -- Quit DDT, Reenter MAC/65 

Format: 

Example: 

Q 

Q 

There is nothing fancy about this command. It is simply 
a means of exiting from DDT back to MAC/65. 

Before transferring .control to MAC/65, DDT restores 
MAC/65's zero page locations and its critical page 4 
locations (as described in Section 8.1). 

DDT also removes all its own breakpoints from user code 
before Quitting and "unhooks" its Flash entry point from 
the system keyboard routine (see Section 7.2 and 8.2). 

Upon re-entry to DDT (via MAC/65's "DDT" command), the 
user should restore any critical breakpoints by hand. 

--25--



4.9 R -- Register Modify Command 

Format: 

Examples: 

R <P,A,X,Y,S>,<val> 

R A,00 
R X,FF 
R P,01 

The Register command is used to modify the contents of 
any of the 6502's registers except the PC. 

After typing 'R', only a 'P','A','X','Y', or'S' will be 
allowed. Any other character will be ignored. No other 
character other than [DELETE] .will be allowed until a 
delimiter is typed. 

'P' indicates the processor status register (which is 
displayed in binary form under the "NV BDIZC"). 'A' , 
'X', and 'Y' are the normal 6502 registers of the same 
names. 's' represents the value of the stack pointer. 

After entering the register designator , only two hex 
digits (i.e. one byte) will be accepted. Note that 
this command requires two separate values and two 
separate delimiters. 

WARNING I Indiscriminate use of this command to change 
the stack value (the'S' register) could make it 
impossible for DDT to continue to function without being 
reset. 

--26--



4.19 S -- Search for a String of Bytes 

Format: S <hstring) 

Examples: S 31 
5 5F5F 
S 809993 

The Search command is used to locate a specific sequence 
of bytes in memory. 

You may enter a hex string of up to 12 characters which 
will be interpreted as up to 6 bytes. DDT will search 
for the string you specify, starting from the current 
position (as indicated by the ')' in the display window) 
upwards (increasing addresses) through memory. 

If the search is successful (the sequence of bytes is 
found), the display window will be repositioned (and the 
')' will point to the first byte of the found sequence). 
If it is unsuccessful, the command window will simply be 
cleared for the next command, and the display window 
will not move. 

If no value is entered after the'S' (i.e. just a 
delimiter is typed), the previous search string will be 
used . This allows for easily finding multiple 
occurences of the search string. 

The three examples given above might be interpreted as 
follows: 

S 31 find a '1' character 
S SF SF find a pair of question marks ('11 ' ) 
S 809993 -- find a 'STA $9390' instruction 

--27--



4.11 W -- Window Change Command 
--------------------------------
Format: W 

Example: W 

The Window command is used to change the "filter" over 
the display window. 

You will recall from Section 2.' that there are two 
different "filters" available to you: a disassembly 
filter and a hexadecimal filter. 

The 'w' command simply toggles between the two. 

Note that certain commands will automatically change the 
filter to their "desired" state. You may use the 'w' 
command to change the filter back to the one you wanted 
if your choice does not correspond to DDT's. 

4.12 + -- Move Display Window Down (Higher in Memory) 

Format: 

Example: 

+ 
+ 

The Move Window Down command is used to change the 
memory being displayed in the display window. 

Specifically, the ')' pointer will be changed to point 
to a location higher in memory. How far the window and 
pointer are moved depend on which filter (hexadecimal or 
d isassembly ) is in place at the time the key is pushed. 

I f the hexadecimal filter i s in place, pushing the 'v' 
k ey will move the window down (higher in memory) by one 
byte. 

I f the disassembly filter is in place, 
k ey will move the window down (higher in 
f ull i nstr uction (which may be one , 
bytes). 

pushing the 'v' 
memory) by one 

two , or three 

SPECIAL NOTE : You should NOT hold down the CTRL 
( control) key when using this command. DDT recognizes 
' .' as the ' down arrow key' even without CTRL pressed. 

ALSO NOTE: Auto Repeat on the keyboard IS active , so 
t hat continuing to press the 'v' key will continue to 
move the window down. 

