

^VALPAFl
INTERNATIONAL
3SOT E. 34W STREET
TUCSON, ARIZONA SS"713
soa-TSO-Tiai

valFORTH
T.M.

SOFTWARE SYSTEM
for ATARI*

valFORTH 1.1
T.M.

Software and Documentation

©Copyright 1982
Atari isa trademark ofAtari, Inc., a division ofWarner Communications. Valpar International

c

valFORTH
T.M.

SOFTWARE SYSTEM

wmiF&RTii hi
Stephen Maguire

Evan Rosen

(Atari interfaces based on work by Patrick Mullarky)

Software and Documentation

©Copyright 1982
Vafpar International

Purchasers of this software ,and documentation package are
authorized only to make backup or archival copies of the
software, and only for personal use. Copying the accompanying
documentation is prohibited.

Copies of software for distribution may be made only as speci
fied in the accompanying documentation.

VALPAR INTERNATIONAL

Disclaimer of Warranty
on Computer Programs

All Valpar International computer programs are distributed
on an "as is11 basis without warranty of any kind. The total
risk as to the quality and performance of such programs is with
the purchaser. Should the programs prove defective following
their purchases the purchaser and not the manufacturer, distributor,
or retailer assumes the entire cost of all necessary servicing or
repair.

Valpar International shall have no liability or responsibility
to a purchaser* customer, or any other person or entity with
respect to any liability, loss, or damage caused directly or
indirectly by computer programs sold by Valpar International.
This disclaimer includes but is not limited to any interruption
of service* loss of business or anticipatory profits or conse
quential damages resulting from the use or operation of such
computer programs.

Defective media (diskettes) will be replaced if diskette(s)
is returned to Valpar International within 30 days of date of sale
to user.

Defective media (diskettes) which is returned after the 30 day
sale date will be replaced upon the receipt by Valpar of a $12.00
Replacement Fee,

r

valFORTH 1.1 USER'S MANUAL

Table of Contents

I. STROLLING THROUGH valFORTH 1.1
A brief look at valFORTH 1.1

Page

a) ERRORS, RECOVERIES, CRASHES 1
b) FORMATTING AND COPYING DISKS 2

d) DEBUGGING 4

8 J L.U1 J J. ITIM e««»»K*»see0ae0»e»«*«e«»«« O

~J/ Ka TSJ* fl XV,/ O »«a»»»»«»««e«aa»9«»«<»«»«i«« ./

h) SOUNDS 10
•1) THE GREAT SCREEN SIZE DEBATE 10
j) SAVING YOUR FAVORITE SYSTEM(S) 11
k) DISTRIBUTING YOUR PROGRAMS '.' 11

II. THE FORTH INTEREST GROUP LINE EDITOR
The command glossary for the standard fig-FORTH line editor

III. CREATING DISKS FOR PRODUCTION

a) RELOCATING THE BUFFERS TO SAVE 2K+ . • 1
b) COMPILING AUTO BOOTING SOFTWARE 3
c) DISTRIBUTING YOUR PROGRAMS 4

IV. valFORTH LI SYSTEM EXTENSIONS

a) GRAPHIC SUBSYSTEM 1

c) SOUND GENERATION . 4
d) TEXT OUTPUT ROUTINES 5
e) DISK FORMATTING AND COPYING 5
f) valFORTH DEBUGGER ... 6
g) FLOATING POINT PACKAGE 7
h) OPERATING SYSTEM PACKAGE ... 13

V. valFORTH GLOSSARY

Descriptions of the entire valFORTH bootup dictionary

a) fig-FORTH GLOSSARY AND valFORTH EXTENSIONS . 1
b) valFORTH MEMORY MAP 28

VI. valFORTH ADVANCED 6502 ASSEMBLER
A user's manual for the valFORTH assembler.

VII. valFORTH 1.1 SUPPLIED SOURCE LISTING

STROLLING THROUGH valFORTH LI

Welcome. For this excursion you'll need an ATARI 800 (or 400) with at least
24K, a disk drive* monitor, a printer* and valFORTH LI. You could even do
without the printer. Please get everything up and running, and boot
valFORTH.

(To boot the disk, turn the drive(s) on and the computer off. Insert the disk
in drive 1 and turn the computer on. The disk should now be booting, and the
monitor speaker should be going beep-beep-beep-beep as valFORTH loads.)

ERRORS, RECOVERIES, CRASHES

Before we get started, let's mention the inevitable: Most of the time when
you make an error you'll receive one of the fairly lucid fig-Forth error
messages. If you just get a number* this will probably refer to the Atari
error message list which you can find in the documentation that came with your
computer. Since the Atari is a rather complex beast, you may sometimes get
into a tangle that looks worse than it is. Keep your head. If you have party-
color trash on the screen, for instance, and yet you can still hear the
"peek-peek-peek11 of the key when you hit return, you may have merely blown
the display list without hurting your system. Try Shift-Clear followed by
0 GR. . yery often you1re home again. If this doesn't work, try a warm start:
Hold down a CONSOLE button, say START, and while you've got it down, press
SYSTEM RESET and hold both for a moment until the "valFORTH" title comes up.
(If you were to push the SYSTEM RESET button alone, youfd get a cold start,
which takes you back to just the protected dictionary.) A warm start gets
you back to the nokH prompt without forgetting your dictionary additions.
If warm start doesn't work, your system is being kept alive only by those
wires connected to it; it no longer has a life of its own. The standard
procedure now is to push SYSTEM RESET alone a few times (cold start) in a
superstitious manner, and then reboot the system.

Look carefully at the code that blew the system last time. If you're really
having trouble debugging, sprinkle a bunch of WAIT's and/or .Sfs (Stack
Printouts) through the code, and go through again. The best thing about those
first few long debugging sessions in any computer language is that they teach
you the value of writing code carefully.

1-1

FORMATTING AND COPYING DISKS

You may have noticed that your system came up in a green screen. In a little
while you1!! be able to change it to anything you like. We'll get to that in
a moment, but right now type 170 LIST (and then hit RETURN.) Behold the table
of contents. Our first priority should be to make a working disk by copying
the original.

Let's assume that you have a blank, unformatted disk on which to make your
copy. Notice the line called FORMATTER on screen 170. At the right side of
this line is probably 92 LOAD, though the number may be different in later
releases. Type 92 LOAD (or whatever the number is) and wait until the machine
comes back with "ok". Now you1 re going to type FORMAT, but for safetyss
sake why not remove the valFORTH disk and insert the blank disk? One never
knows if newly purchased software will give you warnings before taking action.
("Warnings81 or "Prompts58 make a system more friendly.) Ok, now type FORMAT.
For the drive number you probably want to hit "1% unless you've got more
than one drive and don't want to format on the lowest. In answer to the next
prompt, hit RETURN unless you've changed your mind. Now wait while the machine
does the job. If you get back "Format OK" you're in business. (If "Format
Error" comes back, suspect a bad blank disk or drive.) You might as well
format another disk at this time on which to store your programs.

Now to make the copy. Return the valFORTH disk to the drive and do 170 LIST
again. Find DISK COPIERS and do 72 LOAD, or whatever number is indicated.
When the "ok" prompt comes back, two different disk copying routines are
loaded: DISKC0PY1 for single drive systems and DISKC0PY2 for multiple
drive systems. Type whichever of these words is appropriate and follow the
instructions, ("source" means the disk you want to copy, "dest." is the
blank "destination" disk.) There are 720 sectors that have to be copied.
Since this can't be done in one pass, if you are using DISKC0PY1 you will
have to swap the disks back and forth until you8re done. (The computer will
tell you when.) The less memory you have, the more passes; there is great
benefit in having 48K. If you have more than one drive, it still takes
several internal passes, but there is no swapping required. Either way, the
process takes several minutes with standard Atari disk drives.

1-2

^)

^

o

Nice going, Now store the original disk in some safe place. Don't write
protect your copy yet. First we'll adjust the screen color to your taste.
Just to see if you really have a good copy, boot it. This can be done by
the usual on-off method, or by typing BOOT.

COLORS

Before playing with the colors, let's look at something else. Type VLIST,
and watch the words go by. These are all of the commands that are currently
in the "dictionary" in memory in your system. You can cause this listing, or
any other, to pause "by hitting CTRL and 1 at the same time. This is a handy
feature of the Atari. The listing is restarted with the next CTRL 1.
Additionally, in valFORTH most listings may be aborted by pressing any of the
three yellow buttons START, SELECT, and OPTION. These three buttons together
will be referred to as the CONSOLE.

Do VLIST again, and abort it with a CONSOLE press after a few lines. At the
top of the list you should see the word TASK. Remember that for a moment.
Do 170 LIST again. Look over the list and find COLOR COMMANDS, and LOAD as
appropriate. Now do VLIST again, and stop the list when it takes up about
half of the screen, Above TASK you now can see a number of new commands., or
"words" as they are commonly called in Forth. These were added to the
dictionary by the LOAD command. Here's what some of these words do:

Type BLUE 12 BOOTCOLOR, and you get a new display color. Try BLUE 2 BOOTCOLOR.
If you try this action with the number as 4, the letters will disappear, and
you'll have to type carefully to get them back. The number is the luminance
or "1 urn" and is an even number in the range 0 to 14. The color-name is called
the "hue." The word "color" will be used to refer to a particular combination
of hue and Turn; hence PINK 6 is a color, PINK is a hue. There are 16 hues
available and you can read their names from the display, starting with LTORNG
("light orange") and ending with GREY. (The hues may not match their names on
your monitor. Later on you811 be able to change the names to your liking, or
eliminate them altogether to save memory, and just use numbers. For instance,
PINK is equal to 4.)

Try out different colors using BOOTCOLOR, until you find one you can live with
for a while. We usually use GREEN 10 or GREEN 12 in~house at Valpar. While
you are doing this you'll probably make at least one mistake, and the machine
will reply with an error message like "stack empty." Just hit return to get
the "ok" back and start whatever you were doing again. Actually, you don't
even have to get the "ok"1 back, but it's reassuring to see it there. When
you've got a color you like, do VLIST again. Note the first word above TASK.
It should be GREY. Carefully type FORGET GREY, and do VLIST again. Notice
that GREY and all words above it are indeed forgotten. Thatfs just what we
want. Now type SAVE. You111 get a (Y/N) prompt back to give you a chance to
change your mind, since SAVE involves a significant amount of writing to
drive #L For practice, check to see that you still have the copy in drive
one, and if it is there, hit Y, and off we go. When "ok" comes back, remove
the disk and apply a write protect tab to it. Boot this disk again to see
that it will come up in your selected color.

1-3

aczzi

DEBUGGING

Look at 170 again. Load the DEBUGGING AIDS, and type ON STACK. You'll see that
the stack is empty. Great, what's a stack? The best answer to this is to
suggest that you read Leo Brodie's book, Starting FORTH. This amusing and
thorough treatment of FORTH starts from the novice level and continues on to
most of the advanced concepts in FORTH. Starting FORTH is available from many
sources, including Valpar International. "Included with your valFORTH package
is a document called "Notes on Starting FORTH for the fig-FORTH User" which
pinpoints differences between Brodie's dialect of FORTH, called 79 Standard,
and the somewhat more common fig-FORTH on which valFORTH was based.
It is not feasible to present a course on FORTH in these pages, since FORTH
is far more powerful than BASIC, which itself requires a fair amount of space
to present. However, we'll try to be as considerate as possible to the F0RTH-
innocent.

The visible stack is a very good debugging and practice tool. Type
a few integers, say 5 324 -19 0 and hit RETURN. The numbers are now
visible on the stack. Top of stack, TOS, is at right. Print the top entry
by typing ,! . " and then do DUP. Note that there are now two -19's on top.
Do " * " to multiply them together. Now do DROP to discard the product, 361,
currently at TOS. Ok, now do SWAP to exchange the 324 and 5 and then do " / "
to divide 324 by 5. This should leave 64, since the answer is truncated. Now
type 1000 * and notice that instead of getting 64000 you get -1536. This
is of course two's complement on a two-byte number. Type U.S which will
switch the visible stack to unsigned representation. Type .S to go back.
The words .S and U.S may be used with the visible stack on or off to show
the stack one time. Now type OFF STACK. Type in a few more numbers, say
12 3 4 5 6 7. ON STACK again, and observe that the entries are retained.
Do .OVER to bring a copy of the 6 over the 7. Now DROP it. Do ROT to rotate
the third from top, 5, to the top. Now do <R0T to put it back. In addition
to all of these normal routines, valFORTH supports PICK and ROLL both coded
in 6502 for speed. Notice that the 5th on stack is a 3. 5 PICK will bring a
copy of it to TOS. Do this and then DROP the 3. Do 5 ROLL to pull the 3
out of the stack and place it at TOS. DO SP! to clear the stack.

1-4

^

^

f>

One point about number bases: Riaht now you're in DECIMAL. By typing
HEX you go into hexadecimal, and typing DECIMAL or its abbreviation DCX
you get back. And, as usual, virtually any base may be used by typing N BASE !
where N is the base you want. Thus, 2 BASE ! gives binary, etc. Some errors,
particularly during loading, may leave you in an unexpected base, like base 0,
for instance. If you find the machine acting normally except for numbers, this
may have happened. A simple DCX will get you back to decimal. The word B?
will print the current base in decimal. Put 30 on the stack and then do HEX,
Now do B?. Do DCX to return to decimal.

While we're on the subject of numbers, do ON and note that it is just a CONSTANT
equal to L Similarly, do OFF and see that it is zero. Try 0 STACK and then
1 STACK* The words ON and OFF are provided to enhance readability of code,
but could be substituted by 1 and 0 if desired* The two representations are
equally fast.

We mention to the newcomer to FORTH that the stack takes the place of dummy
variables or dummy parameters in other languages. This reduces memory overhead
in several ways but does exact a penalty of reduced readability of FORTH source
code. Consistent and sensible source code formatting can significantly enhance
readability. The source code on the present disk may be used as a reasonably
good example of well-arranged code.

Now a few words about DECOMP, Clear the stack. Type in 3 and 4* Do
OVER OVER followed by 2DUP and notice that these two phrases have the same
effect. Clear the stack and then turn it off if you like, and do DECOMP 2DUP.
What you see is a decompilation of 2DUP which indicates that it is indeed
defined as OVER OVER. Decomp OVER. The word "primitive" in the decompilation
of OVER indicates that OVER is defined in machine code.

Decomp LITERAL. The word (IMMEDIATE) after LITERAL in the decompilation
indicates that LITERAL is immediate. .Not all words can be decompiled by
DECOMP, and sometimes trash will be printed with long pauses between lines.
In this case, hold down any CONSOLE button (the three yellow ones, remember)
until the "ok" comes back. This may take several seconds, but rarely much
longer.

1-5

PRINTING

If you have a printer attached, we can generate some hardcopy. Look at screen ^j
170 again. You can see the line labeled PRINTER UTILITIES. Don't load it,
though. The printer utilities were loaded automatically when you loaded the
debugging aids, and so are in the dictionary already. (There is no need to
have them in twice, though it wouldn8t hurt,) You have access to the words P:,
St, LISTS, PLISTS, PLIST, and a couple of others relating to output. Do VLIST
and see if you can spot this group. As a matter of fact, do ON P: VLIST OFF
P: all in one shot. ON P: is used to route output to the printer or not.
OFF P: stops sending to the printer. Try ON P: OFF S: 170 LIST CR OFF P: ON S:
and notice that this time text is not sent to the display screen, only to the
printer. That's because of OFF S: .

Look at screen 170 again, either on display or in hardcopy, and note which
screen the printer utilities start. Type this number in, but don't type load.
Instead, after the number* type 10 PLISTS. This prints 10 screens starting
from the first screen you just typed in. If you have a reasonably smart
printer, it will automatically paginate, so that the screens are printed
three to a page. If the printer acts peculiarly after printing each third
screen, the pagination code in the word EJECT is probably not right for your
printer. You111 be able to change this later on.

Now type 30 150 LISTS and after a few blank screens you'll see the entire disk
go by, except for the boot code. You can pause any time by CTRL 1 or stop
by holding a CONSOLE button.

Finally, do ON P: 30 179 INDEX OFF P: to print a disk index. The index is
made up of the first line of each screen.

EDITING

Two editors have been included in this package. The fig (Forth Interest Group)
Editor and the valFORTH 1.0 Editor. The latter, while a perfectly useable
video-display editor in its own right, is actually a stripped-down version of
the valFORTH 1.1 Editor, available with the Utilities/Editor package from Valpar
International. The 1.0 Editor is provided to give the user some idea of what
the very powerful 1.1 Editor is like, without actually providing it. (Among
other things, the LI Editor has a user-definable line buffer of up to 320 lines
with a 5 line visible window at the bottom of the display. This window can be /^
seen at the bottom of the L0 Editor, but is inactive.) J

1-6

^

The fig Editor is a general-purpose FORTH line editor, and was the FORTH editing
workhorse until good video-displays were developed.

The fig Editor User Manual is located just after this section. It is based
on that by Bill Stoddart of FIG, United Kingdom, published in the fig-Forth
installation manual 10/80, and is provided through the courtesy of the FORTH
INTEREST GROUP, P.O. Box 1105, San Carlos, CA 94070. Serious Forth programmers
should write FIG to request their catalog sheet of references and publications.

Let's look at the valFORTH editor 1.0. Refer to the directory again, screen 170,
and load the valFORTH editor. (Don't load the fig Editor by mistake.) Before
proceeding, make sure that the write-protect tab on your disk is secure. The
word to enter the editor at the screen on top of stack is V. You can remember
it by thinking of it as "view." Type 170 V. Screen 170 is now on the display
again, but in the valFORTH 1.0 Editor rather than as a listing. This Editor
is a subset of the valFORTH 1.1 Editor available in the Editor/Utilities package,
which is MUCH more powerful and convenient, and is priced far lower than any
comparable product of which we are aware. The Editor Command card provided
shows all of the commands available with the 1.1 Editor. Commands available
with the 1.0 Editor are marked with asterisks (*) on the card. Let's run
through them:

The cursor can-be moved as in the Atari "MEMO PAD" mode. That is, hold down
the control key (CTRL) and move the cursor around the display with the four
arrow keys. To enter text (replace mode only in 1.0), position the cursor and
type it in. Delete characters with the backspace key as usual. The cursor
will wrap to the next line at the end of a line, and to the top of the screen
when it goes off the bottom. You can type at will on this screen since we
won't save the changes to disk.

Do a Shift-Insert and notice that a blank line is inserted at the cursor line.

The bottom line is lost, though it is recoverable in the LI version. Now do
Shift Delete to remove a line. (Delete is on the Backspace key). These are
all of the Editing commands available in the L0 Editor. There are two methods
of exiting the editor, CTRL S and CTRL Q. CTRL S marks the screen for saving
to disk, and CTRL Q forgets the latest set of editing changes. As usual,
changes are not saved immediately. This is accomplished with the word FLUSH
or by bringing other screens into the buffers and pushing the edited ones out.
Again, as usual, the EMPTY-BUFFERS command, or its valFORTH abbreviation, MTB,
will clear all buffers, thus forgetting any changes that have not yet been
written to disk.

Try CTRL Q to exit now. Reedit the screen by typing L. L does not require an
argument on stack and will bring the last-editing screen into the editor. The
words CLEAR and COPY have their normal meanings, as does WHERE, which has had
the standard fig bug fixed. See the glossary for details. Note that since
COPY in valFORTH does not FLUSH its changes, careful use allows transfers
of single screens between disks by swapping disks after COPY and before
FLUSH. This is particularly handy, for example, for transferring error
message screens 176-179 between disks.

1-7

You can make this transfer by doing

176 176 COPY 177 177 COPY 178 178 COPY 179 179 COPY jT\

and then swapping in the destination disk and typing FLUSH. You may want
to define a word to do this automatically:

: ERRXFR (~)
CR ." Insert source and press START" WAIT
180 176

DO I i COPY

LOOP

CR ." Insert dest. and press START" WAIT
FLUSH ;

Because there are four 512 character screen buffers in memory in valFORTH,
four 512 characters screens at a time is the maximum for this method.

Bulk screen moves, on a single disk or between disks are available with
the Utilities/Editor Package.

Note: The word "screen" in Forth refers to an area of the disk. When you
do 170 LIST you are listing screen 170. In valFORTH there are 180 screens,
numbered 0-179, on the disk in drive 1. In multiple-drive systems screen
numbers continue across drives9 so that screens 180-349 are on drive 2.
180 LIST will automatically read from drive 2. For technical reasons screen 0
should not be used for program code.

Whichever editor you use for the moment, you can write your programs to a ^}
blank disk and load them from there. Remember that in fig-FORTH (and so
also in valFORTH), if you wish to continue loading from one screen to the
next, all but the last screen should end in •-->.. You'll see this all through
the valFORTH 1.1 code. You'll also see ==>. For present purposes you can
use --> everywhere, and forget about ==>. «> is actually a "smart88 version
of --> that does nothing if the system uses 1024 character screens instead of
512.

If you are a F0RTHER, and wish to use 1024 byte screens, do FULLK. To return
to 512 character screens, do HALFK. (A working disk may be SAVE'd in either
condition.) Note that the valFORTH 1.0 Editor will not edit 1024 character
screens, though the 1.1 version will, and includes special IK notation. In
the same vein, the word KL0AD that appears in the source code is a smart load.
See the Glossary for details.

To terminate loading one simply omits the ~> on the last screen. ;S may be
used to end loading at any point. Also note that valFORTH —> and ==> are
smart in the sense that if you wish to stop loading before the machine is
ready to stop, simply hold down a CONSOLE button. When —> or ==> execute,
they first check the CONSOLE. If a button is pressed, they stop loading
instead of continuing with the next screen.

r>

1-8

r

Before leaving editing practice, type MTB to empty the disk buffers and assure
yourself that nothing will be flushed to disk accidentally as you read in new
screens. Or else, do FLUSH if you really want to save your changes.
(Remember to remove the write-protect tab if you do.)

GRAPHICS

On to Graphics. Check screen 170 and load the Color Commands again, and then
the Graphics Package. VLIST to see what you've got, and print the list if
you like. You may notice that GR. is not among these freshly loaded words:
It is in the kernel, that is, the booted code. Try the following sequence:

2 GR. (BASIC Graphics mode 2)
5 5 POS. (Move the graphics cursor)
G" TEST" (Send text to graphics area)
1 COLOR (Pick a new graphics color)
G" TEST" (More text)
: SMPL 4 0 DO I COLOR G" TEST" LOOP ; (automate)
SMPL SMPL SMPL (Try it out)
: MANY BEGIN SMPL ?TERMINAL UNTIL ; (More automation)
1 GR. (Go somewhere else)
MANY (Press CONSOLE button to exit)
17 GR. MANY (Try it in full screen)
2 GR. 2 PINK 8 SE. MANY (Use SE. to change color 2)
4 GOLD 8 SE. (Use SE. to change background color).
0 GR..(Go back to normal text screen.)

You can also see a quick demonstration by loading the Graphics Demo Program
listed on screen 170. If it's not listed on screen 170, do an INDEX in the
area of the Graphics routine screens you loaded recently. When you find the
Graphics examples screen, load it. Then do FBOX. Take a look at the code
and then at the Glossary to get the idea.

As in Atari Basic, adding 16.to the graphics mode you want to enter gives
non-split screen, and adding 32 suppresses erase-on-setup of the mode.

1-9

SOUNDS

As a final stop on this tour, load the SOUNDS words. The word SOUND acts
similarly to the Basic command SOUND. In valFORTH it also has the abbrevia
tion SO. and expects stack arguments like so:

channel(0-3) frequehcy#(-Q-255) distortion(0-14 evens) volume (0-15).
(We use nCatFish Don't Vote11 as a mnemonic).

Try, for instance 0 200 12 8 SO. and then turn it off with 0 XSND which
just shuts off the indicated voice, 0, or XSND4 which quiets everything.
More about sound generation by the Atari may be found in the 8Isound" section.

Logical Line Input

One of the nice features of the Atari OS is that it lets you back the cursor
over code that you8ve typed in already, even edit it with various inserts,
deletes, and retypes, and then hit return to have it reinterpreted. This
function is supported by valFORTH, and you can re-input up to two full lines
of text, (and a wee bit more) at a time just by moving the cursor onto the
"logical line" you wish to re-read. Try it.

THE GREAT SCREEN SIZE DEBATE

The "standard" Forth screen is composed of 1024 bytes. This is a nice round
number, and on a good text display one can have room for that many characters
plus a few more. However, beyond tradition, there is yery little functional
reason to have 1024 byte screens over several other power-of-2 sizes. In the
case of Atari and Apple machines, 512 byte screens make video display editors
much easier to work with, since one can get a whole screen in the display
at once. valFORTH supports both 1024 and 512 byte screen modes, but in-house
at Valpar we strongly prefer 512 byte screens and recommend that you adopt
this as your personal standard. If at any time you wish to change to IK to
help compile software written on IK screens, you can do so with one word,
FULLK.

1-10

n

^

n

SAVING YOUR FAVORITE SYSTEM(S)

Well, you've seen many of the bells and whistles of valFORTH. When you are
using the language for software development you will probably have a favorite
set of capabilities that you always want aboard. Rather than loading them
from scratch each time, why not SAVE them to a formatted disk? Just get
everything you want into the dictionary. After it's all loaded, put a
formatted disk into drive 1 and type SAVE. Answer the prompt by pressing "Y"
unless you have changed your mind, and the computer will save a bootable copy
of your system dictionary on the blank disk.

DISTRIBUTING YOUR PROGRAMS

If you have a program you wish to distribute, there are two ways in which to
proceed:

(1) Make a PROTECTED auto-booting copy of your software by using the
word'AUTO as detailed in the "compiling Auto-Booting Software88 section
of this manual.

(2) Make a TARGET-COMPILED version.of your software, using the valFORTH
Target Compiler, scheduled for release approximately 9/82. Target
Compilers allow production of much smaller final FORTH products by
allowing elimination of unnecessary code, e.g., headers, compiler,
buffers, etc.

In addition to the above procedures, Valpar Internationa! also
requires that the message:

Created in whole or part using valFORTH products of
Valpar International, Tucson, AZ 85713, USA

Based on fig-FORTH, provided through the courtesy of
Forth Interest Group, P.O. Box 1105, San Carlos, CA 94070

Hope you We enjoyed the tour* Bye now.

1-11

THE FORTH INTEREST GROUP LINE EDITOR

FIG EDITOR USER MANUAL

Based on the Manual

by Bill Stoddart
of FIG, United Kingdom

valFORTH organizes its mass storage into "screens81 of 512 characters, with the
option of 1024, If, for example, a diskette of 90K byte capacity is used
entirely for storing text, it will appear to the user as 180 screens numbered
0 to 179. Screen 0 should not be used for program code. Each screen is
organized as 16 lines with 32 characters per line.

Selecting a Screen and Input of Text

To start an editing session the user types EDITOR to invoke the appropriate
vocabulary.

The screen to be edited is then selected, using either:

n LIST (list screen n and select it for editing) OR
n CLEAR (clear screen n and select for editing)

To input new text to screen n after LIST or CLEAR the P (put) command is used.

Example:

0 P THIS IS HOW

1 P TO INPUT TEXT

2 P TO LINES 0, 1, AND 2 OF THE SELECTED SCREEN.

Based on material provided through the courtesy of the FORTH INTEREST GROUP,
P.O. Box 1105, San Carlos, CA 94070.

II-l

Line Editing

During this description of the editor, reference is made to PAD. This is a ^
text buffer which may hold a line of text used by or saved with a line editing ^
command, or a text string to be found or deleted by a string editing command,

PAD can be used to transfer a line from one screen to another, as well as to
perform edit operations within a single screen.

Line Editor Commands

n H Hold line n at PAD (used by system more often than by user).

H D Delete line n but hold it in PAD. Line 15 becomes blank as lines
n+1 to 15 move up 1 line.

n T Type line n and save it in PAD.

n R Replace line n with the text in PAD.

n I Insert the text from PAD at line n» moving the old line n
and following lines down. Line 15 is lost.

n E Erase line n with blanks.

n S Spread at line n. n and subsequent lines move down 1 line.
Line n becomes blank. Line 15 is lost. s^

II-2

Cursor Control and String Editing

The screen of text being edited resides in a buffer area of storage, The
editing cursor is a variable holding an offset into this buffer area. Commands
are provided for the user to position the cursor, either directly or by search
ing for a string of buffer text, and'to insert or delete text at the cursor
position.

Commands to Position the Cursor

TOP Position the cursor at the start of the screen,

N M Move the cursor by a signed amount n and print the cursor line.
The position of the cursor on its line is shown by a • (solid circle).

String, Editing Commands

F text Search forward from the current cursor position until string
3ltextn is found. The cursor is left at the end of the text
string, and the cursor line is printed. If the string is not
found an error message is given and the cursor is repositioned
at the top of screen*

B Used after F to back up the cursor by the length of the most
recent text,

N Find the next occurrence of the string found by an F command.

X text Find and delete the string "text."

C text Copy in text to the cursor line at the cursor position.

TILL text Delete on the cursor line from the cursor till the end of the

text string "text."

NOTE: Typing C with no text will copy a null (represented by a heart)
into the text at the cursor position. This will abruptly stop
later compiling! To delete this error type TOP X Veturn5,

Screen Editing Commands

n LIST List screen n and select it for editing

n CLEAR Clear screen n with blanks and select it for editing

nl n2 COPY Copy screen nl to screen n2.

L List the current screen. The cursor line is relisted after

the screen listing, to show the cursor position.

FLUSH Used at the end of an editing session to ensure that all entries
and updates of text have been transferred to disc

II-3

Editor Glossary

TEXT c —

Accept following text to pad. c is text delimiter.

LINE n — addr

Leave address of line n of current screen. This address will be in the
disc buffer area.

WHERE nl n2 —

n2 is the block no., nl is offset into block. If an error is found in
the source when loading from disc, the recovery routine ERROR leaves
these values on the stack to help the user locate the error, WHERE
uses these to print the screen and line nos. and a picture of where
the error occurred.

R# — addr
A user variable which contains the offset of the editing cursor from
the start of the screen.

#L0CATE — nl n2
From the cursor position determine the line-no n2 and the offset into
the line nl.

#LEAD ™ line-address offset-to-cursor

#LAG -— cursor-address count-after-cursor-til.l-EOL

-MOVE addr line-no —
Move a line of text from addr to line of current screen,

H n —

Hold numbered line at PAD.

E n —

Erase line n with blanks*

S n —

Spread. Lines n and following move down, n becomes blank.

D n —

Delete line n, but hold in'pad.

M . n —

Move cursor by a signed amount and print its line.

T n —

Type line n and save in PAD.

L

List the current screen.

II-4

o

.">

D

R n —

Replace line n with the text in PAD.

n —

Pi#the following text on line n.

I n —

Spread at line n and insert text from PAD.

TOP

Position editing cursor at top of screen,

CLEAR n —

Clear screen n, can be used to select screen n for editing.

FLUSH

Write all updated buffers to disc.

COPY nl n2 —

Copy screen nl to screen n2.

-TEXT Addr 1 count Addr 2 — boolean

True if strings exactly match,

MATCH cursor-addr bytes-left-till-EOL str-addr str-count
tf cursor-advance-til1-end-of-matching-text
ff bytes-left-till-EOL

Match the string at str-addr with all strings on the cursor line
forward from the cursor. The arguments left allow the cursor R# to-
be updated either to the end of the matching text or to the start of the
next line,

1LINE — f
Scan the cursor line for a match to PAD text, Return flag and update
the cursor R# to the end of matching text, or to the start of the
next line if no match is found.

FIND
Search for a match to the string at PAD, from the cursor position
till the end of screen. If no match found issue an error message
and reposition the cursor at the top of screen.

DELETE n —

• Delete n characters prior to the cursor.

N

F

Find next occurrence of PAD text.

Input following text to PAD and search for match from cursor position
till end of screen.

II-5

B

Backup cursor by text in PAD. ^_

X
Delete next occurrence of following text.

TILL

Delete on cursor line from cursor to end of the following text.

C
Spread at cursor and copy the following text into the cursor line.

~>

II-6

CREATING DISKS FOR PRODUCTION

RELOCATING BUFFERS

The purpose of this section is to show you how to avoid incorporating buffer
space into an auto-booting program, thereby saving more than 2K in memory
requirement for the machine on which the program will eventually run.

Fig-FORTH (and so valFORTH) uses a virtual memory arrangement which allows
disk areas to be accessed in a manner similar to that used to access semiconductor
memory. We won't go into detail here; those wishing to find out more about this
can contact FIG for documentation at:

FORTH INTEREST GROUP

P.O. Box 1105

San Carlos, CA 94070

or they can puzzle out the process by starting at the word BLOCK. For our present
purposes, however, we simply note that the virtual memory scheme requires that
some continuous area of memory be allotted as buffer space for disk operation.
valFORTH as delivered has buffer space for four 512 byte "screens" at a time.
Each screen is composed of four blocks'of 132 bytes each: 128 bytes of actual
data, corresponding to a sector, and four bytes of identification and delimiting
data. This produces a total of 4 x 4 x 132 = 2112 bytes that are needed for
programming and compilation* but are generally not required when software is
actually run. In order to get the full use of your computer, particularly for
the purposes of producing auto-booting software like games, you'll need to know
how memory is mapped and what changes you can make in the mapping. During the
following discussion refer to the memory map provided with your documentation.

You will note from the memory map that the buffers are placed just above the
kernel (boot-up) valFORTH dictionary. The dictionary pointer is set just past
the buffers, so new word definitions will be compiled in above the end of the
buffers. Why such an odd location? Read on...

* Those used to seeing the buffers at the top of memory will quickly realize
that this is impractical on the Atari, since that area is used for display
lists. Although it is possible to an extent to fool the operating system into
thinking that it has less memory than it actually has, and thus "reserve" an
area at the top of memory, this is a troublesome proposition.

* Another approach is to put the buffers just below the kernel dictionary,
which has been done in at least one FORTH-for-Atari release. While this is
safe, it sacrifices 2K bytes during run time unless rather clever programming
techniques are used on each program to put code into the dormant buffer area.

* Clearly, the buffers should be put somewhere above the dictionary but below
the display-list area, and a simple means to relocate them should be supported.
This is precisely what you have in valFORTH.

* In a pinch, you can compile using only 264 bytes of buffer memory.

III-l

When you have a program that will compile and run, preferably without errors,
and you'd like to create a smaller auto-booting version, follow this procedure:

* Boot the valFORTH disk.

* Decide on the area to which to relocate the buffers: If the program can be
loaded without leaving the 0 Graphics mode or doing anything else to high memory
while loading, then the result printed by the, sequence

0 GR. DCX 741 @ 2113 - U (See note below.)

will be a safe place to put the buffers; 741 @ is the Atari OS pointer to just
below the current display list. (If you will be using Transients, a capability
of the Utilities/Editor package, their default location is

DCX 741 @ 4000 -

so you would be better off to put the buffers at, say,

DCX 741 ia 6113 -

to avoid conflict).

* Find the buffer relocation utility listed in the table of contents starting
on screen 170 of the valFORTH disk, and load it. This is a self-prompting
utility that directs you to relocate the buffers and then forget the utility.
Follow the directions. You'll receive a verification message after the buffers
have been moved.

* Type

1 TASK DP ! •

to move the dictionary pointer below the old buffer area. (Advanced programmers:
This is not a typo. The cfa of TASK points to NEXT.)

* Now load your program as usual. You should probably create an auto-booting
program at this, point, rather than doing anything else, since if you run the
program now it may write into your relocated buffers and conceivably even attempt
a write to your disk. So, create an auto-booting version as directed in the
Auto-booting section above. Remember that if the program is for distribution,
you MUST protect your software and ours by using the AUTO command.

°k"k°te°k*CAUTI0N*****

O

^

The buffers start out just above the kernel dictionary, as indicated* and for
normal programming they should be LEFT THERE: Several routines on the valFORTH
disk and other disks in this product line use the area between pad and the
bottom of the display list as a scratch area for extensive disk transfers.
DISKC0PY1 and DISKCQPY2 on the valFORTH disk are examples*

Note: The buffers should generally be relocated to an even address because of ^
an Atari OS bug. See also Note 1 at end of valFORTH LI Glossary, -J

III-2

COMPILING AUTO-BOOTING SOFTWARE

Your purchase of valFORTH and its associated packages also grants you a single-
user license for the software. You may not copy valFORTH or its associated
Valpar International products for any purpose other than for your own use as
back-up copies. However, a word called AUTO has been provided to allow you
to create a copy of your software that is suitable for distribution. The word
AUTO does several things.

* AUTO provides extensive protection both for your software and the valFORTH
and auxiliary programs on which it is based. Your product may still be copied
by normal methods, but the programming concepts on which it is based will be
very difficult to analyze. The valFORTH and auxiliary programs will be rendered
useless except to run your program. Since AUTO scrambles all headers in the
code before saving to disk or cassette, even direct examination of the code on
the medium is not very revealing. This provides essentially all the protection
of headerless code.

* AUTO will create a disk that autoboots to the FORTH word of your choice.
This usually will be the last word defined in your program. In addition, a
disk created using AUTO will not have exit points: That is, even if your
program terminates, or makes an error because of an undiscovered bug, it will
not exit to valFORTH and the "oki! prompt. Instead, it will automatically
attempt to start again at the original auto-boot word, and will do so unless
an error has disabled the system.

* AUTO allows repetitive saving of your protected software to disk and cassette
in one sitting, with extensive prompting. This provides a short-run production
environment. (Remember that if you want to save to cassette, the cassette
recorder should be attached to the system at boot time; if it is attached
after booting, the computer may not know that the recorder is there and may
fail when trying to AUTO to cassette).

To run AUTO and create your bootable software:

(1) Load valFORTH.
(2) Relocate buffers to save 2K+, if desired (see below).
(3) Load your program. . ,
(4) DISPOSE transients, if you use them. (The Transient utilities come with

the Utilities/Editor package, and allow use of "disposable assemblers"
and the like).

(5) Find the Auto-Boot Utility section on the valFORTH disk by referring to
the directory starting on screen 170, and load as indicated.

(6) Type AUTO cccc where "cccc" is the word which you wish to execute on
auto-booting the software. You will now be prompted through the rest
of the procedure. On exiting from AUTO you will fall through to the
auto-booting program that you have just protected.

III-3

DISTRIBUTING YOUR PROGRAMS

If you have a program you wish to distribute, there are two ways in which to
proceed:

(1) Make a PROTECTED auto-booting copy of your software by using the
word AUTO as detailed in the riCompiling Auto-Booting Software11 section
of this manual,

(2) Make a TARGET-COMPILED version of your software, using the valFORTH
Target Compiler, scheduled for release approximately 9/82, Target
Compilers allow production of much smaller final FORTH products by
allowing elimination of unnecessary code* e*g,s headers, compiler,
buffers, etc

In addition to the above procedures9 Valpar International also
requires that the message:

Created in whole or part using valFORTH products of
Valpar International Tucson* AZ "85713, USA

Based on fig-FORTH, provided through the courtesy of
Forth Interest Group, P«0« Box 1105, San Carlos, CA 94070

be included either on the outside of the media (diskette* cassette*
or other) as distributed, or in the documentation provided with the
product. Please note that failure to include this message with /^
products that include valFORTH code may be regarded as a copyright 7
violation*

o

III-4

r-

r.

valFORTH LI SYSTEM EXTENSIONS

GRAPHICS, COLORS, AND SOUNDS

Graphics

The Graphics package follows the Atari BASIC graphics set as closely as
possible, and is identical in most respects. As in BASIC, the most complex
parts of Graphics are DRAWTO (abbreviated "DR.") and FIL, and even these are
not too obscure. Find the Graphics Demo by looking at the directory start
ing on screen 170* and load it- Try the word FBOX. Now look at the code
that produced this effect, if you like* The general explanation is as
follows:

Display positions are denoted by two coordinates, a horizontal and a vertical.
The 0,0 point is in the upper left hand comer, and the vertical coordinate
increases as you go down the display, while the horizontal coordinate increases
as you go to the right. This is all familiar from BASIC*

In graphics modes, a single point at position X Y can be plotted by X Y PLOT.
The color of the point will be that in the color register declared by the
last COLOR command, A line, again of the color in the register declared by
the last color command, may then be drawn to point XI Yl by XI Yl DR. * The
word FIL may be used to fill in an area as described in the Atari manual,
and as illustrated in the FBOX example* The color register for the fill is
the one whose number is on the stack when FIL is executed. Essentially, to
set up FIL you draw in. boundaries and pick two points you wish to FIL between*
The first of these points is set up either by a DR, or PLOT cofnnand, or by
valFORTH1s POSIT command* POSIT has the advantage of not requiring that you
put anything into the place where you are positioning yourself. The second
point for the FIL command is then set up by using POS. . The fill is then
performed by putting a number on stack (the color register for the fill) and
then doing FIL.

If you are in a text mode, a single character, c , can be sent to the display
by ASCII c CPUT. Text strings can be sent to the display with G" cccc "and
in addition will have the color in the register specified by the last COLOR
command before the string is output. This is a significant enhancement to
BASIC*

IV-1

Graphics and Color Glossary:

SETCOLOR nl n2 n3 — • .
Color register nl (0...3 and 4 for background) is set to hue n2 (0 to 15)
and luminance n3 (0-14, evens).

SE. nl n2 n3 —
Alias for SETCOLOR.

GR. n —

Identical to GR. in BASIC. Adding 16 will suppress split display.
Adding 32 will suppress display preclear. In addition, this GR. will
not disturb player/missiles.

POS. x y ~
Same as BASIC POSITION or POS. Positions the invisible cursor if in
a split display mode, and the text cursor if in 0 GR. .

POSIT x y -
Positions and updates the cursor, similar to PLOT, but without changing
display data.

PLOT x y --•
Same as BASIC PLOT. PLOTs point of color in register specified by last
COLOR command, at point x y.

DRAWTO x y —
Same as BASIC DRAWTO. Draws line from last PLOT"ted, DRAWTO'ed or
POSIT1ed point to x y, using color in register specified .by last COLOR
command.

DR. x y —
Alias for DRAWTO.

FIL b ~

Fills area between last PLOT'ed, DRAWTO'ed or POSIT'ed point to last
-position set by POS., using the color in register b.

G» —

Used in the form G" ccccc". Sends text cccc to text area in non-0
Graphics mode, starting at current cursor position, in color of
register specified by last COLOR command prior to cccc being output.
G" may be used within a colon definition, similar to .".

GTYPE addr count —
Starting at addr, output count characters to text area in non-0 Graphics
mode, starting at current cursor position, in color of register speci
fied by last COLOR command.

LOC. x y — b
Positions the cursor at x y and fetches the data from display at that
position. Like BASIC LOCATE and LOC. . Note that since the word LOCATE
has a different meaning in valFORTH (it is part of the advanced editor ^y
in the Utilities/Editor package), the name is not used in this package. ^
(Advanced users: We could put Graphics in its own vocabulary, but this
would add some inconvenience.)

IV-2

n

">

(G")
Run-time code compiled in by GH.

P0S@ — x y
Leaves the x and y coordinates of the cursor on the stack.

CPUT b —

Outputs the data b to the current cursor position.

CGET -- b f
Fetches the data b from the current cursor position*

>SCD cl ~ c2
Converts cl from ATASCII to its display screen code* c2.
Example: ASCII A >SCD 88 @ C!
will put an "A" into the upper left corner of.the display.

SCD> cl ~ c2

Converts cl from display screen code to ATASCII c2«
See >SCD-

>BSCD addr! addr2 count —
Moves count bytes from addrl to addr29 translating from ATASCII
to display screen code on the way*

BSCD> addrl addr2 count --
Moves count bytes from addrl to addr2* translating from display
screen code to ATASCII on the way,

COLOR b ~

Saves the value b in the variable COLDAT.

CLRBYT — addr
Variable that holds data from last COLOR command.

GREY — 0

GOLD — i

ORNG — 2

RDORNG — 3

PINK — 4

LVNDR - 5

BLPRPL — 6

PRPLBL - 7

BLUE — 8

LTBLUE __ g

TURQ — 10

GRNBL - 11

GREEN — 12

YLWGRN — 13

ORNGRN - 14

LTORNG — 15

(CONSTANTS)

a B00TC0L0R hue lum —
f^ Sets up hue for playfield 2 (text background) and lum for playfield 1

(letter intensity) in 0 Graphics mode. Lum of playfield 2 is set at 4.
After using B00TC0L0R, doing SAVE will create a system disk with the
selected color.

IV-3

Sounds

The actual production of sound by the Atari machines,is rather complex and ^
the reader is referred to the many recent (first half 1982) articles on this v~
subject in various magazines. Here we will restrict comments to the function
of the Atari audio control register. This is an eight bit register which
valFORTH shadows by the variable AUDCTL. The bits have the following
functions:

bit 7: Change 17 bit polycounter to 9 bit polycounter.
Affects distortions 0 and 8.

bit 6: Clock channel 0 with 1.79 Mhz instead of 64 Khz.
bit 5: Clock channel 2 with 1.79 Mhz instead of 64 Khz.
bit 4: Clock channel 1 with channel 0 instead of 64 Khz.
bit 3: Clock channel 3 with channel 2 instead of 64 Khz.
bit 2: Use channel 2 as crude high-pass on channel 0.
bit 1: Use channel 3 as crude high-pass on channel 1.
bit 0: Change normal 64 Khz to 15 Khz.

The value n may be sent to the audio control register by doing n FILTERS.

SOUND chan freq dist vol —
Sets up the sound channel "chan" as indicated.
Channel: 0-3.

Frequency: 0-255, 0 is highest pitch.
Distortion: 0-14, evens only.
Volume: 0-15.

Suggested mnemonic: CatFish Don't Vote ^*^

SO. chan freq dist vol — .
Alias of SOUND.

FILTER! n —

Stores n in the audio control register and into the valFORTH shadow
register, AUDCTL. Use AUDCTL when doing bit manipulation, then do
FILTER!. (FILTER! does a number of housekeeping chores, so use it
instead of a direct store into the hardware register.)

AUDCTL — addr

A variable containing the last value sent to the audio control register
by FILTER!. Used for bit manipulation since the audio control register
is write-only.

XSND n —

.Silences channel n.

XSND4

Silences all channels.

O
IV-4

TEXT OUTPUT AND DISK PREPARATION GLOSSARY

S: flag ~
If flag is true, enables handler that sends text to text screen. If
false, disables the handler. (See PFLAG in main glossary.) ON S: etc.

P : flag -
If flag is true, enables handler that sends text to printer. If false,
disables the handler. (See PFLAG in main glossary.) OFF P: etc.

BEEP —
Makes a raucous noise from the keyboard. Is put in this package for
lack of a better place.

ASCII c, — n (executing]
c, — (compiling)

Converts next character in input stream to ATASCII code. If executing,
leaves on stack. If compiling, compiles as literal.

EJECT —
Causes a form feed on smart printers if the printer handler has been
enabled by ON P:. May need adjustment for dumb or nonstandard printers.

LISTS start count —
From start, lists count screens. May be aborted by CONSOLE button at
the end of a screen.

PLIST scr —
Lists screen scr to the printer, then restores former printer handler
status.

PLISTS start cnt —
From start, lists cnt screens, to printer three to a page, then restores
former printer handler status. May be aborted by CONSOLE button at the
end of a screen.

FORMAT —
With prompts, will format a disk in drive of your choice.

(FMT) nl - n2
Formats disk in drive nl. Leaves 1 for good format, otherwise error number.
Note: Because of what appears to be an OS peculiarity, this operation must
not be the first disk access after a boot.

DISKC0PY1 —
With prompts, copies a source to a destination disk on single drive,
with swapping. Smart routine uses all memory from PAD to bottom of
Display List, producing minimum number of swaps.

DISKC0PY2 —
With prompts, copies disk in drive 1 to disk in drive 2 using memory
like DISKC0PY1.

IV-5

DEBUGGING UTILITIES

DECOM.P cccc

Does a decompilation of the word cccc if it can be found in the active
vocabularies.

Although DECOMP is very smarts like most FORTH decompilers it will
become confused by certain constructs* and will begin to print trash,
with pauses in between while it looks for more trash to print. When
this happens, simply hold down a CONSOLE button until DECOMP exits.
This sometimes takes as much as 10 seconds, depending on luck.

CDUMP addr n ~

A character dump from addr for at least n characters,, (Will always
do a multiple of 16.)

#DUMP addr n —

A numerical dump in the current base for at least n characters.
(Will always do a multiple of 8.)

(FREE) ~~ n
Leaves number of bytes between bottom of display list and PAD- This is
essentially the amount of free dictionary space, if additional memory
is not being used for player/missiles, extra character sets, and so on.

FREE —

Does (FREE) and then prints the stack and "bytes".

H. n ~

Prints n .in HEX-, leaves BASE unchanged.

STACK flag --
If flag is true, turns on visible stack. If flag is false, turns off
visible stack.

.S

U.S

B? .

Does a signed, nondestructive stack printout, TOS at right. Also
sets visible stack to do signed printout.

Does unsigned^ nondestructive stack printout, TOS at right. Also
sets visible stack to do'unsigned printout.

Prints the current base, in decimal. Leaves BASE undisturbed.

CFALIT cccc, -- cfa (executing)
cccc, ~ (compiling)

Gets the cfa (code field address) of cccc* If executing, leaves it on
the stack; if compiling, compiles it as a literal. Not precisely a
debugging tool, but finds use in DECOMP.

IV-6

^

^

~>

FLOATING POINT WORDS

The floating-point package uses the Atari floating point routines in the
operating system ROM in the same way that Atari Basic does. The routines
are rather slow, and theire are no trigonometric functions internal to the
Atari. (SIN, COS, TAN, ATN, and ATN2 have been programmed and are available
in the Advanced Graphics/Floating Point Package.) LOG and EXP are included in the
operating system ROM and are supported in the present package, in base 10
and base e. Note that in the directory on screen 170 it is indicated that
the ASSEMBLER must be loaded before loading the floating-point package.

Floating point words have a six byte representation in the Atari OS, and since
the stack has a 60 byte maximum, a maximum of 10 floating point numbers can be
on the stack at a time- In practice* this maximum often becomes 9 since some
fp routines use the stack as a scratch area.

Operations involving floating-point numbers generally leave floating-point
results. Exceptions are the words FIX, which takes a positive floating
pointer number less than 32767.5 and leaves a rounded integer; and the
floating-point comparison operators, F=, F<9 etc., which leave flags. To
get a floating-point number on the stack, use the word FLOATING or its alias,
FP, followed by a "number in Fortran "E11 format. For example,

and

will all leave floating-point numbers on the stack. Floating-point variables
and constants are also supported-

It has been our experience that mistakes are common when first using this
package. One must remember to use F* and not *, F+ and not +, and so on,
when doing fp operations. Remember also that integers and fp numbers can't
be mixed by operations: Either convert the fp number by FIX, or the integer
by FLOAT, and then use the appropriate operation.

Create new words as usual. For instance, to define a floating-point square
root function, write

: FSQRT (fp — fp)
LOG FP 2 F/ EXP ;

Overflow and underflow, and illegal operations such as 'dividing by 0, taking
logarithms of negative numbers, or Fixing a negative number cause undefined
and rather unpredictable results, though they do not harm the system.
(Additional words in the Utilities/Editor Package cause all but one of these
operations to give correct or useable results; logarithms of negatives cannot
be approximated with Real numbers.)

The maximum and minimum numbers are generous, about 1E97 and 1E-97, and it is
sometimes possible to exceed these limits during computation. Atari's internal
representation of floating point numbers is awkward. Refer to the Atari OS
manual, available from Atari,'for details if needed*

IV-7

FP 12345

FP 12345.6

FP -12345.8

FP +5432E-16

FP -8E18

FLOATING-POINT GLOSSARY

In the following, "fp" is used to indicate a floating-point number (six bytes)
on the stack, The terms "top~of~stack,fS fl2nd™on~stack" etc*, have been used
with the obvious meanings even though, because fp numbers are six bytes, their
physical positions on the stack will not match the usual ones.

FCONSTANT cccc, fp —
cccc: --fp

The character string is assigned the constant value fp. When cccc is executed,
fp will be put on the stack.

Example: FP 3.1415926 FCONSTANT PI

FVARIABLE cccc, fp --
cccc: addr —

The character string cccc is assigned the initial value fp. When cccc is
executed, the addr (two bytes) of the value of cccc will be put on the stack.

Example: FP 0 FVARIABLE X
FP 18.4 X F!

FDUP fpl ~ fpl fpl
Copies the fp number at top-of-stack.

FDROP fp ~
Discards the fp number at top-of-stack.

FOVER fp2 fpl -- fp2 fpl fp2
Copies the fp number at 2nd~on~stack to top-of-stack.

FLOATING cccc* — fp
Attempts to convert the following string, cccc, to a fp number. Stops on
reaching first unconvertible character and skips the rest of the string. If
no characters convertible, leaves unpredictable fp number on stack.

FP cccc, --fp
Alias for FLOATING.

F@ addr ~ fp
Fetches the fp number whose address is at top-of-stack,

F! fp addr —
Stores fp into addr. Remember that the operation will take six bytes in
memory.

F. fp —
Type out the fp number at top-of-stack. Ignores the current value in BASE
and uses base 10.

F? addr ~

Fetches a fp number from addr and types it out.

IV-8

r>

^

^

F+ fp2 fpl — fp3
Replaces the two top-of-stack fp items, fp2 and fpl, with their fp sum, fp3.

F-. fp2 fpl —. fp3
Replaces the two top-of-stack fp items, fp2 and fpl, with their difference,
fp3=fp2-fpl.

F* fp2 fpl — fp3
Replaces the two top-of-stack fp items, fp2 and fpl, with their product, fp3.

F/ fp2 fpl -- fp3
Replaces the two top-of-stack fp items, fp2 and fpl, with their quotient,
fp3=fp2/fpl.

FLOAT n — f p
Replaces number at top-of-stack with its fp equivalent.

FIX fp (non-neg, less than 32767.5) — n •
Replaces fp number at top-of-stack, constrained as indicated, with its
integer equivalent.

LOG fpl -- fp2
Replaces fpl with its base e logarithm, fp2o Not defined for fpl negative.

L0G10 fpl — fp2
Replaces fpl with its base 10 decimal logarithm, fp2. Not defined for fpl
negative.

EXP fpl -- fp2
Replaces fpl with fp2, which equals e to the power' fpl.

EXP 10 fpl—fp2
Replaces fpl with fp2, which equals 10 to the power fpl.

FQ= fp — flag
If fp is equal to floating-point 0, a true flag is left. Otherwise, a false
flag is left.

F= fp2 fpl — flag
If fp2 is equal to fpl, a true flag is left. Otherwise, a false flag is left.

F> fp2 fpl — flag
If fp2 is greater than fpl, a true flag is left. Otherwise, a false flag is
left.

F< fp2 fpl -- flag
If fp2 is less than fpl, a true flag is left. Otherwise, a false flag is left*

FLITERAL fp ~
If compiling, then compile the fp stack value as a fp literal. This definition
is immediate so that it will execute during a colon definition. The intended
use is:

: xxx [calculate] FLITERAL ;
Compilation is suspended for the compile time calculation of a value.
Compilation is resumed and FLITERAL compiles the value on stack,

IV-9

FLIT — fp
Within a colon definition, FLIT is automatically compiled before each fp
number encountered as input text, Later execution by the system of FLIT as
it is encountered in the dictionary cause the context of the next 6 dictionary
addresses to be pushed to the stack as a fp-number. FLIT is also compiled
in explicitly by FLITERAL,

ASCF addr — fp
An ASCII-to-floating-point-conversion routine. Uses Atari OS routine. The
routine reads string starting at addr and attempts to create a floating point
number. If string is not a valid ASCII floating-point representation, leaves
undefined result on stack. Used by FLOATING.

FS fp —
System routine. Sends fp argument on stack to Atari register FRO. Experts
only.

>F -- fp
System routine. Fetches fp argument from Atari register FRO. Experts only.

<F fpl fp2 —
System routine. Sends fpl and fp2 to Atari registers FRl and FRO respectively.
Experts only.

F.TY

System routine. Types out last fp number converted by FASC,

CIX addr —
System variable. One byte offset pointer in buffer pointed to by INBUF.
Experts only.

INBUF addr —

System variable, Used by ASCF to know where ASCII string to be converted is
located.

FRl — n

System constant.

FRO —n

System constant.

Atari internal register address.

Atari internal register address*

FPOLY addr count —
A system routine for advanced users doing polynomial evaluation.
The polynomial P(Z) = SUM(i=0 to n) (A(i)*Z**i) is computed by the following
standard method:

P(Z) - (...(A(n)*Z + A(n-l))*Z + ... + A(1))*Z + A(0)
The address addr points to the coefficients A(i) stored sequentially in memory,
with the highest order coefficient first. The count is the number of coeffi
cients in the list. The independent variable Z5 in floating-point, should be
sent to FRO using FS. FPOLY is then executed. The result put on the stack
using >F. Note that FPOLY is intended to be used in a Forth word.
Trigonometric functions and general polynomial expansions* for example* may
be defined more simply with the help of this routine.

IV-10

^

^

/^^fck

FL610
System routine used by L0G10.

FLG

System routine used by LOG,

FEX

System routine used by.EXP.

FEX10

System routine used by EXP10,

FDIV

System routine used by F/.

FMUL

System routine used by F*»

FSUB

System routine used by F-.

FADD

System routine used by F+.

FPI

System routine used by FIX,

IFP

System routine used by FLOAT.

FASC
System routine* Does floating-point-to-ASCII conversion on the fp number
in FRO and leaves string at address pointed to by INBUF. Last byte of string
has most significant bit set. Used by F..TY.

AFP

System routine used by ASCF.

IV-11

WS^^^^^^^^^^Bi^Mi^MX^^Mls^S&s

Itnleritionally left blank)

IV-12

OPERATING SYSTEM

This package implements the computer's Operating System I/O routines. The
850 (RS-232C) driver package may be loaded into the dictionary by using the
word RS232* which will then support references to devices "Rl" through "R4."

The code for this section was originally written by Patrick Mu!larky* and
published through the Atari Program Exchange. It is used here by permission
of the author.

OS GLOSSARY

OPEN addr nl n2 n3 — n4

This word opens the device whose name is at addr. The device is opened
on channel n3 with AUX1 and AUX2 as nl and n2 respectively. The device
status byte is returned as n4. The name of a device may be produced in
various ways: For a single character name$ say "S" for the screen
handler*

ASCII S PAD CI

will leave the ASCII value of S at PAD, Then
PAD 8 0 3.OPEN

will open the screen handler on channel 3 with AUX1 = 8 (write only)
and AUX2 - 0. If you have the UTILITIES/EDITOR Package, longer names
may be set up simply by-using the word " .

CLOSE n —

Closes channel n.

a PUT bl n — b2
* Outputs byte bl on channel n* returns status byte b2.

GET n — bl b2

Gets byte bl from channel n5 returns status byte b2.

GETREC addr nl n2 — n3

Inputs record from channel n2 up to length nl. Returns status byte n3.

PUTREC .addr nl n2 — n3

Outputs nl characters starting at addr through channel n2.. Returns
status byte n3.

STATUS n -- b"
Returns status byte b from channel n,

DEVSTAT n — bl b2 b3

From channel nl gets device status bytes bl and b25 and normal status
byte b3.

SPECIAL bl b2 b3 b4 b5 b6 b7 b8 — b9
Implements the Operating System "Special" command. AUX1 through AUX6
are bl through b6 respective!y9 command byte is b75 channel number is
b8. Returns status byte b9,

RS232

Loads the Atari 850 drivers into the dictionary (approx 1.8K) through
a three-step bootstrap process. Executing this command more than once
without turning the 850 off and-on again will crash the system,

IV-13 (rev 1)

valForth Glossary

Based on the fig-Forth Glossary
Provided through the courtesy of

Fourth Interest Group, P.O. Box 1105, San Carlos, CA 94070

This glossary contains all of the word definitions in Release 1.1 of valForth.
The definitions are presented in the order of their ASCII sort.

The first line of each entry shows a symbolic description of the action of
the procedure on the parameter stack* The symbols indicate the order in which input
parameters have been placed on the stack. Two dashes M--" indicate the execution
point; any parameters left on the stack are listed. In this notation, the top of
the stack is to the right.

The symbols include:

addr memory address
b 8 bit byte (i.e. hi 8 bits zero)
c 7 bit ASCII character (hi 9 bits zero)
d 32 bit signed double integer, most significant portion with

sign on top of stack,
f boolean flag. 0=false, non~zero=true
tf boolean true flag-non-zero
ff boolean false flag=0
n 16 bit signed integer number ^^
u 16 bit unsigned integer /

The capital letters on the right show definition characteristics:

C May only be used within a colon definition, A digit indi
cates number of memory addresses used, if other than one.

E Intended for execution only.
L0 Level Zero definition of FORTH-78
LI Level One definition of FORTH-78
P Has precedence bit set. Will execute even when compiling, (immediate)
U A user variable.
V A valForth word not in fig-Forth.
B A word adopted from Leo Brodie's Starting Forth.

Unless otherwise noted, all references to numbers are for 16 bit signed integers.
The high byte of 16 bit numbers is the second byte on the stack, with the sign in the
leftmost bit. For 32 bit signed double numbers, the most significant part (with the
sign) is on top.

All arithmetic is implicitly 16 bit signed integer math, with error and under
flow indication unspecified.

^

c

tj

I n addr — LO
Store 16 bits of n at address. Pronounced "store",

!CSP

Save the stack position in CSP. Used as part of the compiler
security.

dl - d2 LO
Generate from a double number dl, the next ASCII character which
is placed in an output string. Result d2 is the quotient after
division by BASE, and is maintained for further processing. Used
between <# and #>. See #S. Pronounced "number",

#> , d — addr count LO
Terminates numeric output conversion by dropping d, leaving the text
address and character count suitable for TYPE. Pronounced "number-
bracket",

#S dl ~ d2 LO
Generates ASCII text in the text output buffer, by the use of #,
until a zero double number d2 results. Used between <# and #>.
Pronounced "numbers",

-- addr PsL0
Used in the form:

J nnnn
Leaves the parameter field address of dictionary word nnnn* As a
compiler directive, executes in a colon-definition to compile the
address as a literal. If the word is.not found after a search of
CONTEXT and CURRENT, an appropriate error message is given. Pro
nounced "tick".

'(— V,E,P
Used in the form:

f(WORDO W0RD1 . . . WORDN)(WORDN+1 . . .WORDM)
which executes as follows: If WORDO is found in a search of CONTEXT
and CURRENT, then execute W0RD1 . . . WORDM. Generally used for con
ditional compilation. Note that if no words are to be included in
the second group, then)(and) must be separated by at least TWO
blanks. J

(-- P,L0
Used in the form:

(cccc)
Ignore a comment that will be delimited by a right parenthesis on
the same line. May occur during execution or in a colon-definition.
A blank after the leading parenthesis is required.

) -- V,E,P
No operation. Used in f(constructs.

)(— V,E,P
Scans text input pointer past •")". Used in f(constructs.

f) (•") C*

The run-time procedure, compiled by ." which transmits the following
in-line text to the selected output device. See ."

V-l

(/LOOP) n — B,C2
Execution time code of /LOOP.

(;C0DE) -- C ^%
The run-time procedure, compiled by ;C0DE9 that rewrites the code -^
field of the most recently defined word to point to the following
machine code sequence. See ;C0DE.

(+L00P) n — C2
The run-time procedure compiled by -ftQQP, which increments the loop
index by n and tests for loop completion. See -HL00P.

(ABORT)
Executes after an error when WARNING is -1. This word normally exe
cutes ABORT, but may be altered (with care) to a user's alternative
procedure.

(Dd) -- C
The run-time procedure compiled by DO which moves the loop control
parameters to the return stack. See DO.

(FIND) addrl addr2 - pfa b tf (ok)
addrl addr2 — ff - (bad)

Searches the dictionary starting at the name field address addr2,
matching to the text at addrl. Returns parameter field address,
length byte of name field and boolean true for a good match. If no
match is found, only a boolean false is left.

(FMT) nl — n2 V ^^
Formats disk in drive nl. Leaves 1for good format, otherwise error 'y
number. Note: Because of what appears to be an OS peculiarity, this ^
operation must not be the first disk access after a boot.

(LINE) nl n2 — addr count
Convert the line number nl and the screen n2 to the disc buffer address
containing the data.

(LOOP) ._ . C2
The run-time procedure compiled by LOOP which increments the loop
index and tests for loop completion. See LOOP.

(NUMBER) dl addrl - d2 addr2
Convert the ASCII text beginning at addrl+1 with regard to BASE.
The new value is accumulated into double number dl, being left as d2.
Addr2 is the address of the first unconvertible digit. Used by NUMBER.

(SAVE) , ~ V
Used by SAVE, not generally used in programs. Sets up various
parameters preparatory to writing a bootable disk.

* nl n2 -- prod LO
Leave the signed product of two signed numbers. Pronounced "star".