--28--



4.13 t -- Move Display Window Up (Lower in Memory) 

Format: 

Example: 

t 

t 

The Move Window Up command is used to change the memory 
being displayed in the display window. 

Specifically, the '>' pointer will be changed to point 
to a location one byte lower in memory. 

Since an instruction could be 1.2 or 3 bytes long. you 
must be careful to watch and ensure that you remain on 
instruction boundaries if the disassembly filter is in 
place. 

SPECIAL NOTE: As with the '+' key (section 4.12. above), 
you should NOT use the CTRL key to select ,t, and auto 
repeat IS active for 't'. 

4.14 • -- Set Program Counte~ 

Format: • <addr> 

Examples: • 5000 
• > 
• 

The command is used to set the program counter. 

After you enter the '.' command, DDT expects you to 
enter an address which will become the new PC contents. 

After changing the PC, you may use the 'I' or 'N' 
commands or the [OPTION] or [START] buttons to begin or 
continue program execution (or interpretation) at the 
new location shown in the PC portion of the register 
display. 

DDT always selects the disassembly filter after 
executing the '.' command and always sets the display 
window pointer (» to the same address as the PC. 

Note that you may type '.)' as a shorthand notation to 
set the PC to the address currently being shown in the 
display window (as indicated by the ')' pointer). 

Note also that you may simply type '.' followed by 
[RETURN] to force the display filter to hexadecimal and 
force the display window pointer equal to the PC. This 
Can be thought of as a shorthand notation for 'E·' (see 
Section 4.3) possibly followed by 'w' (see Section 
4.11). 

--29--



--3"--



Section 5: Push Button Controls 

The three ATARI console push buttons are used by DDT for 
useful and special operations. In many ways, you may 
think of these butons as extensions to the commands 
given in Section 4. 

Each console button has a unique use, which is described 
below. 

5.1 The START Button 

A press of the START button is usually indicated in this 
manual by the notation [START). 

[START] is used to continue code execution at the 
location indicated by the PC register. 

Your screen display is restored and all 65e2 registers 
are updated with the current displayed contents before 
control is transferred. 

Pushing [START] is functionally equivalent to executing 
the command sequence ' G*', and we suggest reading 
Section 4.4 for more information on the Go command. 

5.2 The SELECT Button 

A press of the SELECT button is usually indicated in 
this manual by the notation [SELECT]. 

[SELECT] is used to toggle back and forth between the 
DDT screen and whatever screen dynamics were active 
before DDT was called and/or reentered (e.g., via a 
breakpoint) . 

An attempt has been made to allow for most alternative 
display features such as mixed Display lists, VB LANK 
routines , alternative character sets, display list 
interrupts, playfield size changes, and player-missiles. 
Thus, Whenever DDT is entered or reentered, the 
locations necessary to restore these features are 
"remembered" by DDT before DDT puts its own display on 
the screen. When you execute your program (via the 'G' 
command, the [START) button, or the 'N' command), DDT 
restores your screen display as well as it can (and it 
usually does pretty well). 

--31--



Generally, then, [SELECT] has only two primary purposes: 

1. When you simply wish to look at your display 
screen momentarily. 

2. When you wish to interpret your program (via the 
'I' command or the [OPTION] button) while 
keeping your display active instead of DDT's. 

5.3 The OPTION Button 

A press of the OPTION button is usually indicated in 
this manual by the notation [OPTION]. 

[OPTION] is used to "single step" the processor through 
your program. 

This causes the disassembly filter to be turned on, but 
will not automatically toggle the display screen . 
Holding down the OPTION button will continue to single 
step, at the rate of approximately two instructions per 
second. 

Excepting for the fact that only a single instruction is 
executed before a pause is made, the [OPTION] button 
"command" works identically with the 'I' (Interpretive 
Mode) capability. Therefore, see Section 4.5 for more 
details on interpreting code via DDT. 

Note that you may NOT interpret a BRK instruction. The 
interpreter will, for all intents and purposes, halt 
when it encounters a BRK. 

--32--



Section 6: Breakpoints and Breakpoint Processing 

One of the most common debugging techniques is to make 
use of a breakpoint. 

This manual 
breakpoints, 
4.7, and 8.4. 
overview on 
them. 

contains much additional information on 
so we refer you also to Sections 7.3, 4.1, 
This Section will attempt to provide an 

breakpoints as well as suggested uses for 

The fundamental mechanism of a breakpoint i 's fairly 
simpler 

1. When a running program encounters a 'BRK' 
instruction (a zero byte), the 6582 CPU simulates an 
interrupt (an IRO, not an NMI, except that the 'SEI' 
instruction can NOT disable 'BRK' interrupts). 

2. The only real difference between a true IRO and a 
BRK-simulated interrupt is that a BRK causes the 'B' 
bit (bit 4, $18) to be set upon entry to the 
interrupt handler. 

3. When the BRK-simulated interrupt occurs, Atari's OS 
uses the 'e' bit to recognize the fact and transfers 
control, via a RAM vector, to DDT. 

4. DDT's breakpoint entry simply saves all the user's 
registers (A,X,Y,Processor status, Stack, and the 
Program Counter). It then sets the display window 
pointer (» equal to the user's PC, selects the 
disassembly filter, saves the usual graphics 
information (see Section 4 . 2 and 8.5), and presents 
you with the typical DDT screen display. 

After a breakpoint has been encountered, and control has 
been transferred to DDT, there are several ways to leave 
DDT. The 'N' command (Section 4.7) will set a 
breakpoint at the next location and then continue code 
execution. [START] (section 5.1) simply continues code 
execution. 'G' (section 4.4) can be used to transfer 
control to another location. 

There are three ways to set a BRK i nstruction and 
thereby allow a breakpoint to happen. 

--33--



1. You can use the 'B' command (as described in Section 
4.1) to set up to four special DDT breakpoints. 
There are two advantages to this method: (a) DDT 
remembers the instruction which was at the location 
before you set the breakpoint, so when you reset or 
remove the breakpoint DDT can automatically restore 
the instruction for you. (b) The disassembly 
display shows your original instruction in inverse 
video, as a convenient reminder. 

2. You can actually store a zero 
instruction) in your code. You can do 
with the '0' (Deposit) command or 
assembling a BRK in you source code. 

byte 
this 
by 

(a BRK 
either 

actually 

3. You can use the 'N' command (Section 4.7), which 
automatically sets a BRK instruction in the byte 
which follows the current instruction. Again. as 
with the 'B' command. DDT remembers your original 
instruction and restores it without effort on your 
part. Note that you will never see the BRK placed 
by 'N', as it is automatically removed as soon as 
DDT recovers control. 

The best use of multiple breakpoints is to set one at 
every path in your program where you do NOT expect to or 
want to go (execute). That way. if your program takes a 
wrong turn, DDT will alert you by saying. "Heyl How'd 
we get to this breakpoint?" 

Also, of course, you will normally step through your 
code a little at a time, setting a breakpoint a little 
farther ahead each time. For this use, we recommend 
reserving a single breakpoint register (usually number 
1). Use the other registers (2 through 4) for the 
"side" or unexpected paths mentioned in the previous 
paragraph. 

When one of the breakpoints is encountered in 
intrepretive mode, it will halt the intrepretive mode at 
that point. 

--34--



Section 7: DDT Entry Points 

There are four ways of entering or reentering DDT: 

MAIN ENTRY 
FLASH ENTRY 
BREAKPOINT ENTRY 
RESET ENTRY 

Each is described separately below. 

Sometimes, it will seem that the computer has locked up 
and none of the Entry methods described below will work. 
Generally, this is because something has gone wrong in 
the program you are debugging, and it has modified 
certain critical memory locations. 

Disabling interrupts (executing an 'SEI' instruction) 
and/or modifying the interrupt vectors of Atari's OS are 
particularly insidious ways of destroying DDT's access 
to the system. And accidentally using the Move command 
incorrectly can obviously wipe out wholesale hunks of 
memory. 