*/ , nl n2 n3 ~ n4 LO
Leave the ratio n4 = nl*n2/n3 where all are signed numbers. Retention
of an intermediate 31 bit product permits greater accuracy than would ^^
be available with the sequence: .J

nl n2 * n3 /
Pronounced "star-slash".

V-2

VMOD

+ !

+~

+BUF

+LQ0P

-DISK

nl n2 n3 — n4 n-5 LO
Leave the quotient n5 and remainder n4 of the operation nl*n2/n3.
A 31 bit intermediate product is used as for */. Pronounced "star
slash-mod".

nl n2 — sum

Leave the sum nl+n2„

n addr —
Add n to the value at the address,

LO

Pronounced "plus-store".
LO

nl n2 — n3

Apply the sign of n2 to nl, which is left as n3.

addl — addr2 f

Advance the disc buffer address addrl to the address of the next
buffer addr2. Boolean f is false when addr2 is the buffer presently
pointed to by variable PREV,

nl — (run)
addr n2 — (compile) P,C2,L0

Used in a colon-definition in the form:

DO . . . nl *L0QP

At run-time, +L00P selectively controls branching back to the corres
ponding DO based on nl, the loop index and the loop limit. The signed
increment nl is added to the index and the total compared to the limit.
The branch back to DO occurs until the new index is equal to or greater
than the limit (nl>0)» or until the new index is equal to or less that
the limit (nl<0). Upon exiting the loop, the parameters are discarded
and execution continues ahead.

At compile time, +L00P* compiles the run-time word (+L00P) and the branch
offset computed from HERE to the address left on the stack by DO.
n2 is used for compile time error checking.

+0RIGIN n — addr

Leave the memory address relative by n to the origin parameter area,
n is the minimum address unit, either byte or word. This definition
is used to access or modify the boot-up parameters at the origin area.

n - LO

Store n into the next available dictionary memory cell, advancing the
dictionary pointer, (comma)

nl n2 —" diff

Leave the difference of nl-n2.

Continue interpretation with the next disc screen.
screen

LO

P,L0
Pronounced "next-

addr n2 n3 flag ~ n4 V
Used by R/W. Not generally used in programs. This word performs
single-sector read or write on a disk. Addr is the starting RAM
address, n2 is the sector number (1-720), n3 is the drive number
(1-4), and the flag is 1 for read and 0 for write. On return, n4
will be.zero if there were no problems, or it will be a DOS error
number if a DOS error occurred.

V-3

-DUP nl — nl (if zero)
nl — nl nl (non-zero) LO

Reproduce nl only if it is non-zero. This is usually used to copy a -^
value just before IF, to eliminate the need for an ELSE part to drop j

-FIND — pfa b tf (found)
ff (not found)

Accepts the next text word (delimited by blanks) in the input stream
to HERE, and searches the CONTEXT and then CURRENT vocabularies for
a matching entry. If found, the dictionary entry's parameter field
address, its length byte, and a boolean true are left. Otherwise,
only a boolean false is left.

-TRAILING addr nl — addr n2

Adjusts the character count nl of a tevt string beginning address to
suppress the output of trailing blanks, i.e. the characters at
addr*nl to addr*n2 are blanks.

n — LO

Print a number from a signed 1'6 bit two8s complement value, converted
according to the numeric BASE. A trailing blanks follows. Pronounced
IsdotH,

P,L0
Used in the form:

,i8 cccciS

Compiles an in-line string cccc (delimited by the trailing l{) with an
execution procedure to transmit the text to the selected output device.
If executed outside a definition, ." will immediately print the text
until the final l8„ The maximum number of characters may be an installa
tion dependent value. See (.")..

.LINE line scr --•

Print on the terminal device, a line of text from the disc by its line
and screen number. Trailing blanks are suppressed.

.R nl n2 --

Print the number nl right aligned in a field whose width is n2. No
following blank is printed.

/ nl n2 -- quot LO
Leave the signed quotient of nl/n2.

/LOOP n — B,C2
Like *L00P, but uses an unsigned limit, index, and increment. Thus
loop index may pass $7FFF without mishap. Faster than +L00P and may
be used instead of +L00P if increment is positive (and index doesnft
cross $7FFF.)

/MOD nl n2 — rem quot LO
Leave the remainder and signed quotient of nl/n2. The remainder has
the sign of the dividend.

~>

^
V-4

0 12 3

0#

0<

0=

0>

(BRANCH

1+

1-

2*

2+

2-

2/

2DR0P

2DUP

20VER

2R0T

2SWAP

— n

These small numbers are used so often that it is attractive to define
them by name in the dictionary as constants.

n — flag V
Leaves a true flag if n is not equal to 0. Otherwise, leaves a false
flag. Pronounced "zero not equal".

n — f LO
Leave a true flag if the number is less than zero (negative), otherwise
leave a false flag.

n — f LO

Leave a true flag if the number is equal to zero, otherwise leave a
false flag.

n — flag V
Leaves a true flag if n is greater than 0. Otherwise leaves a false
flag.

f — C2
The run-time procedure to conditionally branch. If f is false (zero),
the following in-line parameter is added to the interpretive pointer
to branch ahead or back. Compiled by IF, UNTIL, and WHILE.

nl ~ n2

Increment nl by 1.

nl — n2

Subtract one from nl. Pronounced "one-minus".

nl -- n2

Multiply nl by two. Pronounced "two-star" or "two-times".

nl — n2

Leave nl incremented by 2.

nl — n2

Leave nl decremented by 2.

nl .-- n2

Divide nl by two. Pronounced "two-slash".

Drops the double number at TOS.

d ~ d d

Copies double number at TOS.

d2 dl — d2 dl d2

Copies double number at 20S to TOS.

d3 d2 dl - d2 dl d3 V

Moves double number at 30S over two double numbers on 20S and TOS.

d2 dl — dl d2 B

Exchanges double numbers at TOS and 20S.

V-5

LI

B

B

B

B

B

B

P,E,LO
Used in the form called a colon-definition:

Creates a dictionary entry defining cccc as equivalent to the follow- ^
ing sequence of Forth word definitions '..-.' until the next ';' or
1;C0DEs• The compiling process is done by the text interpreter as long
as STATE is non-zero* Other details are that the CONTEXT vocabulary
is set to the CURRENT vocabulary and that words with the~precedence
bit set (P) are executed rather than being compiled.

P*CSLQ
Terminate a colon-definition and stop further compilation. Compiles
the run-time ;S,

;C0DE ~~ P,C*LQ
Used in the form:

: cccc *«,. ;C0DE assembly mnemonics

Stop compilation and terminate a new defining word cccc by compiling
(;C0DE). Set the CONTEXT vocabulary to Assember, assembling to machine
code the following mnemonics*

When cccc later executes in the form:

cccc nnnn

the word nnnn will be created with its execution procedure given by
the machine code following cccc. That iss when nnnn is executed, it
does so by jumping to the code after nnnn* An existing defining word
must exist in cccc prior to ;CGDE*

;$ — P5L0
Stop interpretation of a screen. ;S is also the run-time word com
piled at the end of a colon-definition which returns execution to the
calling procedure.

< nl n2 ~~ f LO
Leave a true flag if nl is less than n2; otherwise leave a false
flag,

<# - LO

Set-up for pictured numeric output formatting using the words:
<# # #S SIGN #>

The conversion is done on a double number producing text at PAD.
Pronounced "Bracket Number11.

<= . . n2 nl — flag V
Leaves true flag if n2 is less than or equal to nl. Otherwise9 leaves
false flag.

<> n2 nl — flag V
Leaves true flag if n2 and nl are unequal, Otherwise, leaves false
flag.

V-6

^

3

<BUILDS ~ C9LO
Used within a colon-definition:

: cccc <BUILDS ...

D0ES> ... ;
Each time cccc is executedf <BUILDS defines a new word with a high-
level execution procedure. Executing cccc in the form:

cccc nnnn

uses <BU1LDS to create a dictionary entry for nnnn with a call to the
D0ES> part for nnnn. When nnnn is later executed, it has the address
of its parameter area on the stack and executes the words after D0ES>
in cccc. <BUILDS and D0ES> allow run-time procedures to be written
in high-level rather than in assembler code (as required by ;C0DE),

nl n2 — f LO
Leave a true flag if nl^n2; otherwise leave a false flag.

>R

?1K

?C0MP

?CSP

TERROR

?EXEC

?EXIT

If using 512 byte (half-K) screen, does ~> otherwise, no
action is taken. Used to chain screens in half-K format
that will still load correctly in valFORTH full-K format.

nl n2 — f LO
Leave a true flag if nl is greater than n2; otherwise a false flag,

n2 nl -- flag V
Leaves true flag if n2 is greater than or equal to nl. Otherwise,
leaves false flag.

n -- C,LQ
Remove a number from the computation stack and place as the most access-
able on the return stack. Use should be balanced with R> in the same
definition.

addr -- LO
Print the value contained at the address in free format according to
the current base.

-- flag V
Leaves a true flag if C/L is 64, indicating IK screens. Otherwise,
leaves a false flag.

Issue error message if not compiling.

Issue error message if stack position differs from value saved in CSP<

f n ~

Issue an error message number n, if the boolean flag is true.

Issue an error message if not executing.

V,C
Caution: Use only within a DO LOOP. Within DO LOOP, will cause exit
at end of current loop if a CONSOLE button is depressed when ?EXIT is

V-7

7L0ADING

?PAIRS

?STACK

7TERMINAL

@EX

ABORT

ABS

executed. Will work only in the word in which the DO LOOP is defined,
not in a word nested further down.

Issue an error message if not loading.

nl n2 --

Issue an error message if nl does not equal n2,
that compiled conditionals do not match.

The message indicates

Issue an error message if the stack is out of bounds,
maybe installation dependent.

— b

Perform a test of the terminal keyboard for actuation of a CONSOLE
key. Leaves 0 if none actuated* leaves 1 for START, 2 for SELECT,
4 for OPTION, and sums for combinations.

addr — n

Leave the 16 bit contents of address.

This definition

LO

addr - V

Fetches the word (presumably a code field address) at addr, and
then causes it to execute. Used for conditional execution without
the speed and memory loss of flags and/or case statements. Typical
use would be AUXOP @EX where the variable AUXOP had been loaded with

the cfa of the desired word, by V DESIREDWORD CFA AUXOP ! . Pro
nounced "fetch-ex."

LO

Clear the stacks and enter the execution state. Return control to

the operators terminal, printing a message appropriate to the instal
lation*

n — u

Leave the absolute value of n as u.

LO

ACCEPT addr count --
Same as EXPECT, except that ACCEPT uses the O.S. line input
routine which allows full MEMO PAD editing functions to be
utilized. EXPECT prevents hazards such as Shift-Clear while
ACCEPT does not, SEE EXPECT.

AGAIN addr n — (compiling) P,C2,L0
Used in a colon-definition in the form:

BEGIN ... AGAIN
At run~time5 AGAIN forces execution to return to corresponding BEGIN.
There is no effect on the stack. Execution cannot leave this loop
(unless R> DROP is executed one level below).

At compile time, AGAIN compiles BRANCH with an offset from HERE to
addr, n is used for compile-time error checking.

V-8

3

**>

^

ALLOT

AND

B/BUF

B/SCR

BACK

BASE

BEGIN

BL

BLANKS

BLK

BLOCK

n — LO
Add the signed number to the dictionary pointer DP. May be used to
reserve dictionary space or re-origin memory.

nl n2 — n3

Leave the bitwise logical and of nl and n2 as n3.
LO

This constant leaves the number of bytes per disc buffer, the byte
count read from disc by BLOCK.

— n

This constant leaves the number of blocks per editing screen.

addr —

Calculate the backward branch offset from HERE to addr and compile
into the next available dictionary memory address.

— addr U,L0
A user variable containing the current number base used for input and
output conversion.

— addr n (compiling) P9L0
Occurs in a colon-definition in form:

BEGIN ... UNTIL
BEGIN ... AGAIN
BEGIN ... WHILE ... REPEAT

At run-time, BEGIN marks the start of a sequence that may be repetitively
executed. It serves as a return AGAIN or REPEAT. When executing UNTIL,
a return to BEGIN will occur if the top of the stack is false; for
AGAIN and REPEAT a return to BEGIN always occurs.

At compile time, BEGIN leaves its return address and n for compiler
error checking.

—-• c

A constant that leaves the ASCII value for "blank".

addr count --

Fill an area of memory beginning at addr with blanks.

— addr U,L0
A user variable containing the block number being, interpreted. If
zero, input is being taken from the terminal input buffer.

n -- addr LO
Leave the memory address of the block buffer containing block n. If
the block is not already in memory, it is transferred from disc to
which ever buffer was least recently written. If the block occupying
that buffer has been marked as up-dated, it is rewritten to disc before
block n is read into the buffer. See also BUFFER, R/W UPDATE FLUSH

V-9

BOOT

BRANCH

BUFFER

C!

c,

C/L

C?

C8

CFA

CMOVE

COLD

COMPILE

CONSTANT

Boots disk in drive 1/ Same effect as turning computer on and off.

^s C2,LQ
The run-time procedure to unconditionally, branch. An in-line offset
is added to the interpretive pointer IP to branch ahead or back,
BRANCH is compiled by'ELSE, AGAIN, REPEAT.

n — addr

Obtain the next memory buffer* assigning it to block n. If the con
tents of the buffer is marked as updated, it is written to the disc.
The block is not read from the disc* The address left is the first
byte within the buffer for data storage.

b addr --

Store 8 bits at address.

Store 8 bits of b into the next available dictionary byte» advancing
the dictionary pointer.

">

~ n V

A CONSTANT equal to the number of characters per line in the ValForth
screen. Usually 32, but may be 64 if 1024 byte screens in use,

addr — V

Fetches a byte from addr and prints it using . .

addr — b ^
Leave the 8 bit: contents of memory address.

pfa ~~- cfa
Convert the parameter field address of a definition to its code
field address.

from to count —-

Move the specified quantity of bytes beginning at address from to address
to. The contents of address from is moved first proceeding toward
high memory.

The cold start procedure to adjust the dictionary pointer to the minimum
standard and restart via ABORT. May be called from the termini! to
remove application programs and restart.

C2
When the word containing COMPILE executes, the execution address of
the word following COMPILE 1s copied (compiled) into the dictionary,
This allows specific compilation situations to-be handled in addition
to simply compiling' an execution address (which the interpreter al
ready does),

n - LO
Adefining word used 1n the form: '^

n CONSTANT cccc
to create word cccc, with Its parameter field containing n. When
cccc is later axtcutid, it will push the value of n to the stack.

•V-10

CONTEXT -- addr u,LO
A user variable containing a pointer to the vocabulary within which
dictionary searches will first begin.

COUNT addrl -- addr2 n LO
Leave the byte address addr2 and byte count n of "a message text begin
ning at.address addrl. It is presumed that the first byte at addrl
contains the text byte count and the actual text starts with the second
byte. Typically, COUNT is followed by TYPE.

CR -- LO
Transmit a carriage return and line feed to the selected output device.

CREATE

A defining word used in the form:
CREATE cccc

by such words as CODE and CONSTANT to create a dictionary header for
a FORTH definition. The code field contains the address of the word's
parameter field. The new word is created in the CURRENT vocabulary.

CSAVE -- •' V
Creates a bootable copy of RAM-resident system up to HERE on cassette.
Computer beeps twice to indicate user must press Record and Play but
tons on recorder, prior to pressing RETURN. CSAVE expects leaderless
tape. If your tape has a leader, wind to just before the end of leader.

CSP — addr U
A user variable temporarily storing the stack pointer position, for
compilation error checking*

CURRENT — addr

Address of a pointer to second word in the parameter field of the current
vocabulary, (The current vocabulary is the one to which new definitions
are added.)

D! d addr — V
Stores double number d into addr.

D+ dl d2 -- dsum

Leave the double number sum of two double numbers*

D+- dl n — d2

Apply the sign of n to the double number dl, leaving it as d2.

D. . d -- LI
Print a signed double number from a 32 bit two's complement value*
The high-order 16 bits are most accessable on the stack. Conversion
is performed according to the current BASE. A blank follows. Pro
nounced "D-do't."

D.R d n ~

Print a signed double number d right aligned in a field n characters
wide*

D@ addr — d V
Fetches double number d from addr*

V-ll

DABS

DECIMAL

DEFINITIONS

DIGIT

DLITERAL

DMINU.S

DO

DOES>

DP

d -- ud
Leave the absolute value ud of a double number.

Set the numeric conversion BASE for decimal input-output,
LO

LI
Used in the form:

cccc DEFINITIONS

Set the CURRENT vocabulary to the CONTEXT vocabulary. In the example,
executing vocabulary name cccc made it the CONTEXT vocabulary and exe
cuting DEFINITIONS made both specify vocabulary cccc.

c nl ~ n2 tf (ok)
c nl — ff (bad)

Converts the ASCII character c
lent n2, accompanied by a true
leaves only a false flag.

(using base nl) to its binary equiva-
flag. If the conversion is invalid,

d — d (executing)
d — (compiling) ' P

If compiling* compile a stack double number into a literal* Later
execution of the definition containing the literal will push it to
the stack. If executing, the number will remain on the stack*

dl -- d2

Convert dl to its double number twofs complement.

nl n2

addr n — (compile) P,C2;L0
Occurs in a

DO

DO ..

At run-time, DO begins a sequence with repetitive execution controlled
by a loop limit nl and an index with initial value n2. DO removes
these from the stack. Upon reaching LOOP* the index is incremented by
one* Until the new index equals or exceeds the limit, execution loops
back to just after DO; otherwise, the loop parameters are discarded and
execution continues ahead. Both nl and n2 are determined at run-time
and may be the result of other operations. Within a loop "I" will copy
the current value of the index to the stack. See I, LOOP, +L0QP,
LEAVE,

When compiling within the colon-definition, DO compiles (DO), leaves the
following address addr and n for later error checking*

LO
A word which defines the run-time action within a high-level defining
word. D0ES> alters the code field and first parameter of the new word
to execute the sequence of compiled work addresses following D0ES>.
Used in combination with <BUILDS* When the D0ES> part executes it
begins with the address of the first parameter of the new word on the
stack* This allows interpretation using this area or its contents.
Typical uses include the Forth assembler, multi-dimensional" arrays,
and compiler generation.

-- addr U,L
A user variable, the dictionary pointer, which contains the address of
the next free memory above the dictionary-. The value may be read by
HERE and altered by ALLOT, or directly*.

V-12

— (execute)
— (compile)
colon-definition in form:
LOOP

*LQQP

DO begins

^

^

^

DPL - addr U,LO
A user variable containing the number of digits to the right of the

j^ decimal on double integer input. It may also be used hold output column
^ location of a decimal point, in user generated formatting. The default

value on single number input is -l.

DRO

DR1

Installation dependent commands to select disc drives, by presetting
OFFSET. The contents of OFFSET is added to the block number in BLOCK
to allow for this selection. Offset is supressed for error text so
that it may always originate from drive 0.

DROP n -- LO
Drop the number from the stack.

DUP n — n n LO
Duplicate the value on the stack.

ELSE addrl nl ~ addr2 n2 (compiling)
P,C2,L0

Occurs within a colon-definition in the form:
IF ... ELSE ... ENDIF

At run-time, ELSE executes after the true part following IF. ELSE
forces execution to skip over the following false part and resumes
execution after the ENDIF. It has no stack effect.

At compile-time, ELSE emplaces BRANCH reserving a branch offset, leaves
the address addr2 and n2 for error testing. ELSE also resolves the
pending forward branch from IF by calculating the offset from addrl
to HERE and storing at addrl.

EMIT c - LO
Transmit ASCII character c to the selected output device. OUT is
incremented for each character output.

EMPTY-BUFFERS LO
Mark all block-buffers as empty, not necessarily affecting the contents.
Up-dated blocks are not written to the disc. This is also an initiali
zation procedure before first use of the disc. Alias is MTB.

ENCLOSE addrl c — addrl nl n2 n3

The text scanning primitive used by WORD. From the text address
addrl and an ASCII delimiting character c, is determined the byte
offset to the first non-delimiter character nl, the offset to the first
delimiter after the text n2, and the offset to the first character
not included. This procedure will not process past an ASCII "null",,
treating it as an unconditional delimiter.

END P,C2,L0
This is an "alias" or duplicate definition for UNTIL.

V-13

ENDIF

ERASE

ERROR

EXECUTE

EXPECT

addr n -- (compile) P,C0,L0
Occurs in a colon-definition in form:

IF ... ENDIF

IF ... ELSE ... ENDIF

At run-time, ENDIF serves only as the destination of a forward branch
from IF or.ELSE. It marks the conclusion of the conditional structure.
THEN is another name for ENDIF. Both names are supported in fig-FORTH.
See also, IF and ELSE.

At compile-time, ENDIF computes the forward branch offset from addr to
HERE and stores it at addr. n is used for error tests.

addr n --

Clear a region of memory to zero from addr over n addresses.

n — in blk

Execute error notification and restart of system. WARNING is first
examined. If 1, the text of line n, relative to screen 176 of drive 0
is printed. This line number may be positive or negative, and beyond
just screen 176. If WARNINGS, n is just printed as a message number
(non disc installation). If WARNING is -1, the definition (ABORT)
is executed, which executes the system ABORT. The user may cautiously
modify this execution by altering (ABORT). fig-FORTH saves the contents
of IN and BLK to assist in determining the location of the error. Final
action is execution of.QUIT.

addr —

Execute the definition whose code field address is on the stack,
code field address is also called the compilation address.

The

addr count — • LO
Transfer characters from the terminal to address, until a "return" or
the count of characters have been received. One or more nulls are
added at the end of the text*

FENCE -- addr U
A user variable containing an address below which FORGETting is trapped.
To forget below this point, the user must alter the contents of FENCE.

FILL addr quan b —-
Fill memory at the address with the specified quantity of bytes b.

FIRST ~ addr

A constant that leaves the address of the first (lowest) block buffer.

FLD ~ addr U
A user variable for control of number output field width. Presently
unused in fig-FORTH.

FORGET « ' E,L0
Executed in the form:

FORGET cccc

Delete definition named cccc from the dictionary with all entries
ohvsicallv following it.

V-14

">

^

~>

FORTH

FULLK

GFLAG

HALFK

HERE

HEX

^
HLD

HOLD

V

ID.

P.L1
The name of the primary vocabulary. Execution makes FORTH the CONTEXT
vocabulary. Until additional user vocabularies are defined, new user
definitions become a part of FORTH. FORTH is immediate, so it will
execute during the creation of a colon-definition, to select this voca
bulary at compile time.

Sets C/L to 64 and B/SCR to 8, producing 1024 byte screen operation.
May be SAVEd in this condition. (See HALFK)

~ addr V

A variable that holds a Graphics mode cursor control flag. When the
value at GFLAG is non-zero, valForth assumes a split-screen is opera
tive, and will use the alternate cursor-address variables provided by
the Operating System to use the text window at the bottom of the display.

Sets C/L to 32 and B/SCR to 4, producing 512 byte screen operation. May
be SAVEd in this condition. (See FULLK)

-- addr LO
Leave the address of the next available dictionary location.

Set the numeric conversion base to sixteen (hexadecimal)*
LO

— addr LO

A user variable that holds the address of the latest character of

text during numeric output conversion.

c — LO

Used between <# and #> to insert an ASCII character into a pictured
numeric output string,
e.g. 2E HOLD will place a decimal point.

— n C,L0
Used within a D0-L00P to copy the loop index to the stack, Other
use is implementation dependent. See R.

~ n B
Copies the second item on the return stack to the stack. Generally
used to get the index of the present DO LOOP after an item has been
pushed to the return stack for convenience,

addr --

Print a definition's name from its name field address.

V-15

IF

IMMEDIATE

IN

INDEX

INTERPRET

KEY

KLOAD

f — (run-time)
~ addr n (compile) P,C2,L0

Occurs in a colon-definition in form:
IF (tp) ... ENDIF
IF (tp) ... ELSE (fp) ... ENDIF

At run-time, IF selects execution based on a boolean flag. If f is
true (non-zero), execution continues ahead thru the true part. If f is
false (zero), execution skips till just after ELSE to execute the false
part. After either part, execution resumes after ENDIF. ELSE and its
false part are optional.; if missing, false execution skips to just
after ENDIF.

At compile-time IF compiles OBRANCH and reserves space for an offset
at addr. addr and n are used later for resolution of the offset and
error testing.

Mark the most resently made definition so that when encountered at
compile time, it will be executed rather than being compiled, i.e.
the precedence bit in its header is set. This method allows defini
tions to handle unusual compiling situations, rather than build them
into the fundamental compiler. The user may force compilation of an
immediate definition by preceeding it with COMPILE] .

— addr LO
A user variable containing the byte offset within the current input
text buffer (terminal or disc) from which the next text will be ac
cepted. WORD uses and moves the value of IN.

from to —

Print the first line of each screen over the range from, to. This is
used to view the comment (first) lines of an area of text on disc screens,

The outer text interpreter which sequentially executes or compiles
text from the input stream (terminal or disc) depending on STATE. If
the word name cannot be found after a search of CONTEXT and then CURRENT
it is converted to a number according to the current base. That also
failing, an error message echoing the name with a " ?" will be given.
Text input will be taken according to the convention for WORD. If a
decimal point is found as part of a number, a double number value will
be left. The decimal point has no other purpose than to force this
action. See NUMBER.

— n

Copies the third item on the return stack to the stack,
used to get the index of the next outer DO LOOP.

Leave the ASCII value of the next terminal key struck.

B

Generally

LO

screen — . V

If C/L has a value other than 64, then the number on stack is doubled.
In either case, LOAD is then executed. The purpose is to allow smart
conditional loading of either IK screen or 1/2K screen formats. See '(.

V-16

^

^

^

LABEL cccc,
cccc, — addr

At compilation time, creates a word cccc. At run time, cccc leaves
the address of its pfa on the stack. Used to set up a pointer to the
following area of memory, as for a machine language subroutine or a
player image. Examples:

Example 1: Player image
2 BASE !

LABEL UPARROW

00011000 '• C,
00111100 C,
01111110 C,
00011000 C,
00011000 C,
00011000 c,
DCX

Example 2: Machine code two-times
ASSEMBLER

LABEL 2* 0 .,X ASL, 1 »X ROL, RTS,

LATEST — addr

Leave the name field address of the topmost word in the CURRENT voca
bulary.

LEAVE — CjL0
Force termination of a DO-LOOP at the next opportunity by setting the
loop limit equal to the current value of the index. The index itself
remains unchanged, and execution proceeds normally until LOOP or +L00P
is encountered.

LFA pfa ~ Ifa
Convert the parameter field address of a dictionary definition to its
link field address.

V-17

LIMIT

LIST

LIT

LITERAL

LOAD

LOOP

M*

M/

M/MOD

MAX

A constant leaving the address just above the highest memory available
for a disc buffer.

n -- LO
Display the ASCII text of screen n on the selected output device.
SCR contains the screen number during and after this process.

— n . C2$LG
Within a colon-definition* LIT is automatically compiled before each
16 bit literal number encountered in input text* Later execution of
LIT causes the contents of the next dictionary address to be pushed
to the stack.

n -- (compiling) P$C2SL0
If compiling, then compile the stack value .n as a 16 bit literal.
This definition is immediate so that it will execute during a colon
definition. The intended use is:

: xxx [calculated LITERAL ;
Compilation is suspended for the compile time calculation of a value-
Compilation is resumed and LITERAL compiles this value.

n •-- LO

Begin interpretation of screen n. Loading will terminate at the end
of the screen or at ;$. See ;S and ~~>»

addr n — (compiling) PSC25L0
Occurs in a colon-definition in form:

DO ... LOOP

At run-time, LOOP selectively controls branching back to the correspond
ing DO based on the loop index and limit. The loop index is incremented
by one and compared to the limit. The branch back to DO occurs until
the index equals or exceeds the limit; at that time, the parameters are
discarded and execution continues ahead*

At compile~times LOOP compiles (LOOP) and used addr to calculate an
offset to DO. n is used for error testing*

nl n2 — d

A mixed magnitude math operation which leaves the double number signed
product of two signed numbers.

d nl.— n2 n3

A mixed magnitude math operator which leaves the signed remainder
n2 and signed quotient n3» from a double number dividend and divisor
nl. The remainder takes its sign from the dividend.

udl. u2. ~~ u3 ud4
An unsigned mixed magnitude math operation which leaves a double quo
tient ud4 and remainder u39 from a double dividend udl and single
divisor u2.

nl n2 ~ max

Leave the greater of two numbers*

V-18

LO

^

^

~5

MESSAGE

MIN

MINUS

MOD

MTB

NEXT

NFA

NOOP

NOT

NUMBER

O+S

OFF

Print on the selected output device the text of line n relative to
screen 176 of drive 0. n may be positive or negative/ MESSAGE may be
used to print incidental text such as report headers, If WARNING is
zero, the message will simply be printed as a number (disc unavailable)

nl n2 — rnin

Leave the smaller of two numbers.

nl -- n2

Leave the two's complement of a number*

nl n2 — mod

Leave the remainder of nl/n2s with the same sign as nl,

Alias of EMPTY-BUFFERS.

— addr

This is the inner interpreter that uses the interpretive pointer IP
to execute compiled Forth definitions* It is not directly executed,
but is th^ return point for all code procedures. It acts by fetching
the address pointed by IP, storing this value in register W. It then
jumps to the address pointed to by the address pointed to by W. W
points to the code field of a definition which contains the address
of the code which executes for that definition. This usage of in
direct threaded code is a major contributor to the power, portability,
and extensibility of Forth. (Assembler Vocabulary)

pfa -- nfa
Convert the parameter field address of a definition to its name field.

LO

LO

LO

V

A word that does nothing in minimal time.' May be used for reserving
space in a definition or as a null operation for a word that uses @EX,
Generally for advanced programmers. Identical to TASK* Pronounced
"no-op".

n -- flag
Leaves a true flag if n is equal to 0, Otherwise, leaves a false flag,

addr — d

Convert a character string left at addr with a preceeding count, to
a signed double number, using the current numeric base* If a.decimal
point is encountered in the text, its position will be given in DPL,
but no other effect occurs. If numeric conversion is not possible,
an error message will be given*

start count -- upper-!imit+1 lower-limit V
Same as OVER + SWAP* Used to set up limits for DO LOOPs and the like,

— 0 V

A CONSTANT equal to 0. Used to enhance readability.

V-19

OFFSET

ON

OR

OUT

OVER

PAD

PFA

PFLAG

PICK

POP

PREV

PROMPT

PUSH

— addr U

A user variable which may contain a block offset to disc drives* The
contents of OFFSET is added to the stack number by BLOCK. Messages
by MESSAGE are independent of OFFSET. See BLOCK, DRO, DR1, MESSAGE,

— 1

A CONSTANT equal to 1. Used to enhance readability.

nl n2 — or
Leave the bit-wise logical or of two 16 bit values.

— addr

A user variable that contains a value incremented by EMIT,
may alter and examine OUT to control display formatting*

nl n2 — nl n2 nl

Copy the second stack value, placing it as the new top.

— addr

Leave the address of the text output buffer, which is a fixed offset
above HERE.

nfa ~ pfa
Convert the name field address of a compiled definition to its para
meter field address*

— addr V

A variable that holds an output-select value* If bit 0 is set then
output will be sent to the display screen* If bit 1 is set, then output
will be sent to the printer. If both bits are set, then output will
go to both channels.

*** n — ...• nl V

Copies the nth entry below n on stack to top of stack, 2 PICK is the
same as OVER, 1 PICK is the same as DUP.

-- addr

The code sequence to.remove a stack value and return to NEXT* POP is
not directly executable, but is a Forth re-entry point after machine
code* (Assembler Vocabulary)

— addr

A variable containing the address of the disc buffer most recently
referenced. The UPDATE command marks this buffer to be later written
to disc.

V

LO

U

The user

LO

LO

Intended for system use only* in QUIT* A smart version of the usual
." ok18 in QUIT. Prevents "ok11 and visible stack printout from being
routed to printer.

— addr

This code sequence pushes machine registers to the computation stack
and returns to NEXT* It is not directly executable, but is a Forth
re-entry point after machine code* (Assembler Vocabulary)

V-20

^

/^^•ij.

^

PUT — addr

This code sequence stores machine register contents over the topmost
computation stack value and returns to NEXT. It is not directly execu
table, but is a Forth re-entry point after machine code.

QUERY
Input 80 characters of text (or until a "return81) from the operators
terminal. Text is positioned at the address contained in TIB with IN
set to zero.