These are obviously only some of the ways to effectively 
disable DDT, but we would hope the most users will not 
encounter any of them. It is usually only the more 
sophisticated and complicated programs which will be 
altering locations which DDT is sensitive to. 

7.1 Main Entry to DDT 

When you give MAC/65's editor the "DDT" command, DDT is 
entered at what we call its Main Entry point. 

Section 8.1 describes in some detail the process DDT 
goes through when it is entered. In particular, DDT 
saves the state of MAC/65 so that you do not lose your 
source code. 

See also Section 8.1. 

7.2 "Flash" Entry to DDT 

This entry point is provided to allow immediate reentry 
to DDT regardless of most other circumstances. 

When DDT is called, the operating system code that looks 
at the keyboard is modified so that it looks for a 
special character first, before handling normal keyboard 
input. 

--35--



The special character looked for is one which is unused 
by normal Atari operations: [CTRL] [ESC] 

In other words, to reenter DDT when your program is 
running, simply press both the Control and the Escape 
keys at the same time . 

When DDT's modified keyboard handler 
[CTRL][ESC] character, DDT is entered 
through the FLASH ENTRY point (which is 
equivalent to encountering ~ breakpoint). 

finds the 
immediately 
essentially 

Using the 'N' command or pressing START will return 
control to whereever the processor was at when the DDT 
special character was typed. 

For more information on the Flash entry mechanism, and 
some warnings about how you may inadvertant1y make it 
inoperative, see section 8.2 . 

7.3 Breakpoint Entry to DDT 

Breakpoint entries are the most common way of entering 
DDT. 

Once DDT has been entered via the Main entry, DDT's 
breakpoint handler is set up. Thereafter, anytime your 
program (or, for that matter, any program) attempts to 
execut e a BRK instruction (a zero byte), DDT is entered 
at i ts Breakpoint Entry . 

For more information on the use and characteristics of 
breakpoints, see Secti ons 6 and 4.1. 

7.4 RESET Entry to DDT 

I f DDT was active before you executed 
(e . g . , via the ' G' or 'N' commands 
button) , then pushi ng the [RESET] button 
control to DDT . 

your program 
or the [START] 
should return 

Obviously, if your program has scrambled enough 
locations which are vital to DDT and/or the Atari OS, 
then the RESET handling may never have a chance to 
occur. 

--36--



Section 8: Technical Details of DDT 

8.1 Interaction with MAC/65 

DDT is designed to be compatible with MAC/65 so that you 
can easily go from editing to assembling to debugging 
and so forth. 

Specifically, you enter DDT via the 'DDT' command from 
the MAC/65 editor. At that point, DDT saves certain 
memory areas which are critical to MAC/65's functioning 
in memory reserved by MAC/65 (and pointed to by MAC's 
'lomem' pointer--the first value given in the response 
to a 'SIZE ' command in MAC). 

When you use the 'Q' command to exit DDT and reenter 
MAC/65, DDT restores the critical mem~ry areas. If, 
during the course of your debugging sess~on with DDT, 
you have not changed any of the memory bounded by the 
low and high values given in response to MAC's 'SIZE' 
command, you will find your source code (if any) intact 
and ready to edit and/or (re)assemble. 

MAC/65 and DDT cooperate in another way: when you push 
the [RESET] button on the Atari keyboard (hopefully, 
only as a last gasp desparate measure), MAC/65 attempts 
to determine whether DDT or MAC had control when the 
button was pushed. If DDT had control, MAC 
automatically and immediately reenters DDT at a special 
RESET entry point. 

B.2 Keyboard Scanner 

During DDT initialization the system keyboard vector is 
redirected to a preprocessor which checks for the DDT 
FLASH ENTRY special character ( [CTRL] [ESC]) . If this 
character is seen, control transfers to the FLASH ENTRY 
point , otherwise control passes to the normal keyboard 
processing routine . 

Note that keyboard interrupts 
program alters or disables 
its vector), DDT will not be 
You mayor may not be able 
DDT. 

must be enabled. If your 
the keyboard interrupt (or 
able to regain control. 
to push [RESET] to reenter 

Not that this implies that the 'SEl' instruction will 
also disable the DDT keyboard scanner. This is somewhat 
important, but since 'SEl' disables all keyboard 
activity we would hope it is an instruction you will use 
with care. 