QUIT -- LI
Clear the return stack, stop compilation, and return control to the
operators terminal. No message is given.

R — n

Copy the top of the return stack to the computation stack*

R# ~ addr U
A. user, variable which may contain the location of an editing cursor,
or other file related function.

R/W addr blk f -
The fig-FORTH standard disc read-write linkage* addr specified is the
source or destination block buffer, blk is the sequential number of
the referenced block; and f is a flag for f=0 write and f=l read.
R/W determines the location on mass storage, performs the read-write
and performs any error checking* Important: See Note 1 at end of glossary*

R> ~ n LO
Remove the top value from the return stack and leave it on the compu
tation stack. See >R and R.

R0 — addr U
A user variable containing the initial location of the return stack.
Pronounced R~zero. See RP!

REPEAT addr n — (compiling) P,C2
Used within a colon-definition in the form:

BEGIN ,** WHILE REPEAT

At run-time, REPEAT forces an unconditional branch back to just after
the corresponding BEGIN*

At compile-time, REPEAT compiles BRANCH and the offset from HERE to
addr. n is used for error testing.

ROLL ... n -- ... V
Moves the nth entry below n on stack to top of stack* 3 ROLL is the
same as R0T5 2 ROLL is the same as SWAP. 0 ROLL is undefined*

ROT nl n2 n3 — n2 n3 nl LO
Rotate the top three values on the stack, bringing the third to the
top. .

RP!

A computer dependent procedure to initialize the return stack pointer
from user variable R0.

V-21

RPICK . n ~~ V
Copies nth entry on return stack to parameter (number) stack. For
instance, 1 RPICK is the same as R and 2 RPICK is the same as T,
etc*

S->D n — d

Sign extend a single number to form a double number*

SAVE — V
Gives prompt, and if answered with press of "Y" key, moves COLD and
FENCE parameters to cover current system, makes Forth current, and
creates a bootable copy of RAM-resident system up to HERE on disk in
drive 1.

SO -- addr U
A user variable that contains the initial value for the stack pointer.
Pronounced S-zero. See SP!

SCR ~ addr U
A user variable containing the screen number most recently referenced
by LIST.

SGRCTL — addr V
"Shadow Register" for GRACTL, the Atari graphics control register.
See Atari Operating System Manual for explanation*

SIGN n d -- d LO
Stores an ASCII "-"sign just before a converted numeric output
string in the text output buffer when n is negative, n is discarded, ^
but double number d is maintained* Must be used between <# and #>. ;

SMUDGE

SPi

Used during word definition to toggle the "smudge bit" in a definitions1
name field. This prevents an uncompleted definition from being found
during dictionary searches, until compiling is completed without error.

A computer dependent procedure to initialize the stack pointer from SO*

SP@ — addr

A-computer dependent procedure ,to return the address of the stack
position to the top of the stack, as it was before SP@ was executed,
(e.g. 1 2 SP@ 9 . . . would type 2 2 1)

SPACE — LO
Transmit an ASCII blank to the output device.

SPACES n ~ LO

Transmit n ASCII blanks to the output device.

SPEMIT c — V
Like EMIT, but defined for Atari. Will output control codes as charac
ters instead of executing the controls. Used by EXPECT and other
words.

V-22

^

o

STATE

SWAP

TASK

THEN

TIB

TOGGLE

TRAVERSE

TRIAD

~ addr LO,U
A user variable containing the compilation state. A non-zero value
indicates compilation. The value itself may be implementation depen
dent.

nl n2 — n2 nl

Exchange the top two values on the stack.
LO

A no-operation word which can mark the boundary between applications.
By forgetting TASK and re-compiling, an application can be discarded
in its entirety.

An alias for ENDIF.
P,C0,L0

-- addr U
A user variable containing the address of the terminal input buffer.

addr b —

Complement the contents of addr by the bit battem b.

addrl n ~ addr2

Move across the name field of a fig-FORTH variable length name field,
addrl is the address of either the length byte or the last letter.
If n=l, the motion is toward hi memory; if n=-l, the motion is toward
low memory. The addr2 resulting is address of the other end of the
name.

scr —

Display on the selected output device the three screens which include
that numbered scr, beginning with a screen evenly divisible by three.
Output is suitable for source text records, and includes a reference
line at the bottom taken from line 14 of screen 177.

V-23

TYPE addr count ~~ LO
Transmit count characters from addr to the selected output device.

TYPE as supplied zeroes out the high bit of each character before
sending it to the output device* usually the screen or printer.
If you want to be able to type all 8 bits for inverse characters9
do the following:

255 * TYPE 20 + C!

and return to 7 bit output by doing

127 ' TYPE 20 + C!

More generally,

78TYPE < ' TYPE 14 + > C! ;
7TYPE 127 78TYPE ;
8TYPE 255 78TYPE ;

(What you are doing with all of this is changing the mask that.
TYPE uses before executing EMIT*)

U* ul u2 -- ud

Leave the unsigned double number product of two unsigned numbers*

U* n — - B

Prints the number n in unsigned form.

U.R u n ~~ B
Prints unsigned number u right justified in a field n wide..

U/ ud ul — u2 u3
Leave the unsigned remainder u2 and unsigned quotient u3 from the
unsigned double dividend ud and unsigned divisor ul*

U> u2 ul — flag V
Leaves true flag is u2 (unsigned) is greater than ul (unsigned)*
Otherwise* leaves false flag*

V-24

~)

^

~5

r

u?

UNTIL

UPDATE

USE

USER

VARIABLE

VQC-LINK

addr ~ V

Does a @ from addr and m unsigned print of top of stack,

f — (run-time)
addr n -- (compile) P,C2,L0

Occurs within a colon-definition .in the form:
BEGIN ... UNTIL

At run-time, UNTIL controls the conditional branch back to the
corresponding BEGIN* If f is false, execution returns to just after
BEGIN; if true, execution continues ahead.

At compile-time, UNTIL compiles (OBRANCH) and an offset from HERE to
addr* n is used for error tests,

LO

Marks the most recently referenced block (pointed to by PREV) as
altered* The block will subsequently be transferred automatically to
disc should its buffer be required for storage of a different block.

— addr

A variable containing the address of the block buffer to use next, as
the least recently written.

n — LO

A defining word used in the form:
n USER cccc

which creates a user variable cccc* The parameter field of cccc
contains n as a fixed offset relative to the user pointer register
UP for this user variable* When cccc is later executed* it places
the sum of its offset and the user area base address on the stack

as the storage address of that particular variable.

n — E*LU
A defining work used in the form:

n VARIABLE cccc

When VARIABLE is executed, it creates the definition cccc with its .
parameter field initialized to n* When cccc is later executed9 the
address of its parameter field (containing n) is left on the stack,
so that a fetch or store may access this location*

— addr U

A user variable containing the address of a field in the definition of
the most recently created vocabulary. All vocabulary names are linked
by these fields to allow control for FORGETting thru multiple vocabu
laries*

VOCABULARY ~ E,L
A defining word used in the form:

VOCABULARY cccc
to create a vocabulary definition cccc. Subsequent use of cccc will
make it the CONTEXT vocabulary which is searched first by INTERPRET.
The sequence "cccc DEFINITIONS" will also make cccc the CURRENT voca
bulary into which new definitions are placed.

In fig-FORTH, cccc will be so chained as to include all definitions of
the vocabulary in which cccc is itself defined. All vocabularies ulti
mately chain to Forth. By convention, vocabulary names are to be de
clared IMMEDIATE. See VOC-LINK.

V-25

VLIST

List the names, of the definitions in the context vocabulary*

WAIT • — V f^
Halts execution of Forth until a CONSOLE button is pressed.

WARNING -- addr ' U
A user variable containing a value controlling messages. If = 1
disc is present^ and screen 176 of drive 0 is the base location for
messages* If ~ 0S no disc is present and messages will be presented
by number. If s -1, execute (ABORT) for a user specified procedure*
See MESSAGE, ERROR.

WHILE f — (run-time)
adl nl — adl nl ad2 n2 PSC2

Occurs in a colon-definition in the form:

BEGIN ... WHILE (tp) ... REPEAT
At run-time* WHILE selects conditional execution based on boolean
flag f* If f is true (non-zero)s WHILE continues execution of the
true part thru to REPEAT, which then branches back to BEGIN* If f
is false (zero)s execution skips to just after REPEAT* exiting the
structure.

At compile time, WHILE emplaces (OBRANCH) and leaves ad2 of the re-
served offset. The stack value will be resolved by REPEAT.

WIDTH — addr U

In fig-FQRTH, a user variable containing the maximum number of letters
saved in the compilation of a definitions8 name* It must be 1 thru ^m^
31, with a default value of 31* The name character count and its _ 7
natural characters are saved9 up to the value in WIDTH. The value may
be changed at any time within the above limits.

WORD c — LO

Read the next text characters from the input stream being interpreted,
until a delimiter c is found* storing the packed character string
beginning at the dictionary buffer HERE, WORD leaves the character
count in the first byte, the characters, and ends with two or more
blanks* Leading occurances of c are ignored. If BLK is zero9 text
is taken from the terminal input buffer, otherwise from the disc
block stored in BLK. See BLK9 IN*

X ' • -
This is pseudonym for the "null" or dictionary entry for a name of
one character of ASCII null* It is the execution procedure to termi
nate interpretation of a line of text from the terminal or within a
disc buffer* as both buffers always have a null at the end*

XOR nl n2 — xor LI

Leave the bit-wise logical exclusive-or of two values*

ok V

Does three backspaces* When using lllogical line input" from keyboard
to re-input previously entered line, this word gives harmless meaning
to the old 8lok}8 prompt Forth may find in.the input stream. See "logical
line input11 section in Strolling through ValForth.

V-26

n

L - — . P,L1
Used in a colon-definition in form:

: xxx C words] more ;
Suspend compilation. The words after Care executed* not compiled.
This allows calculation or compilation exceptions before resuming
compilation with D. See LITERAL,3 .

[Compile! -- P5C
Used in a colon-definition in form:

: xxx [COMPILE] FORTH ;
[COMPILE] will force the compilation of an immediate definition, that
would otherwise execute during compilation. The above example will
select the FORTH vocabulary when xxx executes, rather than at compile
time.

1 - LI
Resume compilation, to the completion of a colon-definition. See C.

NOTES:

Note 1

Due to a bug in at least some of the Atari Operating System ROM programs,
a sector may not be written directly from a memory area in which the low
byte of the bottom location is $7F. The system will hang if this is
attempted. This is not a valFORTH bug, it is Atari's. Please watch out
for it.

V-27

vatFORTHM Memory Map

DP

LIMIT-

FIRST-

$0700-

$0600-

$057E-

$0480'

$01FF-

RP-

$0100-

$00FF

$00D4-

Z PAGE

SO

SP-

PAD

$0080 BYTES

USE

PREV

0 +ORIGIN

UP

RO

IN

•TIB

n

^

STANDARD DISPLAY

MEMORY AREA

GENERAL BUFFER ~—

WORD BUFFER)
DICTIONARY

DISK BUFFERS
2112 BYTES DECIMAL

(RELOCATABLE)

(TASK)

KERNEL

BOOT CODE

ATARI FLOATING POINT

USER AREA

RETURN STACK ^ "
„..—-—-""TERMINAL BUFFER

,.->!?•*..

•

ATARI FLOATING POINT

UP N IP W

STACK $00BG-$0080

SP IS X REGISTER

RP IS STACK POINTER
OF CPU

^

Atari w a trademark of Atari, inc., a dwmon of Warner Orormjnteattons.

valFORTH
T.M.

Advanced 6502 Macro Assembler

Version 2.0

April 1982

Although the FORTH language is many times faster than BASIC or PASCAL,
there are still times when speed is so critical that one must turn to assembly
language programming as a matter of necessity. Not wanting to give up the
advantages of the FORTH language, FORTH programmers typically use an assembler
designed specifically for the FORTH system. valFORTH incorporates a very power
ful FORTH style 6502 assembler for these special programming jobs.

•Copyright Valpar International 1982

valFORTH 6502 Assembler

Overview

Most programming applications can be undertaken completely in high
level FORTH. There are times* due to speed constraints * when assembly language
must be used. Typically, "number crunching1* and high speed graphic routines
must be machine coded. valFORTH provides a powerful 6502 FORTH assembler
for these special occasions.

FORTH assemblers differ from standard assemblers by making the best use
of the stack and the FORTH system as a whole. The FORTH assembler is smaller
than a standard assembler. In the case of the valFORTH assembler, this is
particularly true.

The valFORTH assembler offers the programmer the following improvements
over a standard assembler:

1} IF,..THEN...ELSE structures which use positive logic
rather than negative logic.

2) BEGIN...UNTIL structures for post-testing indefinite
loops.

3) WHILE...REPEAT structures for pre-testing indefinite
loops.

4) BEGIN,,.AGAIN structures for unconditional looping.

5) Full access to the FORTH operating system and its
capabilities such as changing bases.

6) Complex assembly time calculations,

7) Mixed high level FORTH with assembly code to take
full advantage of each.

8) Full macro capability.

The following is a complete description of the valFORTH assembler. This
description assumes a working knowledge of 6502 assembly language programming
and related terms.

The purpose of the FORTH assembler is to allow machine language programming
without the need to abandon the FORTH system. Words coded in assembly language
must follow the standard FORTH dictionary format and must adhere to certain
guidelines regarding their coding.

Assembly language programmers typically have two methods of storing
programs into RAM. The machine code can be poked directly into memory9 or an
assembler can be used to accomplish this. The former method is brutal, but it
has the advantage that precious memory is not taken up by the assembler. The
drawbacks of course, is loss of readability and ease of modification. FORTH
allows both of these methods to be employed.

VI-1

ValFORTH 6502 Assembler

The words "," and "C," can be used to poke any machine language program
into the dictionary. This is used only when memory restrictions prohibit the
use of an assembler or if it is assumed that no assembler is available. ^|

In high level FORTH, words are compiled into the dictionary using the
following form:

: name high-1eve!-FORTH... ;

When compiling a machine coded word, this becomes:

CODE name machine-code... C;

In this example, the word "CODE" creates a header for the next word in
much the same way ":" creates a header. The difference lies in the fact that
":" informs the system that the following definition is high level FORTH, while
"CODE" indicates that the definition is a machine or assembly language
definition. In the same manner, ";" terminates a high level FORTH definition
while "Ci" terminates a code definition.

To clarify this, a code definition will be programmed that will clear the
top line of the current video display on an Atari 800 microcomputer. Note that
video memory is pointed to by the address stored in locations 88 and 89 (decimal).
The 6502 code is shown in listing 1.

Y comes in with 0; 0 means a blank
40 characters/line (0 thru 39)
Fill from end to beginning ,-^
Done? ._/
Keep goinq if not
Re-enter the FORTH operating system

CLR TYA
LDY #39

LOOP STA (88), Y
DEY

BPL LOOP

JMP NEXT

Listing 1

The CODE definition equivalent to listing 1 would be:

H£X (put in hex mode)
CODE CLR (define code word)

98 c, (poke in code)
AO C, 27 C,
91 C, 58 C,
88 C,
10 C, FB C,........ ^

C; DECIMAL (end assembly)

First the FORTH system is put into the hexadecimal mode so that opcode
values need not be converted to decimal. Next, the word CODE puts the system
into an assembly mode and enters the new word CLR into the dictionary as a
machine language word. The opcodes are then byte compiled (C,) into tne
dictionary. Note that for the final jump to re-enter FORTH, the predefined
word NEXT was word compiled (",") into the dictionary. The word C; terminates
the assembly process. The system is then restored to the decimal mode.

VI-2

^

valFORTH 6502 Assembler

This method can always be used* but it is vary tedious. Each opcode must
be looked up, and all relative branches calculated. Besides introducing a
great source for error* if a single opcode is added or deleted, it is possible
that many jumps must be re-calculated. For this reason, using the assembler
is the prescribed method for entering machine language routines.

Unlike the standard assembler which has four fields (the label field,
the operation field, the operand field, and the comment field), the FORTH
assembler has only three fields* In a FORTH assembler, there is no explicit
label field, but there is an implied label field through the use of the assembler
constructs IF, and BEGIN, described later, In addition, the remaining three
fields in the FORTH assembler are in reversed order (as is standard for the
FORTH language). In other words, the operand precedes the operation, and
remarks can be embedded anywhere.

In compiling an assembly word, the FORTH assembler ultimately uses either
V1 or nC," and for this reason assembly mnemonics traditionally end with a
comma, valFORTH equivalents are shown in chart 1.

Standard Assembler

LDX COUNT

JMP C0UNT+1

LDA #3

ADC N

STY T0P,X
INC B0T,Y

STA (T0P,X)
AND (B0T),Y
JMP (POINT)
DEC N+4

DEX

ROL A

or

ValFORTH Assembler

COUNT LDX,
COUNT]L+ JMP,
3 LDA,
N ADC,
TOP 5X STY,

BOT ,Y INC,
TOP X) STA,
BOT)Y AND,
POINT)JMP,
N 4 + DEC,

DEX,
.A ROL,

ROL.A,

Note: # 9 LDA, = 9 # LDA,
TOP ,X ROL, - ,X TOP ROL, etc.

Chart 1

Converting the program given in listing 1 to FORTH assembly mnemonics
we have:

DECIMAL

CODE CLR

TYA, (TYA

39 LDY, (LDY #39

BEGIN, (LOOP .

88)Y STA,

!
STA (88),Y

DEY, DEY

MI UNTIL, !
BPL LOOP

NEXT JMP, JMP NEXT

C;

VI-3

valFORTH 6502 Assembler

In the above example, a BEGIN ... UNTIL, clause (described in the next
section) is used. By using this structure, no labels are necessary and positive
logic is used rather than negative logic (i.e., "repeat until minus" instead
of "if-NOT minus, then.repeat"). Note that the FORTH assembler compiles
exactly the same machine code as the standard assembler, it simply makes the
assembly coding easier,

Control Structures

Allowing labels within assembly language programming would make the FORTH
assembler needlessly long and slow. To get around the problem of test branching,
the ValFORTH assembler has a very powerful set of control structures similar to
those found in high level FORTH.

The IF,...ENDIF, and IF,...ELSE,...ENDIF, clauses

The.IF, construct which handles conditional downward branches has the
following two forms:

...code...
flag IF,

...true code..
ENDIF,
*..code..»

...code*..

flag IF,
,..true code*.

ELSE,
...false code,.

ENDIF,

...code...

where "flag" is one of the 6502 statuses: NE , EQ , CC , CS , VC , VS ,
MI , or PL. The following are a few examples of how these are used.

Note: When the FORTH inner interpreter passes control to an assembly language
routine, the Y register always contains a zero value and the X register must
be preserved as it is used by the FORTH system to maintain the parameter stack.
See the section on parameter passing for more information.

; Code routine for
ONEPL INC 0,X

BNE THERE

INC 1,X

THERE JMP NEXT

increment low byte of 16 bit value
carry out of low?
increment high byte if so
re-enter FORTH system

Now in ValFORTH assembly language:

CODE ONEPL

0 ,X INC,
EQ IF,

1 ,X INC,
ENDIF,
NEXT JMP,

Cl

(define word)
(increment low byte)
[if result was zero,)
(then bump the high byte)

(exit to FORTH)

VI-4

~5

~>

n

ValFORTH 6502 Assembler

Note: In the following example, CONIN is assumed to be predefined.

; Input routine
INPUT JSR CONIN

CMP #$0D
BNE INP1

...codel...

JMP INP2

INP1 ..-.code2...

INP2 ...code3...
JMP NEXT

Go get character, conies back in A
Is it.a carriage return?
If not, do something else
execute code for carriage return
do not execute "normal" code

execute code for normal keys
execute code more common code

re-enter FORTH system

The equivalent valFORTH version would be:

HEX

CODE INPUT

CONIN JSR

OD CMP,
EQ IF,

...codel.

ELSE,
...code2,

ENDIF,

.. *code3, * *•
NEXT JMP,

C; DECIMAL

(Get character
[carriage return?
[If so, then
[execute c/r code
[otherwise
[execute normal code

(re-enter FORTH system)

The BEGIN,,..UNTIL, clause

Another useful structure is the BEGIN,..-UNTIL, construct which allows
for post-testing indefinite looping. The BEGIN,...UNTIL, construct has the
following form:

,..codel.*.

BEGIN,
..*code2,.

flag UNTIL,
...code3,..

code2 is repeatedly
executed until "flag1
is true*

The following 6502 routine waits until a carriage return has been typed.

; WAIT until c/r
WAIT JSR CONIN

CMP #$0D
BNE WAIT

JMP NEXT

Go get a character, comes back in A
Is it a carriage return?
Ask again if not
Return to FORTH

JJsing the BEGIN, clause, this becomes

NEXT

CODE WAIT

BEGIN,
CONIN JSR,
OD CMP,

EQ UNTIL,
NEXT JMPS

C; DECIMAL

(Code name WAIT
[Begin waiting
[Get a character
[Carriage return?
[loop up until so

VI-5

valFORTH 6502 Assembler

The BEGIN,...WHILE,,,,REPEAT, clause

In the valFORTH assembler, there is another valuable control structure.
It is the BEGIN,...WHILE,...REPEAT, structure. The WHILE, clause allows pre
testing indefinite loops to be easily programmed. It takes the form:

...codel...

BEGIN,
..,code2,,

flag WHILE,
..,code3*.

REPEAT,
...code4...

Code2 and code3 are repeatedly
executed until "flag" become
false, at which time program
control proceeds to code4.

A common example of the WHILE,
by a carriage return.

clause is getting a line of input text terminated

; Get line of text
GETLN JSR CONIN

CMP #$0D
BEQ GETL1
STA BFFR,Y
INY

JMP GETLN

GETL1 JMP NEXT

(note: Y=0 on entry always)
; Get one character
; C/R terminates input
; If not a C/R then
; store the character
; Bump buffer pointer
; Go back for more
; Exit to FORTH

Using the WHILE, clause in valFORTH, we have:

HEX

CODE GETLN

BEGIN,
CONIN JSR,
OD CMP,

NE WHILE,
BFFR ,Y STA,
INY,

REPEAT,
NEXT JMP,

C; DECIMAL

(Get a character
(Carriage return?
(If not,
(then store the character)
(and bump the pointer }
(Repeat all of the above)

VI-6

^%

^

valFORTH 6502 Assembler

The BEGIN,...AGAIN, clause

The final control structure is the BEGIN,...AGAIN, structure. This
structure allows the use of unconditional looping in assembly language routines,
Although its use is rare, it can reduce code size considerably. It takes the
following form:

...codel...
BEGIN,

...code2...

flag IF,
...code3...

re-entry-point JMP,
ENDIF,
...code4...

AGAIN, .C;

Repeatedly execute code2
and code4 until "flag"
becomes true, in which
case, program execution
continues with code3 and
a system re-entry made.

The best example of the AGAIN, clause is in the coding of the CMOVE routine:

; Byte at a time front
CMOVE LDA #3

JSR SETUP

CM0V1 CPY N
BNE CM0V2

DEC N+l

BPL CM0V2

JMP NEXT

CM0V2 LDA (N+4),Y
STA (N+2),Y

a INY

BNE CM0V1

INC N+5

INC N+3

JMP CM0V1

end memory move
Get top three stack items
Move them to N scratch area

Time to decrement COUNT high?
Nope
Yes, so do it
Bypass exit if not done
Exit to FORTH system
Get byte to move
Move it!

Bump byte pointer
Keep going until ready to
bump high bytes of both
"to" and "from" addresses

Do it all again

Using the AGAIN, clause, this becomes:

(Prepare for memory move)
CODE CMOVE

3 LDA,
SETUP JSR,
BEGIN,

BEGIN,
N CPY,
EQ IF,

N 1+ DEC,
MI IF,

NEXT JMP,
ENDIF,

ENDIF,
N 4 +)Y LDA,
N 2+)Y STA,
INY,

EQ UNTIL,
N 5 + INC,
N 3 + INC,

AGAIN,

C; DECIMAL

(Start the process)
(done?)

(Maybe, keep checking)

(Re-enter FORTH system)

(Get byte to copy)
(Store in new location)
(Bump pointer)

(Bump addresses)

(Do it all again)

VI-7

valFORTH 6502 Assembler

Parameter Passing

One of the most useful features of the FORTH language is its ability to ^J
use a parameter stack for passing values from one word to another. For
assembly language routines to really be useful in the FORTH system, there must
be some facility for these routines to access this stack. Likewise, there
should be some way in which to access the return stack as well. This section
details exactly how to make the best use of both stacks.

Since the FORTH system maintains dual stacks and the 6502 supports only
one, it is necessary to simulate one of the stacks. For ease of stack manipu
lation, the parameter is simulated; the return stack uses the hardware stack
of the microprocessor.

The simulated stack uses the 0-page,X addressing mode of the 6502.
For example, the following statements show how the parameter stack is organized.

LDA 0,X Low byte of item on top of stack
INC 1,X High byte of top item
ADC 2,X Low byte of item second on stack
EOR 3,X High byte of 20S
RNL 4,X Low byte of item third on stack
AND 5,X

etc.

In high level FORTH, the word DROP drops (or pops) the top value from
the stack. The code definition for DROP is:

CODE DROP INX, INX, NEXT JMP, C;

In the same way, values can be "pushed" to the stack. Note that the X register
must be preserved between FORTH words or the parameter stack is lost! Thus if
the X register is needed in a code definition, it must be saved upon entry to
the routine and restored before returning to the FORTH system. The special
location XSAVE is reserved for this: (The word XSAVE has been defined as a
FORTH constant.)

STX XSAVE Save the X register
LDX XSAVE Restore the X register

In all the examples given so far, the code definitions have re-entered_
the FORTH system through the normal re-entry point called NEXT. The following
is a complete description of all possible re-entry points: (In all of the
following code examples, standard 6502 assembler format has been used for ease
of comprehension. All valFORTH assembler equivalents can be found in appendix A.)

The NEXT re-entry point

The NEXT routine transfers control to the next FORTH word to be
executed. All FORTH words eventually come through the NEXT routine.
Likewise, all other re-entry points come through NEXT once they have com
pleted their special tasks. The next routine is typically used by words

VI-8

~>

r>

valFORTH 6502 Assembler

The NEXT re-entry point (cont8d)

such as 1- which do not modify the number of arguments on the
stack. The word NEXT is defined as a FORTH constant, NXT, is an
abbreviation for NEXT JMP,- ,

Example: ; 1- routine
ONEM LDA 0,X

BNE 0NE1

DEC 1,X
0NE1 DEC 09X

JMP NEXT

Borrow from low byte?
If not, ignore correction
Decrement high byte
Now do the low
Re-enter FORTH

Listing 2

The PUSH re-entry point:

The PUSH routine pushes a 16 bit value to the parameter stack whose
low byte is found on the 6502 return stack and whose high byte is found
in the accumulator. The X register is automatically decremented twice
for the two bytes* This routine is typically used for words such as
OVER or DUP which leave one more argument than they expect. The word
PUSH has been defined as a FORTH constant. PSH, is an abbreviation
for PUSH JMP, .

Example: ; DUP routine
DUP LDA 0*X

PHA

LDA 1,X
JMP PUSH

Get low byte of TOS
Push it

Put high byte in A
Put it on the P-stack

Listing 3

The PUT re-entry point:

The PUT routine replaces the value currently on top of the parameter
stack with the 16 bit value whose low byte is found on the 6502 stack and
whose high byte is in the accumulator. This is used by words such as ROT
or SWAP which do not change the number of values on the stack. The word
PUT has been defined as a FORTH constant. PUT* is an abbreviation for
PUT JMP, .

Example: ; SWAP routine
SWAP LDA 2,X ; Low byte of 2nd value

PHA ; Save it
LDA 0,X ; Put low byte of TOS
STA 2,X ; into low byte of 20S
LDA 3,X ; Hold high byte of 20S
LDY 1,X ; Put high byte of TOS
STY 3,X ; into high byte of 20S
JMP PUT ; Replace TOS no

Listing 4

VI-9

valFORTH 6502 Assembler

The PUSHOA re-entry point

The PUSHOA re-entry point pushes the 8 bit unsigned value in the
accumulator as a 16 bit value with the upper 8 bits zeroed. This word is
very commonly used by words which leave a boolean flag on the parameter
stack such as 7TERMINAL. The word PUSHOA has been defined as a FORTH

constant. PSHA, is an abbreviation for PUSHOA JMP, .

Example: ; ?TERMINAL routine
QTERM LDA $D01F

EOR #7
BEQ QT1
INY

QT1 TYA
JMP PUSHOA

Read Atari CONSOLE keys
Anything pressed?
If not, go push false
Else push a true
Put Y (0 or 1) in A
Go push the result

Listing 5

The PUTOA re-entry point:

The PUTOA routine replaces the value currently on top of the parameter
stack with the 16 bit value whose low byte is in the accumulator and whose
high byte is set to zero. This is used by words such as C§ which simply
replace their arguments on the stack. The word PUTOA is defined as a FORTH
constant. PUTA, is an abbreviation for PUTOA JMP, .

Example: ; Byte fetch
CFCH LDA (0,X)

JMP PUTOA

The BINARY re-entry point

Load byte indirectly
Replace the address
with the contents

Listing 6

The BINARY re-entry point drops the value on top of the parameter
stack and then performs the PUT operation described above. This word is
commonly used by words such as XOR which use one more argument than they
leave. The word BINARY has been defined as a FORTH constant.

Example: Exclusive of TOS with 20S

XOR LDA 0,X
EOR 2,X
PHA

LDA 1,X
EOR 3,X
JMP BINARY

Get low byte of top value
XOR it with low of 20S
Save it
Now do same for high bytes
Result in A
Go DROP , PUT

Listing 7

VI-10

n

^

r>

valFORTH 6502 Assembler

POP and POPTWO re-entry points

The POP and POPTWO re-entry points are used when values must be
dropped from the parameter stack. POP performs a DROP, while POPTWO
performs a 2DR0P. Most words which can use BINARY can use POP. The words
POP and POPTWO have been defined as FORTH constants. POP, is an
abbreviation for POP JMP, and P0P2, is an abbreviation for POPTWO JMP, .

Examples: Another XOR routine

XOR LDA 0,X :, Get low byte
EOR 2,X , XOR with other low byte
STA 2,X :, Put directly on stack
LDA 1,X , Do the same for high bytes
EOR 3,X
STA 3,X
JMP POP ; Remove unneeded TOS item

Listing 8

; C! routine
CSTR LDA 2,X

STA (0,X)
JMP POPTWO

\ Get byte to store
; Store it!
; Drop byte and address

Listing 9

The SETUP routine

A very useful routine in the FORTH system is the code routine SETUP.
On the 6502, 0-page addressing is typically faster than absolute address
ing. Also, some instructions, such as indirect-indexed addressing, can use
only 0-page addresses. The SETUP routine allows the assembly language
programmer to transfer up to four stack values to a scratch pad in the
0-page for these operations. The predefined name for this area is N.
The calling sequence for the SETUP routine is:

LDA #num ; Move "num" values to N, ("num" =1-4)
JSR SETUP ; then drop "num" values from the stack

The SETUP routine moves one to four values to the N scratch area
and drops all values moved from the parameter stack. These values are
stored in the following order:

LDA N

EOR N+l

ADC N+2
STY N+3

INC N+4

DEC N+7

Low byte of value that was TOS
(N 1+ EOR,)High byte

Low byte of value that was 20S
3 +
4 +

STY,
INC,

High byte
Low byte of SOS

High byte of value that was 40S

Words such as CMOVE and FILL which use indirect-indexed addressing
typically use the SETUP routine (see the BEGIN,...AGAIN, example). The
word SETUP has been defined as a FORTH constant.

VI-11

valFORTH 6502 Assembler

Return stack manipulation

The FORTH return stack is implemented as the normal 6502 hardware
stack. To push and pop values* the 6502 stack instructions PHA and PLA
can be used, Sometirnes it is also necessary to manipulate the data on the
return stack (such as for DO looping). Using the normal stack operations
to do this can be tedious. Using indexed addressing* the return stack
can be manipulated in the same manner as the parameter stack-

Examples: ; >R routine
TOR LDA 1,X

PHA

LDA 0,X
PHA

JMP POP

; Pick up high byte
j Push it to R
j Now do the low byte
; It's done!
; Now, "lose" TOS

Listing 10

3rd loop index (I
STX XSAVE

TSX

LDA $109,X
PHA

LDA $10A,X
LDX XSAVE

JMP PUSH

,1 (J | ... K J
Save P-stack pointer
Get R-stack pointer
101-102,...,109-10A, (L-H)
Push low byte of 3rd item
A now has high byte
Restore P-stack pointer
Push the index

Listing 11

Machine Language Subroutines in valFORTH

When coding in assembly language, it is often useful to be able to make
subroutine calls for often used operations. Using CODE makes it possible to
do this, but it is not recommended. The following subroutine uses CODE.

)CODE S1+ (Subroutine 1+

0 ,X INC, (INC 0,X
EQ IF, !

BNE *+4

1 ,X INC, INC 1,X

ENDIF, (
RTS, (RTS

C;

This subroutine could now be used in assembly language routines in the follow
ing way:

CODE 1+
' S1+ JSR,

NEXT JMP,

C;

(Another 1+ routine
JSR S1+

JMP NEXT

VI-12

^

">

^

r

valFORTH 6502 Assembler

This works fine* but there is one slight problem. If the user types S1+ as
command (i.e., it is not called* but executed) the FORTH system will "crash"
when the RTS statement is encountered. This is because FORTH does not call

words, but jumps to them. For this reason, CODE is not used, A word which
acts like CODE but protects the system is needed.

its

In the code for 1+ above* it was necessary to f (tick) the subroutine to
find its address. It would be desirable if we could simply type its name and
have it return its address (just as NEXT and PUSH do). This is possible. The
word SUBROUTINE below allows this (note that this word is not automatically
loaded with the assembler, it must be typed in by the user).

SUBROUTINE

0 VARIABLE

-2 ALLOT

[COMPILE] ASSEMBLER
?EXEC !CSP ;

'new word SUBROUTINE
its like a VARIABLE
[discard the value of 0
[Put into assembly mode
[Set/check for errors

The word SUBROUTINE can be used in the same way CODE is except that
SUBROUTINES end with an RTS instruction while CODE routines must end with a
jump to a re-entry point. When the word defined using SUBROUTINE is executed,
the entry point to the routine is left on the stack similar to the way in which
a word defined using VARIABLE leaves an address. The following is an example
of subroutine usage,

(Two's complement)
(routine)

(i.e., TOS => - TOS)

SUBROUTINE 2! SCOMP

SEC,
0 # LDA,
0 ,X SBC,
0 ,X STA,
0 # LDA,
1 ,X SBC,
1 ,X STA,
RTS,

C;

It can now be used as such:

CODE ABS

1 ,X LDA,
MI IF,

2'SCOMP JSR,
ENDIF,
NEXT JMP,

(Take abs. value of TOS)
(Is TOS < 0 ?)

(If so, TOS => -TOS)

(Exit to FORTH system)

When the new word 2'SCOMP is executed directly, it leaves its address
on the stack. When it is called by a subroutine, it performs a two's comple
ment on the top stack value. This dual type of execution allows safe access
to assembly language subroutines.

VI-13

valFORTH 6502 Assembler

*

Macro Assemblies in valFORTH

FORTH assemblers use a reversed form of notation so that all the benefits /*j
of the standard FORTH system are available, In other words, anything that can
be done in FORTH can be done during assembly time in a code definition. This
is because all of the assembler opcodes are actually FORTH words which take
arguments from the parameter stack. Thus

NEXT JMP,

actually puts the address of the NEXT routine (NEXT is a FORTH constant) onto
the parameter stack. The word JMP, then compiles the address into the dictionary.
Here is a simplified definition (it does not test for indirect jumping) for the
JMP, opcode:

HEX

: JMP, (address —)
4C C, (compile in JMP opcode)
, (compile in the address)

; DECIMAL

All assembly words are designed in this fashion. Thus the necessity for
operands to precede opcodes becomes clean This allows the use of complex
assembly time calculations that no ordinary assembler would ever support (e,g.
no standard 6502 assembler would allow the use of the SIN function for generat
ing a data table).

Most assemblers do allow the use of the basic operations; +»-»*,/> ^^
and &, These are easily used in the valFORTH system: y

LDA #C0UNT&$FF COUNT FF AND # LDA,
LDY #NAME/$100 COUNT 100 / # LDY,
EOR N+6 ' N 6 + EOR,
LDX #JIAJj*$80 ASCII A 80 + # LDX,
etc.

The looping structures IF, and BEGIN, each leave two values on the stack
during assembly time, The first is a branch address, the second is an identifi
cation code. When ENDIF, is executed, it checks the identification code to
verify that structures have not been illegally interleaved (i.e., BEGIN, ...
ENDIF,). If everything checks out, ENDIF, then calculates the branch offset
required by the IF, clause, otherwise an error is reported. The BEGIN, clause
functions in the same manner* Thus, the words IF, and BEGIN, are predefined
macro instructions in the valFORTH assembler.

The fact that a FORTH assembler is nothing but a collection of words means
that the assembler, like the FORTH language itself, is extensible. In other
words, macro assemblies can easily be performed by defining new assembler
directives. Take the following code extract which outputs a text string:

^

VI-14

.*.code,.•

JSR CRLF

JSR PRTXT

.BYTE 11,'valFORTH 1.
LDA REL

JSR PRTNM

JSR CRLF

...code.*.

valFORTH 6502 Assembler

Skip to next line
Call print routine
String to output
Get release number

Print the number

Issue c/r

This code prints out the string "valFORTH 1.x" where V1 is the release
number. Note that the routine PRTXT does not exist, it is simply used here
for example purposes. The PRTXT routine "pops" the return address which points
to the output string, picks up the length byte and adds it to the return address,
The return address, which now points to the LDA instruction is "pushed11 back
onto the stack. The PRTXT routine still has a pointer to the string which it
then prints out. Finally, it dones an RTS and returns control to the calling
program* The release number is then printed out.

Assuming that the PRTXT routine is used quite often, it would be desirable
to make it an assembler macro. A word which automatically assembles in the
subroutine call to PRTXT and then assembles in a user specified string would be
quite handy. In valFORTH, this is easily accomplished:

ASSEMBLER DEFINITIONS

HEX

: PRINT"

20 C, PRTXT ,
22 WORD

HERE C@ l-i- ALLOT

; DECIMAL
IMMEDIATE

FORTH DEFINITIONS

(This is an assembler word)
[Put system in base 16)
[Command form: PRINT" text1
[compile in JSR PRTXT)
(Now the string upto ")
(Bump dictionary pointer)
(all done,)
(make word execute even at)
(compile time.)

%

This word could now be used in ValFORTH assemblies in the following manner;

•..code,. .

CRLF JSR,
PRINT" ValFORTH L

REL LDA,
PRTNM JSR,
CRLF JSR,
...code..•

[Skip to next line)
[Print out string)
[Get release number)
(Go print it)
(Skip to next line)

Using the newly defined PRINT" macro, strings no longer need to be counted,
and since there is less text to enter, typing errors are reduced. Other useful
macros which could be designed are words which allow conditional assembly or
automatically set up I0CB blocks for Atari operating system calls. Experienced
assembly language programmers typically have a set of often used routines
defined as macro instructions for quicker program development.

VI-15

valFORTH 6502 Assembler

Compatability With Other Popular Assemblers

There are several other versions of FORTH out which have 6502 assemblers,
The two major versions are the Forth Interest Group's written by William
Ragsdale, and the version put out by the Atari Program Exchange written by
Patrick Mullarky, The valFORTH assembler is a superset of both of these fine
assemblers and is fully compatible with both versions.

Although not stated previously in the documentation,-, there are several
ways in which to implement the IF, , WHILE, and UNTIL, structures. The
valFORTH assembler was designed with transportability in mind. Although the
recommended method is the valFORTH version, each of the following may be used.

valFORTH

EQ IF,
NE IF,
CS IF,
CC IF,
VS IF,
VC IF,
MI IF,
PL IF,

EQ WHILE,
NE WHILE,
CC WHILE,
CC WHILE,
VS WHILE,
VC WHILE,
MI WHILE,
PL WHILE,

EQ UNTIL,
NE UNTIL,
CS UNTIL,
CC UNTIL,
VS UNTIL,
VC UNTIL,
MI UNTIL,
PL UNTIL,

Fig version

0= IF,
0= NOT IF,
CS ' IF,
CS NOT IF,

0< IF,
0< NOT IF,

0= UNTIL,
0= NOT UNTIL,
CS UNTIL,

CS NOT UNTIL,

0< UNTIL,
0< NOT UNTIL,

Chart 2

VI-16

APX version

IFEQ,
IFNE,
IFCS,

IFCC,
IFVS,

IFVC,
IFMI,
IFPL,

0= UNTIL,
0= NOT UNTIL,

^

^

^

valFORTH 6502 Assembler

In all versions, the word END, is synonymous with the word UNTIL,. Likewise,
THEN, is synonymous with ENDIF,.

In the valFORTH and Fig assemblers, compiler security is performed to give
added protection to the user against assembly errors. To accomplish this, the
word C; or its synonym END-CODE is used to terminate the assembly word and
perform the check. To remain compatible with APX FORTH, C; is not required in
this release of valFORTH. However, it is strongly recommended that C; be
used. Although C; and END-CODE are identical, C; is used in-house at Valpar
for brevity. (Note that in later releases of valFORTH, G; will become mandatory).

There are several ways in which the indirect jump in the 6502 architecture
is implemented in FORTH assemblers. The valFORTH assembler supports three
common versions. Thus,

can be:

JMP (VECTOR)

VECTOR)JMP,
VECTOR) JMP,

or VECTOR JMP(),

It is recommended that the first version be used.

It must be remembered that valFORTH's additional constructs may not be
recognized by assemblers available from other vendors. If assembly listings
are to be published for general 6502 FORTH users, it is suggested that valFORTH's
advanced features not be used so that novice programmers can still make use of
valuable pieces of code.

VI-17

valFORTH 6502 Assembler

Appendix A valFORTH Code Equivalents

This appendix gives the valFORTH assembly code for all 6502 code listings
which are marked. Although listing 1 has already been translated to valFORTH
assembly code5 it is reproduced here for completeness7

Listing 1

DECIMAL
CODE CLR

TYA,

C;

Listing 2

39 LDY,
BEGIN,

88)Y STA,
DEY,

MI UNTIL,
NEXT JMP,

CODE 1-

0 ,X LDA,
NE IF,

1 ,X DEC,
ENDIF,
0 ,X DEC,
NEXT JMP,

C;

Listing 3

CODE DUP
0 ,X LDA,
PHA,
1 ,X LDA,
PUSH JMP,

C;

Listing 4

CODE SWAP

2 ,X LDA,
PHA,
0 ,X LDA,
2 ,X STA,
3 ,X LDA,
1 ,X LDY,
3 ,X STY,
PUT JMP,

C;

(Move a blank [0] into A)
[Move count into Y)
[Start looping)
[Move in a blank)
[decrement pointer)
[Go until count < 0)
[Do a normal re-entry)

(Decrement 16 bit value)
(Get the low byte)
(If a borrow will occur,)
(then borrow from high...)

(Decrement low)
(Re-enter FORTH)

;Duplicate TOS)
[Get low byte)
[Set up for PUSH)
[Put high in Accumulator)
[Push 16 bit value)

(Exchange top stack items)
(Get low byte of 20S)
(Save it)
(Put low byte of TOS)
(into low byte of 20S
(Save high byte of 20S)
(Put high byte of TOS)
(into high byte of 20S)
(Put old 20S into TOS)

VI-18

^

^

^

valFORTH 6502 Assembler

Listing 5

HEX

CODE ?TERMINAL

D01F LDA,
7 EOR,
NE IF,

INY,
ENDIF,
TYA,
PUSHOA JMP,

C; DECIMAL

Listing 6

CODE C@

0 X) LDA,
PUTOA JMP,

C;

Listing 7

CODE XOR

0 ,X LDA,
2 ,X EOR,
PHA,
1 ,X LDA,
3 ,X EOR,
BINARY JMP,

Listing 8

CODE XOR

0 ,X LDA,
2 ,X EOR,
2 ,X STA,

1 ,X LDA,
3 ,X EOR,
3 ,X STA,
POP JMP,

C;

Listing 9

CODE CS

2 ,X LDA,
0)X STA,
POPTWO JMP,

C;

[Any console key pressed?)
[Load status byte)
(Any low bits reset?
(If so,)
(then leave a true value)

(Put true or false into A)
(Push to parameter stack)

(Byte fetch routine)
(Load from address on TOS)
(Push byte value)

(One example of XOR)
(Get low byte of TOS)
(Exclusive or it with 20S)
(Push low result)
(Get high byte of TOS)
(XOR it with high of 20S)
(Drop TOS and replace 20S)

(Another exclusive or)
(Get low byte of TOS)
(XOR with low of 20S)
(Put in low of 20S)
[Get high byte of TOS)
[XOR with high of 20S)
[Put in high of 20S)
[Drop TOS)

(Byte store routine)
(Pick up byte to store)
(Indirectly store it)
(Drop address and byte)

VI-19

valFORTH 6502 Assembler

Listing 10

CODE >R (Transfer TOS to R-stack) ^
1 ,X LDA, (Pick up high of TOS)
PHA, (Put on R-stack)
0 ,X LDA, (Pick up low of TOS)
PHA, (Put on R-stack)
POP JMP, (Lose top stack item)

C;

Listing 11

HEX

CODE K (3rd inner DO loop index)
XSAVE STX, (Save P-stack pointer)
TSX, (Pick up R-stack pointer)
109 SX LDA, (Pick up low byte of value)
PHA, (Save it)
10A ,X LDA (Put high byte of value in A)
XSAVE LDX, (Restore P-stack pointer)
PUSH JMP, (Push 16 bit index value)

C; DECIMAL

VI-20

:">

^

valFORTH 6502 Assembler

Appendix B Quick Reference Chart

valFORTH 6502 Assembly Words

ASSEMBLER (~~~)

Calls up the assembler vocabulary for subsequent assembly language
programming.

CODE cccc ("--~)

Enters the new word "cccc" into the dictionary as machine language
word and calls up the assembler vocabulary for subsequent assembly language
programming, CODE also sets the system-up for security checking.

C; C—)

Terminates an assembly language definition by performing a security
check and setting the CONTEXT vocabulary to the same as the CURRENT
vocabulary.

END-CODE (—-)

A commonly used synonym for the word C; above- The word C; is
recommended over END-CODE.

SUBROUTINE cccc (—)

Enters the new word "cccc" into the dictionary as machine language
subroutine and calls-up the assembler vocabulary for subsequent assembly
language programming. SUBROUTINE also sets the system up for security
checking.

;C0DE (—)

When the assembler-is loaded, puts the system into the assembler
vocabulary for subsequent assembly language programming. See main
glossary for further explanation.

Control Structures

IF, (flag — addr 2)

Begins a machine language control structure based on the 6502 status
flag on top of the stack. Leaves an address and a security check value
for the ELSE, or ENDIF, clauses below, "flag" can be EQ , NE * CC , CS f
VC , VS f MI , or PL . Command forms:

... flag..IF,..if-true..ENDIF,..-.all...

... flag..IF,..if-true..ELSE,..if-false..ENDIF,..all...

VI-21

valFORTH 6502 Assembler

ELSE, (addr 2 — addr 3)

Used in an IF, clause to allow for execution of code only if IF, /J
clause is false. If the IF, clause is true, this code is bypassed.
See IF, above for command form.

ENDIF, (addr 2/3 —)

Used to terminate an IF, control structure clause. Additionally,
ENDIF, resolves all forward references. See IF, above for command form.

BEGIN, (— addr 1)

Begins machine language control structures of the following forms:

...BEGIN,...AGAIN,...

...BEGIN,...flag..UNTIL,...

...BEGIN,...flag..WHILE,..while-true..REPEAT,...

where "flag" is one of the 6502 statuses: EQ , NE , CC , CS , VC ,
VS , MI , and PL . See the very similar BEGIN in the main glossary for
additional information.

UNTIL, (addr 1 flag —)

Used to terminate a post-testing BEGIN, clause thus allowing for
conditional looping of a program segment while "flag" is false. See

'BEGIN, above for more information. , '"^

WHILE, (addr 1 flag —- addr 4)

Used to begin a pre-testing BEGIN, clause thus allowing for
conditional looping of a program segment while"flag" is true. See BEGIN,
above for command format.

REPEAT, (addr 4 —)

Used to terminate a pre-testing BEGIN,..WHILE, clause. Additionally,
REPEAT, resolves all forward addresses of the current WHILE, clause.
See BEGIN, above.

AGAIN, (addr 1 —)

Used to terminate an unconditional BEGIN, clause. Execution cannot
. exit this loop unless a OMP, instruction is used. See BEGIN, clause for
more information.

~)

VI-22

valFORTH 6502 Assembler

Parameter Passing

NEXT (J — addr)

Transfers control to the next FORTH word to be executed. The
parameter stack is left unchanged.

PUSH (... addr)

Pushes a 16 bit value to the parameter stack whose low byte is
found on the 6502 return stack and whose high byte is found in the
accumulator.

PUSHOA (.— addr)

Pushes a 16 bit value to the parameter stack whose low byte is
found in.the accumulator and whose high byte is zero.

PUT (... addr)

Replaces the value currently on top of the parameter stack with the
16 bit value whose low byte is found on the 6502 stack and whose high
byte is in the accumulator.

PUTOA (— addr)

Replaces the value currently on top of the parameter stack with the
16 bit value whose low byte is in the accumulator and whose high byte
is set to zero.

BINARY (— addr)

Drops the top value of the parameter stack and then performs a PUT
operation described above.

POP and POPTWO (— addr)

POP drops one value from the parameter stack. POPTWO drops two
values from the parameter stack.

SETUP (... addr)

Moves one to four values to the N scratch area in the zero page and
drops all values moved from the parameter stack.

N (—- addr)

Points to a nine-byte scratch area in the zero page beginning.at
N-l and going to N+7, Typically used by words which use indirect-indexed
addressing where addresses must be stored in the zero page. See SETUP
above.

VI-23

valFORTH 6502 Assembler

Opcodes (-—)

ADC, AND, ASL, BIT, BRK, CLC, CLD, CLI, ^
CLV, CMP, CPX, CPY, DEC, DEX, DEY, EOR,
INC, INX, INY, JSR, JMP, LDA, LDX, LDY,
LSR, NOP, ORA, PHA, PHP, PLAy PLP, ROL,
ROR, RTI, RTS, SBC, SEC, SED, SEI, STA,
STX, TAX, TAY, TSX, TXA, TXS, TYA,

Aliases ^

NXT, S£ NEXT JMP,
PSH, rz, PUSH JMP,
PUT, ss PUT JMP,
PSHA, s: PUSHOA JMP,
PUTA, ~ PUTOA JMP,
POP, s: POP JMP,
P0P2, tz POPTWO JMP,
XL, s XSAVE LDX,
XS, r: XSAVE STX,

THEN, r: ENDIF,
END, = UNTIL,

VIr24

3

3

VII. valFORTH 1.1 SUPPLIED SOURCE LISTING

Screen s 30

0

1

£

3

4

5

6

7

8

9

10

11

12

13

14

15 DCX

< Auto command

BASE 9 HEX

ZAP

-DUP

IF O+S

DO D£0A CO 7F AND I C!

LOOP

ELSE DROP

ENDIF ;

-WAIT < —)

BE6IN ?TERMINAL NOT UNTIL 5

< addr # —)

•>

Screens 31

0 (Auto command)

r

1

£ s

3

4

5

,6
7

a

9

10

11

12

13

14

15

BEHEAD (—)

0 >R CR ." Now protecting..."
CR VOC-LINK 9

BEGIN

DUP £- 9

BEGIN

DUP 1+ OVER R> 1+ >R

R 15 MOD NOT IF ." ." ENDIF

R 495 MOD NOT IF CR ENDIF

C@ 63 AND WIDTH 9 MIN 1-

ZAP PFA LFA 9 DUP NOT

UNTIL

DROP 9 DUP NOT

UNTIL R> 2DR0P s —>

Screen: 3£

® (Auto command

a s QUEST

3 CR

4 ." Save on disks

5 ." press OPTION" CR
& ." Save on cassettes

7 ." press SELECT" CR
a ." Exits

9 ." press START" CR CR 1
10

11 s DODISK

12 (SAVE) » SAVE 32 + GO
13 741 9 1SB - 1 1 R/W ;
14

15

(—

< ~)

Screen: 33

0 < Auto command)

1

£ s DUEST£ (— n)

3 . " Format and saves "

4 ." press OPTION" CR
5 . " Just saves ,!

6 ." press SELECT" CR CR
7 WAIT 7TERMINAL -WAIT

8 ." Prepare disk — "
9 ." press START"
10 WAIT -WAIT ?
11 : CSV (—)

IS ." Prepare cassette "
13 ." (play/record) — " CR
14 ." press START" CR
15 WAIT CSAVE -WAIT s. —>

crs>en s 34

0 (Auto command

1

£ s DSV

3 QUEST2

4 4 a

5 IF

B 1 (FMT) 1 <>

7 IF

8 CR ." Format error

9 ELSE

10 DODISK

11 ENDIF

12 ELSE

13 DODISK

14 ENDIF CR ?
15

(—

7TERMINAL -WAIT

Screen s 35

0 (

1

2 s

Auto command

DECIS

3 BEGIN

4 QUEST WAIT

5 DUP 1 =

& IF DROP 1

7 ELSE

8 £ =

9 IF

10 CSV

11 ELSE

12 DSV

13 ENDIF 0

14 ENDIF

15 UNTIL s -->

Screen : 36

0 < Auto command

1

£

3

4

5

6

7

a

9

10

11

12

13

14

15

AUTO (—)

[COMPILE! ' CR

." Auto? Y/N " KEY 89 = CR

IF

CFA » ABORT 6 + !

' COLD CFA ' ABORT 8 + !

-1 £6 +ORIGIN !

' ZAP NFA DP !

BEHEAD DECIS ABORT

ELSE

Auto aborted,-»" CR

BASE !

DROP

ENDIF

Screens

0

1

£

•3
4

5

6

7

8

9

10

11

12

13

14

15

37

Screen s 38

?

0

1

£

3

4

5

6

7

a

9

10

11

12

13

14

15

i Text outputs Ss Pi

BASE 9 HEX

Ss

PFLAG 9 SWAP

IF 1 OR ELSE FE AND ENDIF

PFLAG ! ?

p. (f _„ }

PFLAG 9 SWAP

IF £ OR ELSE FD AND ENDIF

PFLAG ! ;

(f —)

^

-o

Screen s 39

0

1

2

< Text outputs BEEP ASCII)

% BEEP < —)

3 0C0 0

4 DO

5 08 0D01F C 6 0 DO LOOP

6 00 0D01F C! 6 0 DO LOOP

7 LOOP |
8

9 % ASCII (ccc, —)
1@ BL WORD

11 HERE 1+ CO

12 STATE @

13 IF

14 COMPILE CLIT Cs
15 ENDIF i IMMEDIATE ->

Screens 4® -

0 < Text outputs EJECT LISTS)

1 DCX

2

3 % EJECT ' < —)

i. :;2 EMIT s

5

S % LISTS < s # —)

7 & <ROT O+S

8 DO

S CR I LIST

18 1+ DUP 3 MOD 0=

11 IF EJECT ENDIF

12 ?EXIT

13 LOOP

14 DROP §
15 =>

Sere»en § 41

0

1

2

« Text outputs PLISTS PLIST)

s PLISTS < s # —)

3 PFLAG 9 <ROT

4 ON Pi

5 LISTS

& CR PFLAG ! ?
7

8 2 PLIST < s —)

9 1 PLISTS i
ie

ii

12

13

14

15 BASE !

~>

Screen s 42

0 (Debugs B? EFREE3 FREE
1 BASE ® DCX

g '(S:) (19 KLOAD)
3 HEX

B?

BASE 9 DUP

DECIMAL .

BASE 1

(FREE)

2E5 9 PAD - ?

FREE

(FREE) U.

< —)

(Display)
(current)

(radix)

< — n)•

(™)

4

5

6

7

8

9

10

11

12

13

14

15

byt« CR i

Screen: 43

0 (Debugs
1

H. CFALIT

2 s CFALIT

3 STATE 9
4 CCOMPILE3 E

5 ECOMPILE3 ? CFA

6

7

a

9

10 ' (H. —>) ()

ii 5 H.

12 BASE 9 HEX

13 SWAP 0

14 <# # # #> TYPE

15 BASE ! ?

(ccc, —)

SWAP IF ECOMPILE3 3 ENDIF

CCOMPILE3 LITERAL ;
IMMEDIATE

Screens 44

@

1

2

3

4

5

&

7

8

9

1®

11

12

13

14

15

(Debugs #DUMP

(memory dump)

s #DUMP

O+S

DO

CRI5U.RI

DUP 8 + SWAP

DO

I C@ 4 .R

LOOP

?EXIT

B /LOOP

CR i

(b —)

(Display)
(# in hex)

—>

(a # —)

==>

a #

Screen: 45

0

1

2

(Debugs CDUMP

(Character dump routine
3

4 3 CDUMP (a

5. PFLAG 9 <ROT OFF Ps

6 OVER + SWAP

7 DO

8 CR I 5 U. R

9 SPACE I DUP 1® + SWAP

10 DO

11 I CO SPEMIT

12 LOOP

13 ?EXIT

14 10 /LOOP

15 CR PFLAG ! ?

Screens 46

0

1

£

< Stack prints DEPTH

S DEPTH (

3 S® 0 SP@ - 2/ 1- ? .
' 4

5 CFALIT . VARIABLE X.S

6

7 § XDOTS

a DEPTH

9 IF

1® SP@ 2- S@ 9 2-

11 DO I 9 X.S 9 EXECUTE

12 -2 +LOOP

13 ELSE

14 ." Stack empty "
15 ENDIF i

—>

(n ~

(~)

Screen§ 47

'® (Stack prints
t

„S CFALIT . X.S ! XDOTS ?
U„S CFALIT U. X.S.! XDOTS ;

.8 U.S STACK)

2

3

4

5

6

7

0 s STACK

9 IF

CFALIT STKPRT

ELSE

CFALIT NOOP

ENDIF

C * PROMPT 11+3

1®

11

12

13

14

15

STKPRT
CR ." (" XDOTS

LITERAL 5

< f —)

—>

Screen s 48

® (

1

£

FORTH colon decompiler

• 3 0 VARIABLE .WORD

4

5 s PWORD

6 £+ NFA ID. ?
7

8 s 1BYTE

9 PWORD .WORD 0 C@ .

10 1 .WORD + ! |
11

12 s 1W0RD

13 PWORD .WORD 9 9 .

14 £ .WORD + ! i
15

eens 49Scr

®

1

£

3

4

5

&

7

a

9

10

11

12

13

14

15

(FORTH colon decompiler
s NP < r» —

DUP CFALIT §S-= OVER
CFALIT (jCODE) = OR
IF PWORD CR CR PROMPT QUIT

ENDIF 7TERMINOL

IF DROP PROMPT QUIT ENDIF $

n

Screens 51

n
0

1

2

3

4

5

&

7

8

9

1®

11

12

13

14

15

(FORTH colon decompiler

ELSE

DUP CFALIT CLIT -

IF 1BYTE

ELSE

DUP CFALIT COMPILE •

IF PWORD CR NXTl PWORD

ELSE

DUP 4 - 9 A922 =

IF STG•

ELSE PWORD ENDIF

ENDIF

ENDIF

ENDIF

ENDIF s —>

~)
BRNCH

PWORD

9 + U.

NXTl

.WORD

.WORD

to " .

.. WORD

WORD

+ ! s

Screen s 52

) 0 (FORTH colon decompiler
) 1

a m 7DOCOL

3 DUP 2- § .

4 C ' §12+3 LITERAL -

5 IF ." Primitive pfa dumps"
6 2- 9 18 #DUMP

7 PROMPT QUIT

8 ENDIF §
•3

IS

11

12

13

14

} 15

9 .WORD 9

U. £

9 £ ,

SPACES

WORD +i

Screens 50

0 (

1

£ i

FORTH colon decompiler

STG

3 PWORD 22 EMIT .WORD 9

4 DUP COUNT TYPE £2 EMIT

- 5

6

7 s

C@ .WORD 9 + 1+ .WORD

CKIT

a DUP CFALIT 0BRANCH -

9 OVER CFALIT BRANCH = i

10 OVER CFALIT (LOOP) - i

11 OVER CFALIT C+LOOP) = I

12 OVER CFALIT (/LOOP),« i

12

13 IF BRNCH

14 ELSE DUP CFALIT LIT =

15 IF 1WQRD

OR

OR

OR

OR

-—)

Screens 53

© (FORTH colon decompiler
1

DCWPR (PFA —

DUP NFA CR CR DUP ID.

C9 4@ AND

IF ." (IMMEDIATE)"

ENDIF

CR CR ?DOCOL .WORD !

BEGIN NXTl NP CKIT CR AGAIN s

2

3

4

5

S

7

S

9

1@ s DECOMP

11 ECOMPILE3 ? DCMPR i
12

13

14

15 BASE ! ;S

^

Screen s

0

1

2

3

4

5

&

7

8

9

1®

11

12

13

14

15

»ns

54

55

r

Sen

0

1

£

3

4

5

&

7

8

9

10

11

12

13

14

15

r

Sere

0

1

£

3

4

5

&

7

8

9

1®

11

12

13

14

15

>en s 56

(fig ed itor s

BASE 9 HEX

TEXT LINE

(This editor is

(example editor
(the "fig-FORTH
(Manual. "

based on the

supplied in
Installat ion

TEXT

HERE

HERE

C/L 1+ BLANKS WORD

PAD C/L 1+ CMOVE s

LINE

DUP FFF0 AND

SCR 9 (LINE)

17 ?ERROR

DROP ?

Sereen s 57

0 (fig editors MARK
1

£ s MARK

3 1® ®

4 DO

5 I LINE UPDATE

6 DROP

7 LOOP i
a

9

1®

11

12

13

14

15 -->

Screen § 58

0 (fig editors WHERE)
1

£ VOCABULARY EDITOR IMMEDIATE

3

4 (Notes the fig bug is fixed)••
5 (in WHERE below.)

6

7 s WHERE (r> n —)
8 SDUP DUP B/SCR / DUP SCR !

. " Scr # •• DECIMAL . SWAP

C/L /MOD C/L * ROT BLOCK +

CR C/L -TRAILING TYPE

CR HERE CO - £- ® MAX SPACES

1 £FE C! 1C EMIT ® £FE C!

CCOMPILE3 EDITOR OUIT :

9

1®

11

12

13

14

15 =>

Screens 59

) ® (fig editors #LSs -MOVE)
1

2 EDITOR DEFINITIONS

3

) 4 s #LOCATE (— n rt)
) 5 R# 9 C/L /MOD s

) 6

) 7 : #LEAD (— n n)

8 #LOCATE LINE SWAP §
9

10 : #LAG (— n n)

"11 #LEAD DUP >R + C/L R> - |
12

13 s -MOVE (n n ™)

14 LINE C/L CMOVE UPDATE |
=> 15 ' —>

Screen s 60

@ (fig editors

s H

H

LINE PAD 1+ C/L

DUP PAD C! CMOVE s

(n

Screen s 63

© (fig editors
1

I

DUP S R s

TOP ~5
(n —)

(—)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

s E (n —)

2

3

4

5

6

7

8

9

10

11

12

13

14

15

s TOP

® R# !

LINE C/L BLANKS UPDATE ;

5 S (n —)

DUP 1- 0E

DO

I LINE

I 1+ -MOVE

-1 +LOOP

E f

Screens 61

® (fig editors D M
1

D

DUP H ®F DUP ROT

DO

I 1+ LINE

I -MOVE

LOOP

E ;

C n —

—>

Screen § 64

0

1

£ s

3

4
c;

'S

7

a s

9

1C

11

12

13

14

15

(fig editors CLEAR COPY

CLEAR

SCR !

DO

FORTH

LOOP 1

10 0

I EDITOR E

(n —)

~>

—)

2

3

4

5

6

7

8

9

10

11

12

13

14

15

s M (n —)

COPY

B/SCR *

B/SCR *

DO

DUP FORTH I BLOCK

2- ! 1+ UPDATE

LOOP

DROP ;

OFFSET 9 +

B/SCR OVER

(n n

SWAP

+ SWAP

Scrs

0

1

2

3

4

5

&

7

8

9

10

11

1£

13

14

15

R# +1 CR SPACE

#LEAD TYPE 14 EMIT #LAG

TYPE #LOCATE . DROP ;

~ >

-en s 62

(fig editors T .L R P

s T < n —

DUP C/L * R# !