--37--



8.3 DDT's use of System Resources (RAM and ROM) 

DDT itself occupies a portion of the MAC/65 cartridge 
space. When it is called, the upper half of page zero 
and certain locations in page four ($4ee-$4FF, but not 
all of this range) is saved for later use by MAC/65 (see 
8.1, above). 

While DDT is 
are used by DDT 
Otherwise, the 
may be used. 

running, then, locations $80 through $AF 
and should be avoided by user programs. 
locations in the upper part of page zero 

Also, DDT takes the RAM area from $3FD through $57F for 
its display screen, breakpoint registers, etc. Since 
the cassette buffer occupies $3FD to $47F, this implies 
that you can NOT do cassette I/O from within DDT (though 
you may load a tape from ¥AC/65 before entering DDT or 
save to a tape after exiting). 

Remember, also, that MAC/65 is NOT capable of assembling 
directly into page six ($600 through $6FF). You may, 
however, assemble into other (higher and safer) memory 
with an offset (see the MAC/65 manual, Section %.%%) and 
then use DDT's Move command to place the resultant code 
in page six. 

8.4 Things to Watch Out For 

There are a few areas where you have to be careful in 
using the DDT cartridge. In general, these occur when 
you are single stepping or running interpretively. 

If the code being interpreted alters the display list or 
does direct access to ANTIC or CTIA/GTIA, then you might 
end up with a scrambled screen. Usually this is non 
fatal, just distracting. (See our example program and 
debug session in Section 1 for an instance of just this 
occurrence.) 

To restore the normal DDT screen, press the BREAK key to 
halt the interpretive mode, then press SELECT twice 
(though doing so may turn off any players, etc., which 
you had made active). 

Trying to do I/O from disk or any other real time 
activity in either interpretive mode or single step mode 
will almost certainly not work. 

You should set up breakpoints around the real-time code 
so that this type of I/O is done in real time. For 
example, try using the "N" command anytime your code 
does a JSR to CIO or SIO. 

--38--



8.5 Graphics Location Saved by DDT 

Whenever DDT is entered (see section 7). it saves 
certain memory locations pertaining to user graphics 
before presenting its own display (also see Section 
4.2). The locations saved are all "shadow registers" or 
vectors in page two. The following are a list of the 
locations saved, by label, hex address, number of bytes 
saved, and very brief description. The labels given are 
those used in "Mapping the Atari" (from Computel Books) 
and in the Atari OS listings (part of the Atari 
Technical Manual set), and we refer you to those 
publications for more information. 

Label Address t bytes Description 
------- ------- -----------

VVBLKI $"222 2 VBI immediate vector address 
VVBLKD $"224 2 VBI deferred vector address 
SDLSTL $"230 2 Start address of display list 
SDMCTL $"22F 1 DMA control register 
GPRIOR $026F I Priority selection register 
COLORI $02C5 1 Color register 1 
COLOR2 $"2C6 I Color register 2 
COLOR4 $"2C8 I Color register 4 
CHACT $"2F3 1 Character mode register 
CHBAS $"2F4 I Character set base address 

If your program uses other system memory locations which 
are altered by DDT, or if your program changes graphics 
characteristics by direct changes to the Atari hardware 
registers, DDT will NOT be able to completely restore 
the screen display your program was exhibiting when DDT 
was entered. 

8.6 Using MAC/65 as a Mini-Assembler for DDT 

Those of you who have used other debugging tools may 
note that, while DDT has a fairly sophisticated 
disassembler, it lacks a built-in mini-assembler. 
Thanks to the integrated nature of MAC/65 and DDT, 
though, you may never even notice this omission. 

Let us suppose, for the moment, that you have just 
assembled a small to medium sized program from source 
code in memory, placed the object code in memory, and 
have entered DDT. When you discover an error in your 
code, you can simply pop back to MAC/65, change the 
offending code, re-assemble, and be back in DDT in a 
matter of a very few seconds. 