DUP H 0 M 5

3 L < —

SCR 9 LIST © M 5

s R C r. —

PAD 1+ SWAP -MOVE ;

s P C n --

1 TEXT R %

FIND

Screen s 65

) 0

i

£

(fig editors ILINE 1

) s ILINE

3 #LAG PAD COUNT

4 MATCH R# +! s

5

) S s FIND

7 BEGIN

6 3FF R# 9 <

) ' 9 IF

10 TOP PAD HERE C/L

11 1+ CMOVE ® ERROR

) 12 ENDIF

13 ILINE

14 UNTIL i
> 15

(— f)

(--)

^5

r

C.

id itor

DCX

Screens 66 Screen s 69

0 (fig editors DELETE) ® (End of fig-FORTH
1 1

2 s DELETE (n —) £ FORTH DEFINITIONS

3)R #LAG + FORTH R - 3

4 #LAG R MINUS R# +! #LEAD 4

5 + SWAP CMOVE R> BLANKS 5

6 UPDATE ? 6

7 7

8 8

9 9

10 1®

11 11

12 12

13 13

14 14

15 •==) 15

B

Screen s 67

® (fig editors N 1
1

2 s N

3 FIND 0 M i
4

5 s F

6 1 TEXT N s

7

8 s B

9 PAD C@ MINUS M :

10

11 s X

12 1 TEXT FIND

13 PAD C@ DELETE

14 0 M s

15

(—

Scrs

®

1

£

3

4

5

&

7

3

9

1®

11

12

13

14

15

(—)

(—)

< —)

en s 68

(fig editors TILL C

—>

TILL

#LEAD

ILINE

#LEAD

DELETE

(—

+ 1 TEXT

8= ® ?ERROR

+ SWAP -

® M i

C

1 TEXT PAD COUNT #LAG ROT

OVER MIN >R FORTH R R# +!

R - >R DUP HERE R CMOVE

HERE #LEAD + R> CMOVE R>

CMOVE UPDATE @ M s

Screen s

0

1

2

3

4

5

6

7

8

9

18

11

12

13

14

15

Sen

•1

£

3

4

5

6

7

8

9

10

11

12

13

14

15

»ns

BASE

7®

71

Sere

®

1

2

3

4

5

6

7

8

9

1®

11

12

13

14

15

ens

(Di«

BASE

72

ik copy
@ DCX

routine

® VARIABLE SEC/PAS

0 VARIABLE SECNT

s AXLN (system)
4 PICK ®

DO 3 PICK I 128 « +

3 PICK I + 3 PICK R/W

LOOP 2DR0P 2DR0P %

s DCSTP

741 9 PAD DUP 1 AND - -

® 128 U/ SWAP DROP

SEC/PAS •! 0 SECNT i s ==>

Screens 73

0 (Disk copy routines)
1

2 : DISKC0PY1 (—)

3 DCSTP

4 BEGIN

5 CR CR . " Insert source and pu
6 sh .START" WAIT

7 72® SECNT 9 - SEC/PAS 9 MIN

8 DUP >R PAD DUP I mm - SECNT

9 9 2DUP 5 PICK (ROT 1 AXLN

10 CR CR o" Insert dest. and pu

11 sh START" WAIT 0 AXLN. CR
12 R> SECNT +1 SECNT 9 DUP *

13 .." sectors copied" 720 =
14 UNTIL EMPTY-BUFFERS

15 CR . " Done" CR s —->

Screens

©

1

2

3

4

5

6

7

8

9

1®

11

12

13

14

15

75

Screen s 76

@ (65i£ Assembler in FORTH

1 (

£ (Originally written by
3 (Patrick Mullarky.

5 { Modified extensively 2/82
{ by Stephen Maguire,•

7 (Valpar International

9

11

12

13

1-A
•* £2=

This assembler conforms to the

fig "INSTALLATION GUIDE" and
to APX versions of FORTH.

()

Screen § 74 Screen § 77

©

1

2

(Disk copy rout-ines) .

I

£

(

(

(

6502 Assembler in FORTH

s DISKC0PY2 (—) Now supports?

3 DCSTP 3 (

4 CR ." Insert source in drive 1 4 (IF, „„ =ELSE, „.,, ENDIF,

5
is CR ." Insert dest= in drive 2 5 (BEGIN,„a 0WHILE,. ..REPEAT,

6
11 CR ." Press START to copy" S (BEGIN,.oeAGAIN,

7 WAIT 7 (BEGIN, .<,,. any flag UNTIL,

8 BEGIN 8 (C§ & END-CODE

9 7£® SECNT 9 - SEC/POS ©MIN 3 C iCODE

10 DUP) R PAD DUP 1 AND '- SECNT 10 (

11 9 2DUP 5 PICK (ROT 11 (Also supports?

12 1 AXLN 720 + @ AXLN 12 (

13 R) SECNT +! SECNT 9 728 = 13 (compiler security

14 UNTIL EMPTY-BUFFERS 14 (definition checking

15 CR'." Done" CR 5 BASE ! 15

D

~)

~>

Sere•ens 78

0 (&S@2 Assemlsler in FORTH

1 » (TRANSIENT TRANSIENT)(

2 BASE © HEX

3

4

5

ASSEMBLER DEFINITIONS

i SB

&

7

8

(BUILDS C, DOES) 9 C, 5

®®@ SB BRK, 018 SB CLC,
9 ®D8 SB CLD, ®58 SB CLI,
1® ®B3 SB CLV, ®CA SB DEX,
11 ®88 SB DEY, @E8 SB INX,
12 ®C8 SB INY, ®EA SB NOP,
13 ®48 SB PHA, ®@8 SB PHP,
14 ®&& SB PLA, ®28 SB PLP,
15 040 SB RTI, ®6® SB RTS,

Screen s 79

0 (65®2 Assembler in FORTH

1 ®38 SB SEC, ®F8 SB SED,
2 ®78 SB SEI, ®AA SB TAX,

3 0BA SB TSX, 08A SB TXA,

4 Q9A SB TXS, ®98 SB TYA,

5 ©as SB TAY,
\

6

7

8

9

1®

11

12

13

14

15

® VARIABLE)-J i) 1)J ! i

s 3BY

(BUILDS C, DOES) C@ DUP 4C
IF)J 0 IF DROP 6C ENDIF

ENDIF C, , ® >J ! l

®4C 3BY JMP,
®£® 3BY JSR,

®6C 3BY JMPO,
®6C 3BY)JMP, —)

Screen s 8®

® (6502 Assembler in FORTH)
i
I

2 s 256< DUP

3

4 7® CONSTANT

1®® (HEX) U< j

VC (over clear)

5 5® CONSTANT VS (over set)

& B® CONSTANT CC (carry clear)
7 9® CONSTANT CS (carry set)
8 D@ CONSTANT EQ (zero)

9 F@ CONSTANT NE (non-zero)

1® 3® CONSTANT PL (positive)
11 1 ?PAIRS 4C C, , § IMMEDIATE

12

13 s IF,
14 C, ® C, HERE S i IMMEDIATE
15 sss>

Screens 81

® (&5®2 Ass

1

2

3

4

5

6

7

8

9

1®

11

12

13

14

15

rabler in FORTH)

ENDIF,
DUP 2 • IF

DROP DUP HERE SWAP -

DUP 7F > 5 ?ERROR

DUP -8® < 5 ?ERROR

SWAP 1- C!

ELSE

3 ?PAIRS HERE SWAP !

ENDIF | IMMEDIATE

ELSE,
DUP 2 ?PAIRS 4C C, HERE ® ,
<ROT ECOMPILE3 ENDIF, 3 ?

—>

Screen s 82

. ® (65®£ Assembler in FORTH

1

£

3

4

5

6

7

8 8 UNTIL,
9 SWAP 1 7PAIRS C,

HERE 1+ - DUP -8@

(5 7ERROR C, ?
1®

11

12

13

14

15

§ THEN,
CCOMPILE3 ENDIF,

s BEGIN,
HERE 1 i

END,
[COMPILED UNTIL, f

IMMEDIATE

IMMEDIATE

IMMEDIATE

IMMEDIATE

Screen s 83

® (65®2 Assembler in FORTH

1

2

3

4

5

&

7

a

9

WHILE,
SWAP 1 ?PAIRS CCOMPILE3 IF,
DROP 4 | IMMEDIATE

REPEAT,
4 7PAIRS SWAP 4C C, , £
CCOMPILE3 ENDIF, | IMMEDIATE

11 1® CONSTANT MI (negative)

12

13

14

15

END-CODE

CCOMPILE3 Ci 5 IMMEDIATE

^

—)

Sereens 84 Screen: 87

0 (,65®2 Assembler in FORTH) 0 (65®2 Assembler in FORTH

1 ®D VARIABLE MODE (ABS mode) 1

2 00 VARIABLE ACC (A-reg?) £ s OPCODE

3 3 C@ ZPAGE MODE 9 ID =

4 s BIT, 4 MODE 9 19 - OR

5 256< IF £4 C, C, 5 IF 1® OR ENDIF 5
6 ELSE 2C C, , ENDIF f 6

7 7 s M£

8 s CKMODE 8 (BUILDS C,
9 MODE 9 = 9 DOES) OPCODE MODE 9 9 =

1® IF (MODE = MODE - 8) 10 IF 4 - ENDIF !ADDR ;
11 256((if addr < £56) 11

12 IF 12 s M3

13 -08 MODE +! 13 (BUILDS C,
14 ENDIF 14 DOES) OPCODE IADDR ;
15 ENDIF s •«> 15

Screens 85 Screen s 88

0 (6502 Assembler in FORTH) 0 (6502 Assembler in FORTH

1 1 ®AC M£ LDY, ®AE M2 LDX,
2 s M® 2 ®CC M2 CPY, ®EC M2 CPX,
3 (BUILDS 3 ®8C M3 STY, ®8E M3 STX,
4 c, 4

5 DOES) 5 § X) 01 MODE ! | (Caddr,X3
6 SWAP ©D CKMODE 6 1 # ®9 MODE ! i (immediate
7 ID CKMODE SWAP 7)Y 11 MODE ! ; (Caddr3,Y
8 C@ MODE 9 OR C, 8 s ,X ID MODE ! ; (addr,X)
9 256< IF C, ELSE , ENDIF 9 % ,Y 19 MODE ! j (addr,Y)
1® 0D MODE ! i (ABS mode) 10 s „A ®1 ACC ! j (a - reg)
11 11

12 0® M0 ORA, 2© M0 AND, IS @A SB ASL,A, £A SB ROL.A,
13 40 M® EOR, 60 M0 ADC, 13 4A SB LSRBA, 6A SB ROR. A,
14 80 M0 STA, A0 M® LDA, 14

15 C0 M® CMP, E® M® SBC, —> 15

Screen s 86 Screen s 89

0 (6502 Assembler in FORTH) 0 (6502 Assembler in FORTH

1 s !ADDR C, 256(IF C, ELSE , 1

£ ENDIF ©D MODE ! § £ % IFVC, VC [COMPILE] IF, ?
3 3 s IFVS, VS [COMPILED IF, ;
4 s ZPA6E 4 s IFCC, CC [COMPILE] IF, s
5 OVER 10® U(IF F7 AND ENDIF ; 5 s IFCS, CS [COMPILED IF, ;
6 6 s IFEQ, EQ [COMPILED IF, ;
7 s Ml 7 s IFNE, NE ECOMPILE3 IF, s.
8 (BUILDS C, DOES) C@ ACC 9 8 s IFPL, PL [COMPILED IF, s.
9 IF FB AND C, ELSE MODE 9 ID • 9 i IFMI, MI CCOMPILE3 IF, 5

1® IF 10 ELSE ® ENDIF OR ZPAGE 10

11 !ADDR ENDIF 0 ACC ! s 11 s 0- EQ % % 0< HI | 1)> EQ i
12 12 s NOT 2® XOR ; 1 RP) 101 ,X 5
13 ©0E Ml ASL, 02E Ml ROL, 13 § BOT ® ,X ; s SEC £ ,X ;
14 04E Ml LSR, 06E Ml ROR, 14

15 0CE Ml DEC, ®EE Ml INC, ==) 15

^

:=>

~>

r

Screen s 90

0 t End of 65®£ assembler

1 HEX

2 :• XS, XSAVE STX, |
3 ii XL, XSAVE LDX,. |
4 : NXT, NEXT JMP, s
5 :, POP, POP JMP, |
6 :: P0P2, POPTWO JMP, i
7 -: PSH, PUSH JMP, |
8 :>. PSHA, PUSH0A JMP, 5
9 !: PUT, PUT JMP, i
I® :! PUTA, PUT®A JMP, ;
11

12

13 FORTH DEFINITIONS

14 ' (PERMANENT PERMANENT)(

15 BASE

Screens

®

1

2

3

4

5

6

7

8

9

1®

11

12

13

14

15

91

Screen s 92

0 (FORMAT

1 BASE 9 HEX

£

3 s FORMAT

4 CR CR ." Enter Drive#s " KEY

5 DUP EMIT 3® - 1 MAX 4 MIN CR

6 ." Hit RETURN to format drive

7 DUP . CR

8 ." Hit any other key to abort
9 KEY 9B =

1® IF (FMT) I = CR CR . " Format

11 IF ." OK" ELSE ." ERROR"

12 ENDIF

13 ELSE CR . " Format aborted. . . '•

14 DROP

15 ENDIF CR CR ; BASE !

Screen s

0

1

£

3

4

5

6

7

8

9

1®

11

12

13

14

15

93

Screens 94

0 (Buffer relocation

1 BASE 9 DCX

2

RELOCBUFS

DUP 1 AND '
(addr —)3

4

5

6

7

8

9

1®

11

12

13

14

15

IF CR ."

CR . "

ENDIF

DUP

DUP 2112

DUP

DUP

Odd buffer address."

Try again." DROP QUIT

' FIRST

' LIMIT

PREV

USE

MTB CR 156 EMIT 156 EMIT

. " Buffers relocated' to *

U. •." and emptied" CR ;

Screens 95

® (Buffer relocation)

1

CR CR ." The buffers take 2112 b

ytes decimal." CR
CR .•" To relocate buffers, put t
he new addr on stack and dos" CR

CR 7 SPACES ." RELOCBUFS FORGET

RELOCBUFS" CR CR BASE ?

2

3

4

5

6

7

8

9

1®

11

12

13

14

15

Screen s

0

1

£

3

4

5

6

7

8

9

10

11

12

13

14

15

Screen s

®

1

£

3

4

5

6

7

8

9

10

11

12

13

14

15

Screen s

®

1

2

3

4

5

6

7

8

9

1®

11

12

13

14

15

96

97

98

Screen s

®

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

99

Screen s 10®

®

1

£

3

4

(Colorss hue CONSTANT

BASE 9 DCX

0 CONSTANT GREY

5 1 CONSTANT GOLD

6 2 CONSTANT ORNG

7 3 CONSTANT RDORNG

8 4 CONSTANT PINK

9 5 CONSTANT LVNDR

1® 6 CONSTANT BLPRPL

11 7 CONSTANT PRPLBL

12 8 CONSTANT BLUE

13 9 CONSTANT LTBLUE

14 10 CONSTANT TURQ

15 11 CONSTANT GRNBL

Scr

®

1

£

3

4

5

6

7

a

9

i®

ii

12

13

14

15

eens 101

(Co1ors s hue CONSTANTS

12 CONSTANT GREEN

13 CONSTANT YLWGRN

14 CONSTANT ORNGRN

15 CONSTANT LTORNG

BASE !

~>

r>

^

Screens 102 Screens i®5

0 (Colorss SETCOLOR BOOTCOLOR) 0 (Graphics! COLOR POS. LOC.)

1 BASE 9 DCX 1

£ £ 0 VARIABLE CLRBYT

3 3 SETCOLOR (# hue lum —) 3

4 SWAP 16 * OR SWAP 4 s COLOR (b —)

5 7®8 (COLPF0) + C! | 5 CLRBYT ! |
6 6

7 3 SE. SETCOLOR f 7 s POS. (h v —)

8 8 54 C! 55 ! 5
9 s BOOTCOLOR (hue lum —) 9

10 SWAP 16 * DUP 4 + DUP 10 3 POSITION POS. | (h v —)

11 [' COLD 35 + 3 LITERAL C! 11

12 710 C! OR DUP 12 3 LOC. (X y — b)

13 [' COLD 4® + 3 LITERAL C! 13 POS. CGET ?
14 709 C! s 14

15 BASE ! 15 — ->

Screen s 1.03

0

1

2

3

4

r
5

6

7

8

9

10

11

12

13

14

15

Screen s JL04

0 (Graphics: CGET
1

2 BASE 9 DCX ? ()SCD

3

4 HEX

5 CODE CGET

•6 B5 c, a® C, 48 C,
7 86 C, XSAVE C,
8 A2 C, 3® C, A9 C,
9 9D C, 342 , 98 C,
I® 9D C, 348 , 9D C,

T 11 68 C, £© C, CIO ,
12 A6 C, XSAVE c,
13 4C C, PUSH0A ,
14 C-,
15

)(68 KLOAD)

(— b)

07 C,

349

(b —)

Scrg>ens 1®6

0

1

2

(Graphicss i:put

HEX

3 CODE CPUT

4 B5 C, 00 C, 48 C,
5 86 C, XSAVE C,
6 A£ c, 3® C, A9 C,
7 9D c, 342 , 98 C,
8 9D c, 348 , 9D C,
9 68 c, £0 C, CIO ,

10 A6 c, XSAVE C,
11 4C c, POP ,
12 c5
13

14

15

®B C,

Scrt

@

1

£

3

4

5

6

7

8

9

10

11

12

13

14

15

349

•en s 1®7

(Graphics? POS© POSIT PLOT)

s pose

55 9 54 C@ 5

s POSIT

POS. 54 C@ 5A C!

55 9 5B ! s

(— h v)

(h v —)

s PLOT (b h v —)

POS. CLRBYT C@ CPUT s

—)

Screens 108 Sen

® (Graphicss GTYPE) 0

1 1

2 5 GTYPE (cnt adr —) 2

3 ® MAX -DUP 3

4 IF 0+S 4

5 DO I C@)SCD CLRBYT C@ 5

6 4® * OR SCD) CPUT 6

7 LOOP 7

8 ENDIF s 8

9 9

10 1®

11 11

12 12

13 13

14 14

15 =—) 15

»ns 111

(—

+ >R

Screens 112

0 (Graphics Demo
1 BASE 9 DCX

2

BOX

1 COLOR 20 10 POSIT

5® 1® DR. 50 28 DR.

£® £8 DR. £0 1® DR.(—)

ALLOT

GTYPE

FBOX

5 GR. BOX

2© 28 POS. £ FIL

^

^

Screens 109

0

1

£

< Graphicss [G"3

s (G")

3 R COUNT DUP 1+ R)

4 GTYPE 5
5

6 3 G"

7 ££ STATE ©

8 IF

9 COMPILE (G")

1® WORD HERE C© 1+

11 ELSE

12 WORD HERE COUNT i

13 ENDIF j IMMEDIATE
14

15 —>

3

4

5

6

7

8

9

18

II

12

13

14

15

(LOAD THIS SCREEN AND EXECUTE)

(FBOX. WHEN YOU'RE DONE, DO)
(FORGET BOX) BASE !

Screen s 11® Screen s

0 (Graphicss GCOM DR. FIL) 0

1 1

2 CODE GCOM <-n - -) £

3 86 C, Dl C, B5 C, 00 C, 3

4 A£ C, 30 C, 9D C, 7Ap 4

5 2® C, CIO , A6 C, Dl C, 5

6 4C C, POP , 6

7 7

3 8 DR. . < x y --)• 8

9 CLRBYT C© 2FB C! 9

1® POS. 11 GCOM § 10

11 11

12 : DRAWTO DR. ; 12

13 13

14 s FIL (fildat - -) 14

15 2FD C! 12 GCOM s BASE ! 15

113

~>

Screens 114 Screen s

® (

1

2 &

Sounds SOUND SO. FILTER!) ®

1

£3SE 9 HEX

3 0 VARIABLE AUDCTL 3

4 4

5 s SOUND (ch# freq dist vol —) 5

6 3 DUP D2®F C! 232 C! 6

7 SWAP 10 * + ROT £* 7

8 D£0® + ROT OVER C! 1+ C! 8

9 AUDCTL C@ D£08 C! s 9

10 10

11 S SO. SOUND 5 11

12 12

13 3 FILTER! (b —) 13

14 DUP D£08 C! AUDCTL ! ; 14

15 ==> 15

XSND4

Screens 115

0 (Sounds XSND

1

£ DCX

3

4 s XSND

5 2* 53761 •4-

6 ® SWAP C! !

7

8 s XSND4

9 5376® 8 ® FILL

10 0 FILTER! 5

11

12

13

14

15

Screen s

0

1

£

3

4

5

6

7

8

9

1®

11

12

13

14

15

116

(voice# —)

(—)

BASE

Screen s

0

1

£

3

4

5

6

7

8

9

10

11

12

13

14

15

Screen s

®

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

117

118

119

Screens 120

® (Floating! FDROP FDUP FSWAP)
1

2 BASE 9 HEX

3

4 CODE FDROP (fp —)
5 INX, INX, POPTWO JMP,
6 C;
7

6 CODE FDUP (fp — fp fp)
9 #6 LDY,
10 BEGIN,
11 DEX, 6 ,X LDA, © ,X STA,
12 DEY, ©=
13 UNTIL, NEXT JMP,
14 Cf-
15 ==)

Screens 121

© (Floating? FSWAP FOVER)
1

2 CODE FSWAP (fpl fp2 — fp2 fpl)
3 XSAVE STX, # 6 LDY,
4 BEGIN,
5 0 ,X LDA, PHA, 6 ,X LDA,
6 © ,X STA, PLA, 6 ,X STA,
7 INX, DEY, 0=
8 UNTIL, XSAVE LDX, NEXT JMP, Cj
9

1® CODE FOVER (fp fp — fp fp fp)
11 #6 LDY,
12 BEGIN,
13 DEX, ®C ,X LDA, 0 ,X STA,
14 DEY,'©=
15 UNTIL, NEXT JMP, C? --)

Screen s 1£2

© (Floatings conversion words)
1

£

3 CODE AFP

4 XS, D80® JSR, XL, NXT,
5 C?
6

7

8 CODE FASC

9 XS, D8E6 JSR, XL, NXT,
1© Cf
11

12

13

14

15 —>

Screens 123

® (Floating! FADD FSUB FMUL ...)^\
1 -

2 CODE IFP XS, D9AA JSR, XL, NXT,
3

4 CODE FPI XS, D9D2 JSR, XL, NXT,
5

6 CODE FADD XS, DA66 JSR, XL, NXT,
7

8 CODE FSUB XS, DA6© JSR, XL, NXT,
9

1® CODE FMUL XS, DADB JSR, XL, NXT,
11

12 CODE FDIV XS, DB28 JSR, XL, NXT,
13

14 CODE FLG XS, DECD JSR, XL, NXT,
15 —>

Screens 124

© (Floatings FLG1® FEX FPOLY)
1

2 CODE FLG1®

3 XS, DED1 JSR, XL, NXT, C;
4

5 CODE FEX ^
6 XS, DDC® JSR, XL, NXT, Cj ^7
7

8 CODE FEX1®

9 XS, DDCC JSR, XL, NXT, C;
10

11 CODE FPOLY

12 XS, 0 ,X LDA, PHA,
13 3 ,X LDA, XSAVE LDY,
14 2 ,Y LDX, TAY, PLA,
15 DD4® JSR, XL, P0P2, Cs •*>

Screens 125

® (Floating? system constants
1

£ D4 CONSTANT FR®

3 E® CONSTANT FRl

4 F3 CONSTANT INBUF

5 F£ CONSTANT CIX

6

7

8

9

1®

11

IS

13

14

15 —>

~>

Screen s 1£6

© (Float ings FC- F! F. TY
1

2 a F@ (a — fp
3)R R @ R 2+

4 © R) 4 + 9 5
5

6 a F! (fp a —
7)R R 4 + !

8 R 2+ ! R> ! j
9

1® s F. TY (a —

11 BEGIN

12 INBUF 9 C@ DUP

13 7F AND EMIT

14 1 INBUF +! 80)

15 UNTIL s

Screens 127

© (Floatings F. F? <F >F
1

2 s F. (fp —
3 FR® F@ FSWAP FRC F! FASC

4 F.TY SPACE FR® Fi ;
5

6 s F? • (a —

7 F© F. §
8

9 s (F (fp fp —
1® FRl F! FR0 F! a

11

12 s >F I — fp
13 FR® F© a

14

15

Screens 128

® (Floating! FS floating +-*/
1

2 s FS (fp —
3 FR® F! a

5 s F+ (fp fp — fp
6 <F FADD)F a

7

8 s F- (fp fp — fp
9 (F FSUB)F i

1®

rll s F* (fp fp — fp
12 (F FMUL >F ;
13

14 s F/ (fp fp — fp
15 (F FDIV >F ?

Screens 129

® (Floating." FLOAT FIX FLOG FEXP)
1

2 s FLOAT (n — fp >
3 FR® ! IFP >F ?
4

5 i FIX (fp — n)
6 FS FPI FR® © |
7

8 s LOG (fp — fp)
9 FS FLG)F a

1®

11 s LOG!® (fp — fp)
12 FS FLG1®)F s

13

14 s EXP (fp — fp)
15 FS FEX)F a —)

Screen s 13®

0 (Floating: FEXP1® ASCF FLIT...)
1

£ s EXP1® (fp — fp)
3 FS FEX1® >F a

4

5 s ASCF (a — fp)
6 0 CIX ! INBUF ! AFP)F a

7

8 s FLIT (in diet, onlys — fp)
9 R> DUP 6 + >R F@ |
10

11 s FLITERAL (fp — [fp3)
12 STATE 9

13 IF

14 COMPILE FLIT HERE F! 6 ALLOT

15 ENDIF a IMMEDIATE ==)

Screens 131

® (Floating! FLOATING FP)
1

2 s FLOATING (nnnn, — fp)
3 BL WORD HERE 1+ ASCF

4 [COMPILED FLITERAL ? IMMEDIATE
5

6 (Float the following literal)
7 (Exs FLOATING 1.2345)

8 (or FLOATING -1.67E-13 •)

9

10 ; FP (nnnn, — fp)
11 [COMPILED FLOATING ?
12 IMMEDIATE

13

14

15 --)

Screen s 132 Screen s 135

0 (Floatings FVARIABLE FCONSTANT) 0

1 1

£ s FVARIABLE (XXXX, fp ~) 2

3 (XXXX! — a) 3

4 (BUILDS 4

5 HERE F! 6 ALLOT 5

6 DOES) ; 6

7 7

a : FCONSTANT (XXXX, fp --) 8

9 (xxxxs -- fp) 9

1® (BUILDS 1®

11 HERE F! 6 ALLOT 11

12 DOES) F@ :1 12

13 13

14 14

15 ==> 15

o

Screens 133

0 (Floating! F®= F= F(F))
1

2 ! F®= ' (fp — f)
3 OR OR ®= ?
4

5 s F= (fp fp — f 5
6 F- F0= ;
7

B s F< (fp fp - f)
9 F- DROP DROP 8® AND ®> a

10

11 ! F) (fp fp — f)
12 FSWAP F(5
13

14

15 BASE !

Screen s

0

1

£

3

4

5 .

6

7

8

9

10

11

12

13

14

15

134

crs»en s 136

©

1

£

3

4

(Screen code conversion iwords

BASE 9 HEX

CODE)BSCD (a a n —

5 A9 C, ®3 C, £® C, SETUP »

6 HERE C4 C, C£ C, D0 C, ®7 C,
7 C6 C, C3 c, 10 c, 03 C, 4C C,
8 NEXT , Bl C, C6 c, 48 C,
g 29 C, 7F c, C9 c, 68 c, B® C,
10 ®D C, C9 c, £® c, B® c, 06 C,
11 • 18 C, 69 c, 40 C, 4C c, HERE

12 2 ALLOT 38 c, E9 C, £® c, HERE

13 SWAP ! 91 c, C4 C, 68 c, £9 C,
14

15 ==

n

Screens 137

8

1

£

(Screen code conversion iwords)

80-C, 11 C, C4 c, 91 C, C4 C,
3 ce c, o@ C, D3 c, E6 C, C7 C,
4 E6 C, C5 c, 4C c, f Cf
«J

6 CODE BSCD) (a a n —)

7 A9 C, ®3 c, 2® c, SETUP »

8 HERE C4 c, C£ c, D0 C, 07 C,
9 C6 C, C3 c, 1® C, 03 C, 4C C,
1® NEXT , Bl c, C6 C, 48 C,
11 £9 C, 7F c9 C9 c, 60 C, B© C,

012 @0 C, C9 c, 4® c, B® C, ®6 C,
13 18-C, 69 c, 20 c, 4C C, HERE

14 £ ALLOT 38 c, E9 c, 40 C, HERE

15 —)

Screen: 138

®

1

£

(Screen code conversion words

SWAP ! 91 C, C4 C, 68 C, 29 C,
3 8® C, 11 C, C4 C, 91 C, C4 C,
4 C8 C, D® C, D3 C, E6 C, C7 C,
5 E6 C, C5 C, 4C C, ,
6

7

8 s)SCD SP© DUP 1)BSCD a

9 3 SCD) SP© DUP 1 BSCD) |
1®

11

12

13

14

15 BASE !

Screens 141

0 (ValFORTH Video editor VI.0)
1

2 s LMOVE 32 CMOVE $
3

4 a BOL 88 © YLOC © 1+ 32 * + s
5

6 s SBL 88 © 544 + a

7

8 s CURLOC ()

9 BOL XLOC 9 + ; (SCR ADDR-)
10

11 s CSHOW ()

12 CURLOC DUP (GET SCR ADDR)

13 C@ 128 OR (INVERSE CHAR)

14 SWAP C! 5 ' (STORE ON SCR)
15 —>

Screens 139

0

1

£

3

4

5

6

7

8

9

10

11

12

13

14

15

Sen

®

1

£

3

4

5

6

7

8

9

1®

11

12

13

14

15

r

Screens 14® Scr

0 (ValFORTH Video ed.

I

£ BASE 9 DCX » ()SCD :

it or VI.®) 0

1

> 2>(68 KLOAD)

3 3

4 VOCABULARY EDITOR IMMEDIATE 4

5 EDITOR DEFINITIONS 5

6 6

7 ® VARIABLE XLOC (X coord. 3> 7

8 O VARIABLE YLOC (Y coord. 1» 8

9 ® VARIABLE LSTCHR < last key]) 9

1® ® VARIABLE ?ESC (coded char?!i 1®

11 0 VARIABLE TBLK (top block]> 11

12 ® VARIABLE UPSTAT 2 ALLOT (map]i 12

13 13

14 15 CONSTANT 15 32 CONSTANT 32 14

15 128 CONSTANT 128 ==5• 15

ens 142

(ValFORTH Video editor VI.®)

s CBLANK ()

CURLOC DUP C@ 127

AND SWAP C! a

s UPCUR (—)

CBLANK YLOC © 1- DUP

®(IF DROP 15 ENDIF

YLOC ! CSHOW a

s DNCUR (—)

CBLANK YLOC ©

1 + DUP 15)

IF DROP ® ENDIF

YLOC ! CSHOW ; ==)

•ens 143

(ValFORTH Video editor

s LFCUR

CBLANK XLOC 9

1 - DUP 0<

IF DROP 31 ENDIF

XLOC ! CSHOW a

VI.®)

()

(AT L-SIDE?)

(FIX IF SO)

RTCUR

CBLANK XLOC ©

1+ DUP 31)

IF DROP ® ENDIF

XLOC ! CSHOW s

(—)

(AT R-SIDE?)

(FIX IF SO)

EDMRK

1 YLOC © 4 / UPSTAT + C! s —)

Screen s 144

8 (ValFORTH Video editor VI.0)

1

2 3 LNINS

3 CBLANK

4 4 YLOC © 4 /

5 DO 1 I UPSTAT + C!

6 YLOC © 15 (

7 IF

8 BOL DUP 32 +

9 15 YLOC © - 32 *

1® (CMOVE

11 ENDIF

12 BOL 32 ERASE

13 CSHOW EDMRK 5
14

15

LOOP

(—)

Scrs

®

1

£

3

4

5

6

7

8

9

1®

11

12

13

14

15

ens

(V,

145

11FORTH Video editor ' VI.®)

Sere

®

1

£

3

4

5

6

7

8

9

1®

11

12

13

14

15

LNDEL

CBLANK

4 YLOC 9 4 /

DO 1 I UPSTAT

YLOC © 15 (

IF BOL

DUP 32 + SWAP

15 YLOC 9 - 32

CMOVE

ENDIF

BOL 15 YLOC 9 ~

32 * + 3£ ERASE

CSHOW EDMRK a

+ C! LOOP

FROM

TO

CH

—->

ens 146

(ValFORTH

3 RUB

XLOC © ®=

IF LFCUR

• CSHOW

ENDIF 5

Video editor VI.®)

' NOT (

® CURLOC

EDMRK

PTCHR

EDMRK

LSTCHR © 127 AND

DUP LSTCHR !

)SCD CURLOC C!

RTCUR XLOC 0 ®=

IF DNCUR ENDIF

0 ?ESC ! CSHOW s

(—)

ON L-EDGE?)

C!

(—)

Screens 147

®

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(ValFORTH Video editor VI.®) 1
SCRSV

88 © 32 + PAD 512 BSCD)

4 ®

DO

1 UPSTAT + C©

0 I UPSTAT + C!

IF

PAD 128 I * +

TBLK © I + BLOCK

128 CMOVE UPDATE

ENDIF

LOOP

0 XLOC ! 0 YLOC 1

(~)

—)

Screens 148

® < ValFORTH Vi-

1

2 s SCRGT

3 4 @

4 DO

5 TBLK 9

6 I + BLOCK

7 PAD 128 I

8 128 CMOVE

9 LOOP

1® PAD 88 9 32

11 512 >BSCD ;
12

13

14

15

sditor VI.®)

* +

Screens 149

® (ValFORTH Video

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

NWSCR

CBLANK DUP

IF SCRSV ENDIF 2* 2*

TBLK © + 0 MAX TBLK ! SCRGT

TBLK 9 8 /MOD

DUP (ROT SCR !

IF 44 ELSE 53 ENDIF

?1K NOT

IF

44 = SWAP 2* + DUP SCR ! ®

.ENDIF

88 © 17 + C!

0 84 C! 11 85 ! 1 752 C!

. £ SPACES CSHOW ; —)

(—)

^

?ditor VI.®)

(-1/0/1

o

Screen s 150

0 (ValFORTH Video editor

1

: SPLCHR 1 ?ESC !£

3

4

5

6

7

8

9

1®

11

12

13

14

15

!

EXIT

CBLANK 19 LSTCHR !

® XLOC ! 0 YLOC ! 5

EDTABT

UPSTAT 4 0 FILL

EXIT 5

Screens 153

VI.®) 0 (ValFORTH Video editor

• 1

(—) 2 s (V)

3 DECIMAL

(—) 4 DUP BLOCK DROP TBLK !

5 UPSTAT 4 0 FILL

6 1 PFLAG ! 0 GR.

7 1 752 C! CLS

(—) 8 1 559 C© 252

9 AND OR 559 C!

10 112 56® 9 6 + C!

11 112 56® 9 23 + C!

12 ." Screen #" 11 SPACES

13 ." ValFORTH"

14 0 NWSCR

==) 15

VI.®)

(TBLK —)

—)

Screens 151

® (ValFORTH Video editor VI.®)

Scrs

®

1

2

3

4

5

6

7

8

9

1®

11

12

13

14

15

ens 154

(ValFORTH Video editor VI.®)

r

1

2

3

4

5

6

7

8

9

1®

11

12

13

14

15

CONTROL

DUP 19

DUP

DUP

DUP

DUP

DUP

17

£8

£9

3®

31

DUP 126

DUP 157

DUP 156

27

IF DROP

IF DROP

IF DROP

IF DROP

IF DROP

IF DROP

IF DROP

IF DROP

IF DROP

IF DROP

(

EXIT

EDTABT

UPCUR

DNCUR

LFCUR

RTCUR

RUB

LNINS

LNDEL

SPLCHR

n —)

ELSE

ELSE

ELSE

ELSE

ELSE

ELSE

ELSE

ELSE

ELSE

ELSE

—)

Screen s 152

tlFORTH0

1

£

3

4

5

6

7

8

9

10

11

12

13

14

15

(Vi Video editor VI. 0)

PTCHR (IF NOTHING SPECIAL)

ENDIF ENDIF ENDIF ENDIF

ENDIF ENDIF ENDIF ENDIF

ENDIF ENDIF a

(Main loop of editor)

BEGIN

KEY DUP LSTCHR !

?ESC ©

IF

PTCHR ® LSTCHR !

ELSE

CONTROL

ENDIF

LSTCHR 9 19 =

UNTIL

Sere

®

1

£

3

4

5

6

7

8

9

1®

11

12

13

14

15

ens 155

(ValFORTH Video editor VI.®)

CBLANK SCRSV 8 767 C!

2 56® 9 6 + C!

2 56® 9 23 + C!

2 559 C© 25£

AND OR 559 C!

® 752 C! CLS CR

." Last edit on screen # "

SCR © . CR CR 5

FORTH DEFINITIONS

s V

1 MAX B/SCR *

EDITOR (V) 1 —)

Screen s 156

0 (

1

2 3

ValFORTH Video editor

L

3 SCR © DUP 1+

4 B/SCR * SWAP B/SCR *

5 EDITOR TBLK © DUP (ROT

6 <= (ROT) AND

7 IF

8 EDITOR TBLK ©

9 ELSE

1® SCR © B/SCR *

11 ENDIF

12 EDITOR (V) a.

13

14

15

Screens 159

VI.0) 0

1

(™) 2

3

4

5

6

7

• 8

9

1®

11

12

13

14

==) 15

Screens 157 Screens 160

0 (ValFORTH Video editor VI.0) ® ' .
1 1

2 s CLEAR (s —) £

3 B/SCR * B/SCR 0+S 3

4 DO 4

5 FORTH I BLOCK 5 ^
6 B/BUF BLANKS UPDATE 6 . 7

7 LOOP : 7

8 8

9 3 COPY (si s2 —) 9 •

1® B/SCR * OFFSET © + 1®

11 SWAP B/SCR # B/SCR O+S 11

12 DO DUP FORTH I IS

13 BLOCK 2- ! 13

14 1+ UPDATE 14

15 LOOP DROP s —) 15

Screens 158 Screens 161

® '(ValFORTH Video editor VI.®) 0
1 1

£ . 2'
3 (Notes the fig bug is fixed) 3
4 (in WHERE below.) 4

5 5

6 HEX 6

7 s WHERE ([n n 3 —) 7

8 2DUP DUP B/SCR / DUP SCR ! 8

9 ." Scr # " DECIMAL . .SWAP 9

1® C/L /MOD C/L * ROT BLOCK + 1®

11 CR C/L -TRAILING TYPE 11 ^
12 CR HERE C@ - 2- 0 MAX SPACES 12 -^
13 1 £FE C! 1C EMIT © £FE C! 13

14 [COMPILE3 EDITOR OUIT a 14

15 BASE ! 15

Screens 162

® (DOS^ input/output routine
1

£ BASE 9 HEX

3

4 34® VARIABLE IOCB

5 ® VARIABLE 10.X

6 ® VARIABLE 10.CH
7

8 s I0CC

9 1® # 7® MIN DUP 10. X C!

10 34® + IOCB ! a

11

12 3 (10)

13 (BUILDS ,
14 DOES) 9 IOCB 9 + ;
15

Sen

0

1

£

3

4

5

6

7

8

9

1®

11

12

13

14

15

>en: 165

(DOSs 6ET/PUTREC STATUS DEV)

s GETREC (adr nl n2 — n3)
I0CC 5 ICCOM C! ICBLL !

ICBAL ! XCIO |

s PUTREC (adr nl n2 — n3)

10CC 9 ICCOM C! ICBLL !

ICBAL ! XCIO ;

s STATUS

IOCC ICSTA C@ a

(nl -- n2)

a DEVSTAT (nl — n£ n3 n4)

IOCC ®D ICCOM C! XCIO

>R 2EA © £EC 9 R) a —)

en s 166

(DOSs SPECIAL)

ere»ens 163

0

1

2

(DOSs system words

2 (10) ICCOM 3 <I0> ICSTA

3 4 <I0> ICBAL 8 <I0> ICBLL

4 A <I0> ICAX1 B <I0> ICAX2

5 C <I0> ICAX3 D <I0> ICAX4

6

7

E (10) ICAX5 F <10> ICAX6

a

9 CODE XCIO

1® XSAVE STX, 10. X LDX,
11 10. CH LDA, E456 JSR,
12 XSAVE LDX, 10.CH STA,

13 TYA, PUSH0A JMP,
14 Cl
15

Sere

®

1

2

3

4

5

6

7

8

9

18

11

12

13

14

15

SPECIAL

nl n2 n3 n4 n5 n6 n7 n8 — n9)

IOCC ICCOM C! ICAX6 C!

ICAX5 C! ICAX4 C! ICAX3 C!

ICAX2 C! ICAX1 C! XCIO a

—)

Screens 164 Screen s 1

® (

1

£ a

DOSs OPEN CLOSE PUTC GETC) 0

1

£OPEN (adr nl r<2 n3 — r.4)

3 IOCC ICAX£ C! ICAX1 C! 3

4 ICBAL ! ®3 ICCOM C! XCIO a 4

5 •5

6 s CLOSE (nl —) 6

7 IOCC ®C ICCOM C! XCIO DROP ; 7

8 8

9 s PUT (c nl — n£) 9

1® IOCC 10.CH C! 0B 1®

11 ICCOM C! XCIO a 11

12 12

13 : GET (nl — c n£) 13

14 IOCC 7 ICCOM C! XCIO 14

15 10.CH C@ SWAP-a ==) 15

BASE

Screens 168

® (Atari 85® i

1

£ BASE © HEX

download

3

4 CODE DO-SIO
5 XSAVE STX, ® # LDA,
6 E459 JSR,
7 XSAVE LDX, NEXT JWP,

8

9 s SET-DCB

1® 5® 3®® C! 1 3@i Cf

11 3F 3®2 C! 4® 3®3 C!

1£ 5®@ 3®4 ! 5 306 C!

13 ® 3®7 C! C 308 C!

14 0 309 ! ® 30B C»

15

Scr«

©

1

2

3

4

5

6

7

3

9

1®

11

12

13

14

15

sens 171

CONTENTS OF THIS DISK, conta

fig EDITOR: 56 LOAD
BUFFER RELOCATION! 94 LOAD

AUTO-BOOT UTILITY! 3® LOAD
OPERATING SYS. WORDSs 162 LOAD

85® DOWNLOAD CRS-232) ". 168 LOAD
(OPSYS AND 85® NEED ASSEMBLER)

Screen: 169

® (Atari 85® download

1

CODE RELOCATE

XSAVE STX, 5®6 JSR,
HERE 8 + JSR, XSAVE LDX,
NEXT JMP, 0C)JMP,

2

3

4

5

6

7

8

9

1®

11

12

13

14

15

RS232

HERE 2E7 ! SET-DCB DO-SIO

5®® 3®® ©C CMOVE DO-SIO

RELOCATE 2E7 © HERE - ALLOT

HERE FENCE ! ;

(—)

BASE

Screens

®

1

2

3

4

5

6

7

8

9

1®

11

12

13

14

15

172

Screens 17® Scr*

0 CONTENTS OF THIS DISK:

1

2 PRINTER UTILITIES:

®

1

£38 -LOAD

3 DEBUGGING AIDS: 42 LOAD 3

4 VALFORTH EDITOR 1.0s 14® LOAD 4

5 ASSEMBLERS 76 LOAD 5

6 COLOR COMMANDSs 1®® LOAD 6

7 GRAPHICSS 1@4 LOAD 7

8 GRAPHICS DEMOs 112 LOAD a

9 SOUNDS: 114 LOAD 9

1® FLOATING POINT: 12® LOAD 1®

11 (FP REQUIRES ASSEMBLER FIRST) 11

12 SCREEN CODE CONVERS. : 136 LOAD 1£

13 FORMATTERS 92 LOAD 13

14 DISK COPIERS: 72 LOAD 14

15 (continued on next screen) 15

ms 173

^

Screen s

®

1

£

3

4

5

6

7

8

9

10

II

12

13

14

15

174

Screen s 175

®

1

2

3

4

5

6

7

8

9

1®

11

12

13

14

15

0

Screen: 176

® (Error messages

1

2 Stack empty
3

4 Dictionary full
5

6 Wrong addressing modi
7

8 Is not unique
9

1® Value error

11

12 Disk address error

13

14 Stack full

15

Scr€

®

1

2

3

4

5

6

7

3

9

1®

11

12

13

14

15

•ens 177

Disk Error!

Dictionary too big

Screen s 178

® (Error messages
1

£ Use only in Definitions
3

4 Execution only
5

6 Conditionals not paired
7

8 Definition not finished

9

1® In protected dictionary
11

12 Use only when loading
13

14 Off current screen

15

Screens 179

© Declare VOCABULARY

1

2 '

3

4

5

6

7

8

9

18

11

12

13

14

15

—^VALPAR
INTERNATIONAL'
3BQ1 E. 3«4™

API!

•nai

valFORTH
T.M.

SOFTWARE SYSTEM
for ATARI*

GENERAL UTJUTJES AND WED EDITOR

*Atari is &trademark of Atari, inc., a division ofWanner Communications.

Software and Documentation
©Copyright WB2

Valpar International

r

valFORTH
T.M.

Screen Oriented Video Editor

Version LI

March 1982

The FORTH language is a siery powerful addition to the Atari home computer.
Programs which are impossible to write in BASIC (usually because of limitations
in speed and flexibility) can almost always be written in FORTH. Even when one
has mastered the BASIC language, making corrections or additions to programs
can be tedious. The video editor described here removes this problem from
the FORTH environment. Similar to the MEMO PAD function in the Atari operating
system, this editor makes it possible to insert and delete entire lines of code,
insert and delete single characters, toggle between insert and replace modes,
move entire blocks of text, and much more.

Software and Documentation
©Copyright 1982

Valpar Internationa!

valFORTH
T.M.

SOFTWARE SYSTEM

, .GMRflL UTJLJTJES flCHD UIDEQ EDITOR
Stephen Haguire

Evan Rosen

Software and Documentation

©Copyright 1982
Valpar International

Purchasers of this software and documentation package are
authorized only to make backup or archival copies of the
software, and only for personal use. Copying the accompanying
documentation is prohibited.

Copies of software for distribution may be made only as speci
fied in the accompanying documentation.

VALPAR INTERNATIONAL

Disclaimer of Warranty
on Computer Programs

All Valpar International computer programs are distributed
on an slas is11 basis without warranty of any kind. The total
risk as to the quality and performance of such programs is with
the purchaser. Should the programs prove defective following
their purchase, the purchaser and not the manufacturer* distributor,
or retailer assumes the entire cost of all necessary servicing or
repair.

Valpar International shall have no liability or responsibility
to a purchaser, customer, of any other person or entity with
respect to any liability, loss, or damage caused directly or
indirectly by computer programs sold by Valpar International.
This disclaimer includes but is not limited to any interruption
of service, loss of business or anticipatory profits or conse
quential damages resulting from the use or operation of such
computer programs.

Defective media (diskettes) will be replaced if diskette(s)
is returned to Valpar International within 30 days of date of sale
to user.

Defective media (diskettes) which is returned after the 30 day
sale date will be replaced upon the receipt by Valpar of a $12-00
Replacement Fee-

XL

valFORTH UTILITIES/EDITOR USER'S MANUAL

Table of Contents

valFORTH 1.1 DISPLAY-ORIENTED VIDEO EDITOR
A user's manual for the valFORTH video editor

a) OVERVIEW
b) ENTERING THE EDIT MODE
c) CURSOR MOVEMENT
d) EDITING COMMANDS
e) STORAGE BUFFER MANAGEMENT
f) CHANGING SCREENS; SAVING; ABORTING
g) SPECIAL COMMANDS
h) SCREEN MANAGEMENT
i) EDITOR COMMAND SUMMARY

XII. STRINGS, ARRAYS, CASE STATEMENTS, DOUBLE NUMBER EXTENSIONS

a) STRING PACKAGE
b) ARRAYS, TABLES, VECTORS . .
c) CASE:, CASE, SEL, COND
d) DOUBLE NUMBER EXTENSIONS

XIII. HI-RES TEXT, MISC. UTILITIES, TRANSIENTS

a) HI-RESOLUTION (8 GR.) TEXT OUTPUT . .
b) MISCELLANEOUS UTILITIES .
c) TRANSIENTS (DISPOSABLE ASSEMBLERS, ETC.)

XIV. UTILITIES/EDITOR SUPPLIED SOURCE LISTING

Page

1

2

5

6

8

13

14

16

18

1

5

8

14

1

5

9

GENERAL UTILITIES and VIDEO EDITOR

f)

valFORTH Video Editor LI

Overview

This editor is a powerful extension to the valFORTH system designed
specifically for the Atari 400/800 series of microcomputers* The main purpose
for this editor is to give the FORTH programmer an easy method of text entry to
screens for subsequent compilation. The editor has four basic modes of opera
tion:

1) It allows entering of new text to a FORTH screen as though
typing on a regular typewriter.

2) It allows quick, painless modification of any text with a
powerful set of single stroke editing commands.

3) It pinpoints exactly where a compilation error has occurred
and sets up the editor for immediate correction and
recompilation.

4) Given the name of a precompiled word, it locates where the
original text definition of the word is on disk, if the
"LOCATOR11 option had been selected when the word was compiled.

The set of single stroke editing commands is a superset of the functions
found in the MEMO PAD function of the standard Atari operating system. In
addition to cursor movement, single character insertion/deletion, and line
insertion/deletion, the editor supports a clear-to-end-of-line function, a
split command which separates a single line into two lines, and a useful insert
submode usually found only in higher quality word processors.

In addition, there are provisions for scrolling both forwards and backwards
through screens, and to save or "forget" any changes made. This is useful at
times when text is mistakenly modified.

Also provided is a visible edit storage buffer which allows the user to
move* replace, and insert up to 320 lines of text at a time. This feature alone
allows the FORTH programmer to easily reorganize source code with the added
benefit of knowing that re-typing mistakes are avoided. Usage has shown that
once edit-buffer management is learned, significant typing and programming
time, can be saved.

For those times when not programming, the editor can double as a simple
word processor for writing letters and filling other documentation needs.
The best method for learning how to use this powerful editor is to enter the
edit mode and try each of the following commands as they are encountered in
the reading*

As stated above* there are four ways in which to enter the video editor*
The following four commands explain each of the possibilities. Note that the
symbol "<ret>" indicates that the "RETURN11 key is to be typed.

XI-1

)
ValFORTH Video Editor 1.1

view screen (scr#

To edit a screen for the first time, the "View18 command is to be
used. The video display will enter a 32 character wide mode and will
be broken into three distinct sections. For example,

50 V <ret>

should give something like the display shown in fig, 1.

Screen #50 U #Bufs: 5

• (Example screen) (line 0)

: TESTl

10 0

DO

I CR .

LOOP ;

(line 2)

: OCTAL

8 BASE ! ;
(—)

: +C!

DUP C@ ROT +

SWAP C! ;

(bottom line)

Fig. 1

The top window, composed of a single line, indicates in decimal
which screen is currently being edited. One should always make a
practice of checking this screen number to insure that editing will be
done on the intended screen. Often times, when working with other
number bases, the wrong screen is called up accidentally and catching
this mistake early can save time. Also shown is the size of the edit
buffer (described later). In this example, the buffer is five lines in
length. This window is known as the heading window.

XI-2

^

^

^

valFORTH Video Editor LI

FORTH screens typically are IK (1024 characters) long/ Since it is
impossible to see an entire screen simultaneously, this editor reveals
only half a screen at a time. There is an "upper" half and a "lower"
half. In the center of the heading window, either a "U" or an "L"
is displayed indicating which half of the current screen is being viewed.
If the valFORTH system is in the half-K screen mode, neither "U!l nor "L"
is displayed since an entire half-K screen can be viewed at one time.
In figure 1, the upper half of a full-K screen is being viewed.

The second window (the text window) contains the text found on the
specified screen. This window is 32 characters wide and 16 lines high.
The white cursor (indicated by the symbol "•") will be in the upper-
lefthand corner of the screen awaiting editing commands.

The final five-line window found at the bottom of the screen is
known.as the buffer window. This is used for advanced editing and is
described in greater detail in the section entitled "Buffer Management."

L re-edit last screen (—)

This command is used to re-edit.the "Last" screen edited. It
functions identically to the "V" command described above, except no
screen number is specified.

Example: L <ret> (re-edit screen 50)

WHERE find location of error (—)

If, when compiling code, a compilation error occurs, the WHERE
command will enter the edit mode and position the cursor over the last
letter of the offending word. The word can then be fixed and the screen
can be re-compiled. Bear in mind that using the WHERE command prior to
any occurrence of an error could give strange results.

LOCATE locate definition cccc (—)

Once source text has been compiled into the dictionary, it loses
easy readability to all but experts of the FORTH language. Often times,
though, it is helpful to see what the original source code was* The
DECOMP command found in the debugger helps tremendously in this regard,
however, some structures such as IF and DO are still difficult to follow.
For this reason, the LOCATE command is included with the editor.

This command accepts a word name, and if at all possible it will
actually direct the editor to load in the screen where that word was
defined. This is very helpful at times when one cannot remember where
the original text was. If the screen shown in figure 1 were loaded and
the command

LOCATE +Ci <ret>

were given, the editor would call.up screen 50 and position the cursor
over the word ":" which is the beginning of the definition for fl+C!".
Typically, the LOCATE command will point to ":" , "CODE" , "CONSTANT" ,
and other defining words.

XI-3

ValFORTH Video Editor LI

There is a drawback to this feature* however. In order to call up
any word, the LOCATE command must know where the word actually is.
Normally, when a word is compiled,, there is no way of knowing where it
was loaded from. Thus for the LOCATE command to work, each time a word
is entered into the dictionary, three extra bytes of memory must be used
to store this lookup information. For an application with many words,
these extra bytes per word add up quickly, and this is not always
desirable. For this reason, the LOCATOR command (described below)
allows the user to enable or disable the storage of this lookup informa
tion- Only words that were compiled with the LOCATOR option selected -
can be located. If a word cannot be located, the user is warned, or if
the DEBUGGER is loaded, the word is DECOMPed giving pseudo original code.

LOCATOR enable/disable location (ON/OFF —)

In order for a word to be locatable using LOCATE, the LOCATOR option
must have been selected prior to compiling the word. The LOCATOR option
is selected by executing "ON LOCATOR" and deselected by executing "OFF
LOCATOR". For example:

ON LOCATOR

: PLUS ."="+. ; (partial view of a screen)
: STAR 42 EMIT ;
OFF LOCATOR

: NEGATE MINUS ;

Only the words PLUS and STAR can be located. NEGATE cannot be located ^
since the LOCATOR option was disabled. If the DEBUGGER were loaded, ;
NEGATE would be decompiled (see the debugger), otherwise, the user would
be given a warning. The default value for LOCATOR is OFF.

#BUFS set buffer length (#lines —)

The #BUFS command allows the user to specify the length (in terms of
number of lines) of the special edit storage buffer. The power of the
edit buffer lies in the number of lines that can be stored in it.

Although the default value is five, practice shows that at least 16
lines should be set aside for this buffer. The maximum number of lines
allowable is 320which is enough to hold 20 full screens simultaneously.

XI-4

^

^

f!

valFORTH Video Editor 1.1

The following sections give a detailed description of all commands which
the video editor recognizes. A quick reference command list can be found
following these descriptions.

Cursor Movement

When the edit mode is first entered via the "V" command, a cursor is placed
in the upper lefthand corner of the screen. It should appear as a white block
and may enclose a black letter. Whenever any key is typed and it is not recog
nized as an editor command, it is placed in the text window where the cursor
appears, Likewise, any line functions (such as delete line) work on the line
where the cursor is found.

Ctrl a , Ctrl v» Ctrl <, Ctrl > move-cursor commands

To change the current edit line or character, one of four commands
may be given. These are known as cursor commands. They are the four
keys with arrows on them. These keys move the cursor in the direction
specified by the arrow on the particular key pressed. There are times,
however, when this is not the case.

If the current cursor line is the topmost line of the text window,
and the ""cursor-up" command is issued (by simultaneously typing "ctrl"
and "up-arrow"), the cursor will move to the bottom line of the text
window. Likewise, a subsequent "cursor-down" command would return the
cursor to the topmost line of the window. Similarly, if the cursor is
positioned on the leftmost edge and the "cursor-left" command is given,
the cursor will "wrap" to the rightmost character ON THE SAME LINE.
Issuing "cursor-right" will wrap back to the first character on that line.

RETURN next-line command

Normally, the RETURN key positions the cursor on the first character
of the next line. If RETURN is pressed when the cursor is on the last
line of the text window (i.e., when the last text line of the screen is
current), the cursor is positioned in the upper lefthand corner of the
screen,

TAB tabulate command

The TAB key is used to tabulate to,the next fixed four column
tabular stop to the right of the current cursor character. TABbing off
the end of the current line simply places the cursor at the beginning of
that same line.

NOTE:

Many commands in the editor will "mark" a current FORTH screen as updated
so that any changes made can be preserved on disk. As simple cursor movement
does not change the text window in any way, these commands never mark the
current FORTH screen. See the section on screen management for more informa
tion.

XI-5

valFORTH Video Editor 1.1

Editing Commands

Editing commands are those commands which modify the text in some v ;
predefined manner and mark the current FORTH screen as updated for later
saving.

Ctrl INS character insert command

When the "insert-character" command is given, a blank character
is inserted at the current cursor location. The current character and
all characters to the right are pushed to the right by one character
position. The last character of the line "falls off" the end and is
lost. The inserted blank then becomes the current cursor character.
This is the logical complement to the "delete-character" command
described below.

Ctrl DEL delete character command

When the "delete-character" command is issued, the current cursor
character is removed, and all characters to the right of the current
cursor character are moved left one position, thus giving a "squeeze"
effect. This is normally called "closing" a line. The rightmost
character on the line (which was vacated) is replaced with a blank.
This serves as the logical complement to the "insert-command" described
above.

shift INS line insert command

The "line-insert" command inserts a blank line between the current
cursor line and the line immediately above it. The current line and all
lines below it are moved down one line to make room for the new line.
The last line on the screen falls off the bottom and is lost. If this
command is accidentally typed, the "oops" command (ctrl-0) described
later can be used to recover from the mistake. Also see the "from buffer"
command described in the section on buffer management for a similar command.
This command serves as the logical complement to the "line-delete" conmand
described below.

shift DEL line delete command

The "line-delete" command deletes the current cursor line. All
lines below the current line are brought up one line and a blank line
fills the vacated bottom line of the text window. The deleted line is
lost. If this command is accidentally issued, recovery can be made by
issuing the "oops" command (ctrl-0) described later. Also see the
"to-buffer" command described in the section on buffer management for a
similar conmand. The "delete-line" command serves as the logical comple
ment to the "line-insert" command.

XI-6

^

^

valFORTH Video Editor LI

Ctrl H erase to end of line

The "Hack" command performs a clear-to-end-of-line function. The
current cursor character and all characters to the right of it on the
current line are blank filled. All characters blanked are lost. The
"oops" command described later can be used to recover from an accidentally
hacked line.

Ctrl I insert/replace toggle

In normal operation, any key typed which is not recognized by the
editor as a control command will replace the current cursor character
with itself. This is the standard replace mode. Normally, if one
wanted to insert a character at the current cursor location, the insert
character command would have to be issued before any text could be
entered. If inserting many characters, this is cumbersome.

When active, the insert submode automatically makes room for any
new characters or words and frees the user from having to worry about
this. When the editor is called up via the "V" command, the insert mode
is deactivated. Issuing the insert toggle command will activate it and
the cursor will blink, indicating that the insert mode is on. Issuing
the command a second time will deactivate the insert mode and restore

the editor-to the replace rode. Note that while in the insert mode, all
edit commands (except BACKS, below) function as before.

BACKS delete previous character

The BACKS key behaves in two different ways, depending upon whether
the editor is in the insert mode or in the replace mode. When issued .
while in the replace mode, the cursor is backed up one position and the
new current character is replaced with a blank. If the cursor is at the
beginning of the line, the cursor does not move, but the cursor character
is still replaced with a blank.

If the editor is in the insert mode, the cursor backs up one
position, then deletes the new current cursor character and then closes
the line. If the cursor is at the beginning of the line, the cursor
remains in the same position, the cursor character is deleted and the
line closed.

NOTE:

As all of the above commands modify the text window in some manner, the
screen is marked as having been changed. This is to be sure that all changes
made are eventually saved on disk. The "quit" command described in the section
on changing screens allows one to unmark a.screen so that major mistakes need
not be saved.

XI -7

ValFORTH Video Editor LI

Buffer Management

Much of the utility of the valFORTH editor lies in its ability to tempo
rarily save text in a visible buffer. To aid the user, it is possible to
temporarily send text to the buffer and to later retrieve it. This storage
buffer can hold as many as 320lines of text simultaneously. This buffer is
viewed through a 5 line "peephole" visible as the last window on the screen.
Using this buffer, it is possible to duplicate, move, and easily reorganize
text, in addition to temporarily saving a line that is about to be edited so
that the original form can be viewed or restored if necessary. The following
section will explain exactly how to accomplish each of these actions.

Ctrl T to buffer command

The "to-buffer" command deletes the current cursor line, but
unlike the "delete-line" command where the line is lost, this command
moves the "peephole" down and copies the line to the bottom line of the
visible buffer window. This line is the current buffer line. The buffer
is rolled upon each occurrence of this command so that it may be used
repeatedly without the loss of stored text.

For example, if the cursor is positioned on line eight of the display
shown in figure 1 and the "to-buffer11 command is issued twice, the final
result will be as shown in figure 2.

Ctrl F from buffer command

The "from-buffer" command does exactly the opposite of the "to-
buffer" command described above* It takes the current buffer line and
inserts it between the current cursor line and the line above it. The
cursor line and all lines below it are moved down one line with the last
line of the text window being lost- If the cursor were placed on line 14
of the above screen display and the "from-buffer" command were issued once,
the display in figure 3 would result.

XI-8

r>

~>

~)

Current:

Current:

©

valFORTH Video Editor LI

Screen # 50 U #Bufs: !

(Example screen) (line 0)

: TESTl

10 0

DO

I CR

LOOP ;

(line 2)

•

: +C!

DUP C@ 1

SWAP C!
ROT +

(bottom line)

: OCTAL

8 BASE 1 ;

(...)

fig. 2

XI-9

valFORTH Video Editor 1.1

Screen #50 U #Bufs: .5

(Example screen) (line 0)

: TESTl { line 2)
10 0

DO

I CR .

LOOP ;

: +C!

DUP C@ ROT +
SWAP C! ;

Current: » 8 BASE ! ;
(bottom line)

line was 8 BASE ! ;
rolled to
the top

Current: : OCTAL (.—)

fig. 3

If the lsfrom-buffer81 command is issued again, then lines 13
through 15 of the text window would look like:

Current: : OCTAL

8 BASE ! ;
(—)

(bottom Tine)

fig. 4

Note that a block of text has been moved on the screen. Larger
blocks of text can be moved in the same manner.

xi-10
s

^

o

^

valFORTH Video Editor LI

Ctrl K copy to buffer command

The ncopy~to~bufferl{ command takes the current cursor line and
duplicates it, sending the copy to the buffer. This commands functions
identically to the "to-buffer" command described above, except that the
current cursor line is NOT deleted from the text window.

Ctrl U copy from buffer

The ncopy-from~buffer11 command replaces the current cursor line with
the current buffer line. This command functions identically to the "from-
buffer11 command described above, except that the buffer line is not inserted
into the text window, it merely replaces the current cursor line. The
Hoopsis command described below can be used to recover from accidental
usage of this command,

Ctrl R roll buffer

The 5I roll-bufferM command moves the buffer "peephole11 down one line
and redisplays the visible window. If the buffer were the minimum five
lines in length, the bottom four lines in the window would move up a line
and the top line would "wrap11 to the bottom and become the current buffer
line. If there were more than five buffer lines, the bottom four lines
would move up a line, the topmost line would be pushed up behind the
peephole, and a new buffer line coming up from below the peephole would
be displayed and made current. For example, if the buffer were five lines
long and contained:

Current:

(Who?)
(What?)
(When?)'
(Where?)
(Why?

}

Fig. 5

the "roll-buffer" command gives:

Current:

(What?)
(When? }
(Where?)
Why?
Who?

(Why? " }
(Who?)

Fig. 6

XI-11

valFORTH Video Editor LI

Ctrl B back-roll-buffer command

The "back-roll-buffer" does exactly the opposite of the "roll-
buffer" command described above. For example, if given the buffer in
figure 6 above, the "back-roll" command would give the buffer shown in
figure 5.

Ctrl C clear buffer line command

The "clear-buffer-line" command clears the current buffer line and
then "back-rolls" the buffer so that successive clears can be used to
erase the entire buffer.