--39--



But What if the code you want to patch is NOT in memory 
or is not directly related to the source currently in 
memory. What can you do then? We suggest the following 
steps: 

Exit DDT via the Q (Quit) command. 
If there is a source program in MAC/65's edit 

buffer. type in "RENUM 11"'9,1" 
Type NUM 19.19. 
Enter your patch, using "*-" to control where 

the patch goes and " .OPT OBJ" to 
ensure the patch really ends up in memory 

Assemble via the "ASM" command. 
Go back to DDT (via "DDT". of course), and your 

patch is in place. 
NOTE: to get rid of your patch code without 

affecting your main program. you may 
type "DEL 1,999" to MAC/65. 

There ARE some things to watch out for if you use this 
method. Primarily. you want to ensure that MAC/65 
doesn't wipe out the program you are trying to debug. 
There are two possible ways this could happen. 

First. remember that MAC/65 destroys the lower half of 
page 6 ($699 through $67F). If you are using page six. 
then, you should use the Move command to move page six 
to someplace "safe" before going to MAC/65 (then move it 
back when you return to DDT). 

Second, the very process of editing (writing) even a 
small program will overwrite some of memory. However. 
we direct your attention to the MAC/65 LOMEM and SIZE 
commands. You can use LOMEM to set the bottom of the 
memory that MAC/65 will use. You can use SIZE to 
determine what memory MAC/65 is. indeed. using. We 
suggest. if you intend to use the method we have 
outlined. that you use LOMEM when you first enter 
MAC/65. 

The other major problem you can encounter relates to the 
way DDT saves the state of MAC/65 when it is entered. 
Since the two programs (and they really do operate as 
almost totally separated programs) share some of the 
same memory space. DDT saves part of page zero and part 
of page four ($89-$FF, $489-$4FF) when it is entered. 
It saves these locations at the start of MAC/65's 
"buffer" space. 

You can determine where the buffer space is by using 
SIZE: the first number displayed in response to SIZE is 
the hexadecimal address of this buffer. You can change 
where this buffer is by using LOMEM. 

--49--




	MAC/65 (Cover)
	Copyright - OSS Inc. (Rev 1.2)
	Preface
	Table of Contents
	Introduction
	Start Up
	Warm Start
	Syntax

	1. The Editor
	1.1 General Editor Usage
	1.2 Text Mode
	1.3 Edit Mode

	2. Editor Commands
	2.1 ASM: Assemble
	2.2 BLOAD: Binary Load
	2.3 BSAVE: Binary Save
	2.4 BYE: Exit to System
	2.5 DDT: Use DDT Debug Tool
	2.6 DEL: Delete Lines
	2.7 DOS: Exit to DOS
	2.8 ENTER: Enter an ATASCII File
	2.9 FIND: Find a Text String
	2.10 LIST: List a Program in Memory
	2.11 LOAD: Load a SAVEd Program
	2.12 LOMEM: Establish a New LOMEM
	2.13 NEW: Clear All Text
	2.14 NUM: Automatic Line Numbering
	2.15 PRINT: Print (Without Line Numbers)
	2.16 REN: Renumber Lines
	2.17 REP: Replace Text String
	2.18 SAVE: Save MAC/65 Source
	2.19 SIZE: Display Memory Usage
	2.20 TEXT: Use TEXTMODE
	2.21 ?: Hex/Decimal Conversion

	3. The Macro Assembler
	3.1 Assembler Input
	3.2 Instruction Format
	3.3 Labels
	3.4 Operands
	3.5 Operators
	3.5.1 Operators: + - * / \
	3.5.2 Operators: & ! ^
	3.5.3 Operators: = > < <> >= <=
	3.5.4 Operators: .OR .AND .NOT
	3.5.5 Operator: - (Unary)
	3.5.6 Operators: < > (Unary)
	3.5.7 Operator: .DEF
	3.5.8 Operator: .REF
	3.5.9 Operator: [ ]

	3.6 Assembler Expressions
	3.7 Operator Precedence
	3.8 Numeric Constants
	3.9 Strings

	4. Directives
	4.1 *= (and .ORG)
	4.2 = (and .EQU)
	4.3 .=
	4.4 .BYTE (and .SBYTE)
	4.5 .CBYTE
	4.6 .DBYTE
	4.7 .DS
	4.8 .ELSE
	4.9 .END
	4.10 .ENDIF
	4.11 .ERROR
	4.12 .FLOAT
	4.13 .IF
	4.14 .INCLUDE
	4.15 .LOCAL
	4.16 .OPT
	4.17 .PAGE
	4.18 .SBYTE
	4.19 .SET
	4.20 .TAB
	4.21 .TITLE
	4.22 .WORD

	5. Macro Facility
	5.1 .ENDM
	5.2 .MACRO
	5.3 Macro Expansion: Part 1
	5.4 Macro Parameters
	5.5 Macro Expansion: Part 2
	5.6 Macro Strings
	5.7 Some Macro Hints
	5.8 A Complex Macro Example

	6. Compatibility
	6.1 Atari's Assembler/Editor Cartridge
	6.1.1 .OPT OBJ / NOOBJ
	6.1.2 Operator Precedence
	6.1.3 The .IF Directive
	6.1.4 Zero Page Forward References


	7. Added 65C02 Instructions
	7.1 A Major Added Addressing Mode
	7.2 Minor Variations on 6502 Instructions
	7.3 All-New 65C02 Instructions
	7.3.1 BRA
	7.3.2 DEA and INA
	7.3.3 PHX, PHY, PLX, and PLY
	7.3.4 STZ
	7.3.5 TRB and TSB


	8. Programming Techniques With MAC/65
	8.1 Memory Usage by MAC/65 & DDT
	8.2 Assembling With an Offset: .SET 6
	8.3 Making MAC/65 Even Faster

	Appendix A: System Equates
	Appendix B: Some Useful Macros
	Appendix C: Error Descriptions
	===============
	DDT "Dunion's Debugging Tool" (Cover)
	Preface
	Table of Contents
	1. An Introduction to DDT
	1.1 What DDT Is
	1.2 An Overview of the Workings of DDT
	1.3 An Example of Using DDT & MAC/65

	2. The DDT Screen Display
	2.1 Register Display
	2.2 Display Window
	2.3 Breakpoint Table
	2.4 Command Window

	3. Overview of DDT Commands
	3.1 Summary of  Keyboard Commands
	3.2 Legend
	3.2.1 Specific Selections
	3.2.2 Hexadecimal Values
	3.2.3 Delimiters

	3.3 Special Characters '*' and '>'

	4. Command Descriptions
	4.1 B -- Set or Reset a Breakpoint
	4.2 D -- Deposit Value(s) in Memory
	4.3 E -- Examine Memory
	4.4 G -- Go to a Program at a Given Address
	4.5 I -- Interpretive Mode
	4.6 M -- Move Memory
	4.7 N -- Next
	4.8 Q -- Quit DDT, Reenter MAC/65
	4.9 R -- Register Modify Command
	4.10 S -- Search for a String of Bytes
	4.11 W -- Window Change Command
	4.12 [down arrow] -- Move Display Window Down (Higher in Memory)
	4.13 [up arrow] -- Move Display Window Up (Lower in Memory)
	4.14 * -- Set Program Counter

	5. Push Button Controls
	5.1 The START Button
	5.2 The SELECT Button
	5.3 The OPTION Button

	6. Breakpoints & Breakpoint Processing
	7. DDT Entry Points
	7.1 Main Entry to DDT
	7.2 "Flash" Entry to DDT
	7.3 Breakpoint Entry to DDT
	7.4 RESET Entry to DDT

	8. Technical Details of DDT
	8.1 Interaction with MAC/65
	8.2 Keyboard Scanner
	8.3 DDT's use of System Resources (RAM & ROM)
	8.4 Things to Watch Out For
	8.5 Graphics Location Saved by DDT
	8.6 Using MAC/65 as a Mini-Assembler for DDT

	MAC/65 (Back Cover)