NOTE:

Any of the above commands which change the text window will mark the
current screen as updated* Those cormiands which alter only the buffer window
(such as the "roll" command) will not change the status of the current screen.

XI-I2

^^^^

^

^

valFORTH Video Editor LI

Changing Screens

There are four ways in which to leave a FORTH screen. These four methods
are: moving to a previous screen, moving to a following screen, saving the
current screen and exiting*, or simply aborting the edit session. The four
commands allowing this are now described:

Ctrl P previous screen command

The "previous-screen" command has two basic functions. If the lower
part of the current screen is being viewed in the text window, this
command simply displays the upper portion of the screen. If the upper
portion is already being viewed, then the "previous-screen" command saves
any changes made to the current screen and then loads in the screen
immediately before the current screen. The lower part of the screen
will then be displayed. If in the half-K screen mode, however, this
command simply changes screens.

Ctrl N next screen command

Like the "previous-screen" command described above, the "next-screen"
command also has two basic functions. If the upper part of a screen is
being viewed, this command simply displays the lower portion. If, on the
other hand, the lower part of the screen is being edited, any changes made
to the current screen are saved and the next screen is loaded.

Ctrl S save command

The "save" command saves any changes made to the current screen and
exits the edit mode. The video screen is cleared, and the number of the
screen just being edited is displayed for reference. Note that it is
usually a good idea to immediately FLUSH (described in the section on
screen management below) any unsaved screens.

Ctrl Q quit command

The "quit" command aborts the edit session "forgetting" any changes
made to the text visible in the text window. Changes made on previously
edited screens will NOT be forgotten. The "quit" command is usually
used when either the wrong screen has been called up, or if it becomes
desirable to start over and re-edit the screen again.

XI-13

valFORTH Video Editor LI

Special Commands

There are f
bility in programming on the valFORTH system:

There are four special commands in this editor which allow greater flexi- '

ESCAPE special key command

The "special-key" command instructs the video editor to ignore
any command function of the key typed next and force a character to the
screen. For example, normally when "ctrl >" is typed, the cursor is
moved right. By typing "ESCAPE ctrl >n the cursor is not moved —
rather, the right-arrow is displayed.

ctrl A arrow command

When dealing with FORTH screens, it is often necessary to put the
FORTH word "-->" (pronounced "next screen") or the ValFORTH word "«>"
(pronounced "next screen") or the ValFORTH word 8l~~>lf (pronounced "next
half-K screen") at the end .of a screen for chaining a long set of words
together. This command automatically places, or erases, an arrow in the
lower right hand corner of the text window. If tf~->lf is already there,
it is replaced with "==>". If "==>" is found, it is erased. (This
command marks the screen as updated.)

ctrl J split line command ^

Often times, for formatting reasons, it is necessary to "split" a
line into two lines. The split line command takes all characters to the
left of the cursor and creates the first line, and with the remaining
characters of the original line, a second line is created. Graphically,
this looks like:

before: | The quick»brown fox jumped, |

after: | The quickn |
! brown fox jumped. j

Since a line is inserted/ the bottom line of the text window is lost.
Using the "oops" command below, however, this can be recovered.

^)

XI-14

valFORTH Video Editor LI

ctrl 0 oops command

Occasionally, a line is inserted or deleted accidentally, half a
line cleared by mistake, or some other major editing blunder is made.
As the name implies, the "oops" command corrects most of these major
editing errors. The "oops" command can be used to recover from the
following commands:

1) insert line command (shift INS
2) delete line command (shift DEL
3) hack command (ctrl H
4) to buffer command (ctrl T
5) from buffer command (ctrl F
6) copy from buffer command (ctrl U
7) split line command (ctrl J

XI-15

valFORTH Video Editor 1.1

Screen Management

In addition.to the commands available while in the edit modes there are
several other commands which are for use outside of the edit mode. Typically,
these commands deal with entire screens at a time,

FLUSH (—)

When any changes are made to the current text window, the current
screen is marked as having been changed. When leaving the edit mode
using the "save" command, the current screen is sent to a set of internal
FORTH buffers. These buffers are not written to disk until needed for
other data. Thus, if no other screen is ever accessed, the buffers will
never be saved to disk. The FLUSH command-forces these buffers to be
saved if they have been marked as being modified.

Example: FLUSH <ret>

EMPTY-BUFFERS (—)

Occasionally, screens are modified temporarily or by accident, and
get marked as being modified. The EMPTY-BUFFERS command unmarks the
internal FORTH buffers and fills them with zeroes so that "bad" data are

not saved to disk. Zero filling the buffers ensures that the next access
to &ny of the screens that were in the buffers will load the ^
unadulterated copy from disk. The abbreviation MTB is included in the)
valFORTH system to make the use of this command easier.

Examples: EMPTY-BUFFERS <ret>
MTB <ret>

COPY (from to —)

To duplicate a screen, the COPY command is used. The screen "from"
is copied to the screen "to" but not flushed.

Example: 51 60 COPY <ret>

(Copies screen 51 to screen 60.)

CLEAR (scr# —)

The CLEAR command fills the specified screen with blanks so that a
clean edit can be started. The screen is then made current so that the

L command can be used to enter the edit mode.

Example: 50 CLEAR <ret>

(Clears screen 50 and makes it current.)

XI-16

~)

^

valFORTH Video Editor 1.1

CLEARS (scr# #screens —)

The CLEARS command is used to clear blocks of screens at a time.
After user verification, it starts with the specified screen and clears
the specified number of consecutive screens. The first screen cleared
is made current so that the L command can be used to enter the edit mode.

Example: 25 3 CLEARS <ret>
Clear from SCR 25

to SCR 27 <Y/N> Y

(Screens 25-27 are cleared. Screen 25 is made current.)

SMOVE (from to #screens —-)

The SMOVE command is a multiple screen copy command used for copying
large numbers of consecutive screens at a time. User verification is
required by this command to avoid disastrous loss of data. All screens
to be copied are read into available memory and the user is prompted
to initiate the copy. This allows the swapping of disks between moves
to make disk transfers possible. The number of screens the SMOVE command
can copy at a time is limited only by available memory.

Example: 50 60 5 SMOVE <ret>
SMOVE from 50 thru 54

to 60 thru 64 <Y/N> Y
Insert source <RETURN> <ret>
Insert dest. <RETURN> <ret>

(Transfers the specified screens.)

XI-17

valFORTH Video Editor LI

Editor Command Summary

Below is a quick reference list of all the commands which the video editor
recognizes.

Entering the Edit Mode: (executed outside of the edit mode)

WHERE

LOCATE cccc

LOCATOR

#BUFS

(scr# ...)
Enter the edit mode and view the
specified screen.

Re-view the current screen.

(... >

(... }
Enter the edit mode and position the
cursor over the word that caused a

compilation error.

(—)
Enter the edit mode and position the
cursor over the word defining "cccc".

(ON/OFF -
When ON, allows all words compiled until
the next OFF to be locatable using the
LOCATE command above.

-)

(#lines —-
Sets the length (in lines) of the storage
buffer. The default is five.

XI-18

/*^^l

~>

a

&
Cursor Movement:

ctrl a

Ctrl v

Ctrl <

ctrl >

RETURN

TAB

Editing Commands

ctrl INS

ctrl DEL

shift INS

shift DEL

ctrl I

BACKS

ctrl H

valFORTH Video Editor 1.1

(issued within the edit mode)

Move cursor up one line* wrapping to the bottom
line if moved off the top.

Move cursor down one line* wrapping to the top
line if moved off the bottom.

Move cursor left one character, wrapping to the
right edge if moved off the left.

Move cursor right one character, wrapping to the
left edge if moved off the right*

Position the cursor at the beginning of the next
line.

Advance to next tabular column.

(issued within the edit mode)

Insert one blank at cursor location* losing the
last character on the line*

Delete character under cursor* closing the line.

Insert blank line above current line* losing the
last line on the screen.

Delete current cursor line, closing the screen.

Toggle insert-mode/replace-mode, (see full
description of ctrl-I).

Delete last character typed, if on the same line
as the cursor.

Erase to end of line (Hack).

XI-19

valFORTH Video Editor LI

(issued within the edit mode)

Delete current cursor line sending it to the \7
edit buffer for later use. ^

Take the current buffer line and insert it
above the current cursor line-

Copy current cursor line sending it to the
edit buffer for later use.

Take the current buffer line and copy it to the
current cursor line.

Roll the buffer making the next buffer line
current.

Roll the buffer backwards making the previous
buffer line on the screen current.

Clear the current buffer line and perform
a ctrl-B.

Note: The current buffer line is last line visible on the video display.

(issued within the edit mode)

Display the previous screen saving all changes ^
made to the current text window.

Display the next screen saving all changes made
to the current text window.

Save the changes made to the current text window
and end the edit session.

Quit the edit session forgetting all changes
made to current text window.

(issued within the edit mode)

Do not interpret the next key typed as any of
the commands above. Send it directly to the
screen instead.

Put "-->", ,,==>11, or erase the lower right-hand
corner of the text window.

Split the current line into two lines at the
point where the cursor is.

Buffer Management:

ctrl T

ctrl F

ctrl K

ctrl U

ctrl R

ctrl B

ctrl C

Changing !Screens

ctrl P

ctrl N

ctrl S

ctrl Q

Special Keys:

ESC

ctrl A

ctrl J

ctrl 0 Corrects any major editing blunders.

^

XI- 20

Screen Management:

FLUSH

EMPTY-BUFFERS

COPY

CLEAR

CLEARS

SMOVE

valFORTH Video Editor LI

(executed outside of the edit mode)

Save any updated FORTH screens to disk,
(...)

Forget any changes made to any screens not
yet FLUSHed to disk. Used in "losing11 major
editing mistakes. The abbreviation MTB is
more commonly used.

(—)

Copies screen #from to screen #to<
(from to —)

(scr#
Blank fills specified screen. This performs
the same functions as "WIPE11 in Leo Brodie's
book.

(scr# #screens
Blank fills the specified number of screens
starting with screen scr#.

(from to #screens
Duplicate the specified number of screens
Starting with screen number "from". Allows
swapping of disks before saving screens to
screen number "to".

XI-21

.„)

r

STRING UTILITIES

The following collection of words describes the string utilities of the
valFORTH Utilities Package. Strings have been implemented in the FORTH
language in many different ways. Most implementations set aside space for a
third stack ~ a string stack. As strings are entered* they are moved (using
CMOVE) to this stack- When strings are manipulated on this stack* many long
memory moves are usually required. This method is typically much slower than
the method implemented in valFORTH.

Rather than waste memory space with a third stack, valFORTH uses the
already existing parameter stack. Unlike the implementation described above,
valFORTH does not store strings on the stack. Rather, it stores the addresses
of where the strings can be found-.-* Using this method, words such as SWAP ,
DUP , PICK , and ROLL can be used to manipulate strings. Routines such as
string sorts which work on many strings at a time are typically much faster
since addresses are manipulated rather than long strings. In practice* we
have-found few if any problems using this method of string representation*

String Glossary

For the purposes of this section, a string is defined to be a sequence
of up to 255 characters preceded by a byte indicating its length. The first
character of the string is referenced as character one. If the length of the
string is zero, it has no characters and is called the "null" string. In
stack notation, strings are represented by the symbol $ and the address of the
string is stored on the stack rather than the string itself*.

-TEXT addrl n addr2 — flag
The word -TEXT compares n characters ataddressl with n characters

at address2. Returns a false flag if the sequences match, true if they
don't. Flag is positive if the character sequence: at addressl is alpha
betically greater than the one at address2. Flag is zero if the
character sequences match, and is negative if the character sequence at
addressl is alphabetically less than the one at address2.

-NUMBER addr - d

-NUMBER functions identically to the standard FORTH word NUMBER
with the only difference being that -NUMBER does not abort program
execution upon an illegal conversion. -NUMBER takes the character string
at addr and attempts to convert it to a double number- On successful
conversion, the value d is returned with the status variable NFLG set
to one. On unsuccessful conversion, a double number zero is returned
with the variable NFLG set to zero. -NUMBER is pronounced !lnot number11.

^Representing strings on the stack by their addresses is a very useful concept
borrowed from MMS Forth (TRS-80), authored by Tom Dowling, and available from
Miller Microcomputer Services, 617-653-6136.

XII-1

NFLG -- addr

A variable used by -NUMBER that indicates whether the last conversion ^
attempted was successful. NFLG is true if the conversion was successful; v 7
otherwise, it is false*

UMOVE addrl addr2 n —
UMOVE is a "universal11 memory move. It takes the block of memory

n bytes long at addrl and copies it to memory location addr2. UMOVE
correctly uses either CMOVE or <CM0VE so that when a block of memory is
moved onto part of itself9 no data are destroyed,

81 cccc11 ~ (at compile time)
cccc: — addr (at run time)

If compiling, the sequence cccc (delimited by the trailing ") is
compiled into the dictionary as a string:

1 len I c I c 1 c I... i c I
All valFORTH strings are represented in this fashion. Since a single
byte is used to store the lengths a maximum string length of 255 is
allowed. A string with 0 length is called a "null" string. At
execution time, " puts the address in memory where the string is
located onto the stack.

Note that " is IMMEDIATE, When executed outside of a colon
definition, the string is.not compiled into the dictionary, but
-is stored at PAD instead.

Example: n This is a string81

$C0NSTANT cccc $ -- (at compile time) ^
cccc: — $ (at execution time) J
Takes the string on top of the stack and compiles it into the

dictionary with the name cccc. When cccc is later executed, the
address of the string is pushed onto the stack.
Example: " Ready? <Y/N> " $C0NSTANT VERIFY

$VARIABLE cccc n — '
cccc: — $
Reserves space for a string of length n. When cccc is later

executed, the address of the string is pushed onto the stack.
Example: 80 $VARIABLE TEXTLINE

$. $ —
Takes the string on top of the stack and sends it to the current

output device.
Example: fi Hi there" $. <ret> Hi there

$! $ addr —
Takes the string at second on stack and stores it at the address

on top of stack.
Example: " Store me!11 TEXTLINE $!

~>

XII-2

$+ $1 $2 -- $3
Takes $2 and concatenates it with $1, leaving $3 at PAD.

Example: " Santa " $C0NSTANT 1ST
" Claus" ^CONSTANT LAST
1ST LAST $+
$. <ret> Santa Claus

LEFT$ $1 n - $2
Returns the leftmost "n" characters of $1 as $2. $2 is stored

at PAD.

Example: " They" 3 LEFTS $. <ret> The

RIGHT$ • $1 n — $2
Returns the rightmost "n" characters of $1 as $2. $2 is stored

at PAD.

Example: " mother" 5 RIGHT$ $. <ret> other

MID$ $1 n u — $2
Returns $2 of length u starting with the nth character of $1.

Recall that the first character of a string is numbered as one.
Example: " Timeout" 3 2 MID$ $. <ret> me

LEN $ — len
Returns the length of the specified string.

ASC $ - c
Returns the ASCII value of the first character of the specified

string.

$C0MPARE $1 $2 — flag
Compares $1 with $2 and returns a status flag. The flag is

a) positive if $1 is greater than $2 or is equal to $2, but longer,
b) zero if the strings match and are the same length, and c) negative
if $1 less than $2 or if they are equal and $1 is shorter than $2.

$= $1 $2 - flag
Compares two strings on top of the stack and returns a status

flag. The flag is true if the strings match and are equal in length,
otherwise it is false.

$< $1 $2 -- flag
Compares two strings on top of the stack and returns a status

flag. The flag is true if $1 is less than $2 or if $1 matches $2 but
is shorter in length.

$> $1 $2 -~ flag
Compares two strings on top of the stack and returns a status

flag. The flag is true if $1 is greater than $2 or if $1 matches $2
but is longer in length.

SAVE$ $1 -- $2
As most string operations leave resultant strings at PAD, the word

SAVES is used to temporarily move strings to PAD+512 so that they can
be manipulated without being altered in the process.
Example: " Wash" SAVES " ington" $+

XII-3

INSTR $1 $2 — n
Searches $1 for first occurrence of $2.' Returns the character ^

position in $1 if a match is found; otherwise, zero is returned. 1
Example: '* FDCBA" $C0NSTANT GRADES

GRADES " A" INSTR 1- . <ret> 4

CHR$ c — $
Takes the character "c" and makes it into a string of length one

and stores it at PAD.

DVAL S - d
Takes numerical string $ and converts it to a double length number.

The variable NFLG is true if the conversion is successful, otherwise it
is false. See -NUMBER above.
Example: " 123" DVAL D. <ret> 123

VAL $ -- n
Takes the numerical string $ and converts it to a single length

number. The variable NFLG is true if the conversion is successful,
otherwise it is false. See -NUMBER above.

DSTRS d - $
Takes the double number d and converts it to its ASCII representa

tion as $ at PAD.
Example: 123 DSTR$.$. <ret> 123

STR$ n - $
Takes the single length number n and converts it to its ASCII ^

representation as $ at PAD. J

STRINGS n $1 - :i;$2
Creates $2 as n copies of the first character of $1.

#IN$ n — $
#IN$ has three similar but different functions. If n is positive,

it accepts a string of n or fewer characters from the terminal. If n is
zero, it accepts up to 255 characters from the terminal. If n is nega
tive, it returns only after accepting ~n characters from the terminal.
The resultant string is stored at PAD.

INS
Accepts a string of up to 255 characters from the terminal.

S-TB $1 — $2
Removes trailing blanks from Si leaving new S2.

SXCHG $1 — $2
Exchanges the contents of $1 with $2.

XII-4

^

n

ARRAYS and their COUSINS

All of the words described below create structures that are accessed in the
same way, i.e., by putting the index or indices on the stack and then typing
the structure's name. The differences are in the ways the structures are
created.

The concept of the array should be known from BASIC. While in fig-FORTH
there is no standard way to implement arrays and similar structures, there
does exist a general consensus about how this should be done.

The point on which there is the most divergence of opinion is whether the
first element in an array should be referred to by the index 0 or 1. We
select 0 for the first index since this gives much cleaner code and makes
more sense than 1 after you get used to it. (We've worked with it both ways.)

ARRAY and CARRAY, and 2ARRAY and 2CARRAY

The size of an array, specified when it is defined, is the number of elements
in the array. In other words, an array defined by

8 ARRAY BINGO

will have 8 elements numbered 0-7.

To access an element of an array, do

n array-name

to get the address of the nth element on the stack. (You will not be told
if the number n is not a legitimate index number for the array.) For example,

5 BINGO

will leave the address of element number 5 in BINGO on the stack. You can
store to or fetch from this address as you require.

The word CARRAY defines a byte or character array. Ac-array works the same
as an array, except that you must use C@ and C! to manipulate single elements,
rather than @ and !.

ThP wnrrk 2ARRAY and 2CARRAY each take two numbers during definition of a

IE? S&t^ss r»£Mz asa^ ~
named ROOK, the two phrases

ROOK 4 6 CHESSBOARD C!
and

ROOK 6 4 CHESSBOARD C!

don't do the same thing. Also note that the phrase

XII-5

8 8 2CARRAY CHESSBOARD

defines a 2CARRAY of 8 x 8 s 64 elements* with both indices running from 0 to /
7.

When an ARRAY or a CARRAY is defined, the initial values of the elements
are undefined,

TABLE AND CTABLE

A cousin of ARRAY is TABLE, Example: The phrase

TABLE THISLIST 14 , 18 ,.-34 , 16 ,

defines a table THISLIST of 4 elements* (The commas above are part of the
code and must be included,,) The number of elements does not have to be
specified. The elements in THISLIST are accessed using the indices 0~3S
the same as if it had been defined as an array. The word CTABLE works
similarly, though using C* instead of , to compile in the numbers. Note that
negatives won't be compiled in by a C5 since in two's complement representation
negative numbers always occupy the maximum number of bytes;

VECTOR and CVECTOR

The last array-type words in this package are CVECTOR and VECTOR* Vector is
just another name for a list. These words are used when the elements of the
array you want to create are on the stack, with the last element on top of the
stack- You just put the number of elements on the stack and the VECTOR or fj
CVECTOR, and the name you want to use. Example:

-3 8 127 899 -43 5 VECTOR POSITIONS

creates an array named POSITIONS with 5 elements 0-4. with -3 in element 0
and -43 in element 4, CVECTOR works in a similar way.

EXAMPLES:

2 3 BINGO !

Stores the value 2 into element 3 of array BINGO,

2 THISLIST (9

Will leave the value in element 2 of table THISLIST,
According to the definition of THISLIST above* this value
will be -34.

3 POSITION @ . <cr> 899

^

XII-6

ARRAY WORD GLOSSARY

ARRAY cccc* n — (compiling)
cccc: m -- addr (executing)

When compiling, creates an array named cccc with n 16-bit elements numbered 0
thru n-1. Initial values are undefined. When executing, takes an argument,
m, off the stack and leaves the address of element m of the array.

CARRAY cccc, n — (compiling]
cccc: m —» addr (executing]

When compiling, creates a c-array named cccc with n 8-bit elements numbered
0 thru n-1. Initial values are undefined. When executing, takes an argument,
m, off the stack and leaves the address of element m of the c-array.

TABLE cccc, — (compiling)
cccc: m ~ addr (executing)

When compiling, creates a table named cccc but does not allot space. Elements
are compiled in directly with , (comma). When executing, takes one argument,
m off the stack and, assuming 16-bit elements, leaves the address of element
m of the table,

CTABLE cccc, -- (compiling)
cccc: m ~ addr (executing)

When compiling, creates a c-table named cccc but does not allot space. Elements
are compiled in directly with C, (c~comma). When executing, takes one argument,
m off the stack and, assuming 8-bit elements, leaves the address of element m
of the c-table.

X! nO ... nN count addr —

Stores count 16-bit words, nO thru nN into memory starting at addr, with nO
going into addr* Pronounced "extended store.38

XC! bO ... bN count addr —

Stores count 8-bit words, bO thru bN into memory starting at addr, with bO
going into addr* Pronounced "extended c-store,"

VECTOR cccc, nO ... nN count ~ (compiling)
cccc: m -- addr (executing)

When compiling, creates a vector named cccc with count.16-bit elements
numbered 0-N. nO is the initial value of element 0, nN is the initial value
of element N, and so on. When executing, takes one argument, m, off the stack
and leaves the address of element m on the stack,

CVECTOR cccc, bO ... bN count — (compiling)
cccc: m -- addr (executing)

When compiling, creates a c-vector named cccc with count 8-bit elements
numbered 0-N. bO is the initial value of element 0, bN is the initial value
of element N, and so on. When executing, takes an argument, m, off the stack
and leaves the address of element m on the stack.

XII-7

CASE STRUCTURES

It often becomes necessary to make many tests upon a Single number.
Typically, this is accomplished by using a series of nested "DUP test IF"
statements followed by a series of ENDIFs to terminate the IFs. This, is
arduous and very wasteful of memory. valFORTH contains four very powerful
Pascal-type CASE statements which ease programming and conserve memory.

The CASE: structure

Format:

CASE: wordname
wordO
wordl

wordN :

^^^

The word CASE: creates words that expect a number from 0 to
N on the stack. If the number is zero, wordO is executed; if the
number is one, the wordl is executed; and so on. No error checks are
made to ensure that the case number is a legal value.

Example: ^

: ZERO ." Zero81 ;
i ONE

a

One" ;
• TWO

a Two" ;

CASE: NUM

ZERO

ONE

TWO ;

0 NUM <ret> Zero

1 NUM <ret> One

2 NUM <ret> Two

Note that any other number (e.g. 3 NUM) will crash the system.

XII-8

~>

The CASE Structure

Format:

: wordname

CASE

wordO
wordl

wordN

(NOCASE wordnone) (optional)
CASEND

The CASE...CASEND structure is always used within a colon
definition. Like CASE: above, it requires a number from
0 and N. However, unlike CASE: above* boundary checks are made
so that an illegal case will do nothing. If the optional NOCASE
clause is included then wordnone is executed if an "out of bounds"
number is used.

Examples:

I) : ZERO ." Zero" ;
: ONE ." One" ;
: TWO ." Two" ;

: CHECKNUM (n — }
CASE

ZERO

ONE

TWO

CASEND ;

0 CHECKNUM <ret> Zero

1 CHECKNUM <ret> One
999 CHECKNUM <ret> (nothing happens)

2 CHECKNUM <ret> Two

XII-9

ii: : GRADEA A" S

: GRADES B" s

: GRADEC C" S

: GRADED D" S

: OTHER Failed" ;

DECIMAL

: GETGRADE (-•-)
KEY 65 - (Convert A to 0, B to 1, etc)
CASE ♦

GRADEA

GRADES

GRADEC

GRADED
NOCASE OTHER

CASEND ;

GETGRADE <return and press A> A
GETGRADE <retum and press B> B
GETGRADE <return and press F> Failed
GETGRADE <return and press D> D

/^^^

The SEL Structure ^

Format:

: wordname

SEL (Select)
nl -> wordO

n2 -> wordl

• •*•

nN > wordN

(NOSEL wordnone) (optional)
SELEND

^

XII-10

The SEL...SELEND structure is used when the "selection" numbers
(nl etc.) are not sequential. This structure is somewhat slower than
either CASE or CASE: , but is much more general. SEL is typically
used in operations such as table driver menus where single keystroke
commands are used. The valFORTH video editor uses the SEL structure
to implement the many editing keystroke commands.

Example:

I) NICKEL

DIME

QUARTER
4BITS

SUSANB

BAD$$S

" nickel." ;
" dime." ;
" quarter." ;'
" fifty cent piece."
" dollar" ;
" wooden nickel." ;

MONEY-NAME

." That is called

SEL

in--)

5

10

25

50

100

NOSEL

SELEND

->

->

_>

_>

->

NICKEL

DIME

QUARTER
4BITS

SUSANB

BAD$$$ (this line is optional)

5 MONEY-NAME <ret> That is called a nickel.
33 MONEY-NAME <ret> That is called a wooden nickel
25 MONEY-NAME <ret> That is called a quarter.

The COND Structure

Format:

wordname

COND

conditionO « wordsO »

conditionl « words 1 »

conditionN « wordsn »

(NOCOND wordsnone)
CONDEND

XII-11

(optional)

,d

Unlike the three previous CASE structures which test for equality*
the COND structure bases its selection upon any true conditional test
(e.g. if n > 0 then...) COND can also be used for range cases. The
NOCOND clause is optional and is only executed if no other condition
passes. Only the code of the first condition that passes will be
executed.

Example:

EXAM (score —

COND

90 >= « ." Grade of A" 4 »

80 >= « ." Grade of B" 3 »

70 >= « ." Grade of C" 2 »

60 >= « ."Grade of D" 1 »

NOCOND ." Not too good" 0
CONDEND ;

grade)

Note that neither « nor » are needed (nor allowed) around the
}iN0C0NDlf case. Also note that more than one word can be executed
between the « and » *

XII-12

*>

/^^

/l^^ii

(intentionally left blank)

t)

r>

XII-13

DOUBLE NUMBER EXTENSIONS

The following words extend the set of double number words to be as nearly
identical as possible to the set in the book Starting FORTH. The exceptions
are DVARIABLE and DCONSTANT which conform to the FIG standard by expecting
initial values on the stack.

All of the single number operations comparable to the double number operations
below were machine coded; all of the words below (with the exception of DVARIABLE)
have high-level run time code and so are considerably slower than their single
number counterparts.

DOUBLE NUMBER EXTENSION GLOSSARY

DVARIABLE cccc d -

cccc: -- addr

At compile time, creates a double number variable cccc with the initial value d.
At run time, cccc leaves the address of its value on the stack.

DCONSTANT cccc d —

cccc: -- d

At compile time, creates a double number constant cccc with the initial value d.
At run time, cccc leaves the value d on the stack.

0. — 0.

A double number constant equal to double number zero. }

1. — 1.

A double number constant equal to double number one.

D- dl d2 — d3

Leaves dl-d2~d3.

D0= d — flag
If d is equal to 0. leaves true flag; otherwise, leaves false flag.

D= dl d2 - flag
If dl equals d2, leaves true flag; otherwise, leaves false flag.

D0< d — flag
If d is negative, leaves true flag; otherwise, leaves false flag.

D< dl d2 — flag
If dl is less than d2, leaves true flag; otherwise, leaves false flag.

D> dl d2 — flag
If dl is greater than d2, leaves true flag; otherwise, leaves false flag.

XII-14

/'^^l

//^^%

e

r

DMIN dl d2 — d3

Leaves the minimum of dl and d2.

DMAX dl d2 — d3

Leaves the maximum of dl and d2.

D>R d —

Sends the double number at top of stack to the return stack.

DR> — d

Pulls the double number at top of the return stack to the stack.

D, d —
Compiles the double number at top of stack into the dictionary.

DU< udl ud2 — flag
If the unsigned double number udl is less than the unsigned double number ud2,
leaves a true flag; otherwise, leaves a false flag.

M+ dl n — d2

Converts n to a double number and then sums with dl.

XII-15

HIGH RESOLUTION TEXT OUTPUT

Occasionally, the need arises to print text in high resolution graphic
displays (8 GR.). The following set of words explains how Graphic Characters
can be used in valFORTH programs. The Graphic-Character output routines are
designed to function identically to the standard FORTH output operations.
There is an invisible cursor on the high resolution page which always points
to where the next graphic-character will be printed* As with normal text
output* this cursor can be repositioned at any time and in various ways,
Because of the nature of hi-res printing9 this cursor can also be moved
vertically by partial characters. This allows for super/subscripting* over-
striking, and underlining. Multiple character fonts on the same line are
also possible.

GCINIT

Initializes the graphic character output routines. This must be
executed prior to using any other hi-res output words.

GC. n —
Displays the single length number n at the current hi-res cursor

location.

GC.R nl n2 —
Displays the single length number nl right-justified in a field

n2 graphic characters wide. See -.R .

GCD.R d n ~
Displays the double length number d right-justified in a field n

graphic characters wide. See D.R .

GCEMIT c —
Displays the text character c at the current hi-res cursor location.

Three special characters are interpreted by GCEMIT . The up arrow (f)
forces text output into the superscript mode; the down arrow (fy forces
the text into the subscript mode; and the left arrow (<-) performs a
GCBKS command (described below). See OSTRIKE below; also see EMIT.

GCLEN addr n — len

Scans the first n characters at addr and returns the number of
characters that will actually be displayed on screen. This is typically
used to find the true length of a string that contains any of the non
printing special characters described in GCEMIT above. Used principally
to aid in centering text, etc.

GCR
Repositions the hi-res cursor to the beginning of the next hi-res

text line. See CR .

GCLS

Clears the hi-res display and repositions the cursor in the upper
lefthand corner*

XIII-1

GCSPACE

Sends a space to the graphic character output routine. See SPACE . ^^

GCSPACES n -

Sends n spaces to the graphic character output routine. See SPACES .

GCTYPE addr n -- ' .
Sends the first n characters at addr to the graphic character output

routine. See TYPE *

GC11 cccc11

Sends the character string cccc (delimited by lf) to the graphic
character output routine. If in the execution mode9 this action is
taken immediately. If in the compile mode§ the character string is
compiled into the dictionary and printed out only when executed in
the word that uses it. See ." .

GCBKS
Moves the hi-res cursor back one character position for overstriking

or underlining.

GCPOS horz vert —

Positions the hi-res cursor to the coordinates specified. Note
that the upper lefthand corner is Q9Q*

GC$. addr —
Sends the string found at addr and preceded by a count byte to the

graphic character output routine. See $. . <^l

SUPER

Forces the graphic character output routine into the superscript
mode (or out of the subscript mode). See VMI below. May be performed
within a string by the *• character.

SUB
Forces the graphic character output routine into the subscript

mode (or out of the superscript mode). See VMI below. May be performed
within a string by the ^ character.

VMI n —

Each character is eight bytes tall. The VMI command sets the number
of eighths of characters to scroll up or down when either a SUPER or SUB
command is issued. Normally, 4 VMI is used to scroll 4/8 or half a
character in either direction.

VMI# ~ addr
A variable set by VMI.

OSTRIKE ON or OFF ~
The GCEMIT command has two separate functions. If OSTRIKE (overstrike)

option is 0FF9 the character output will replace the character at the
current cursor position. This is the normal method of output. If the
OSTRIKE option is ON. the new character is printed over top of the previous ^
character giving the impression of an overstrike. This allows the user to /^
underline text and create new characters: Example: To do underline* a
value of, say, 2 should be used with VMI. and then the ♦ character added
in the string before the underline character.

XIII-2'

GCBAS — addr

A variable which contains the address of the character set displayed
by GCEMIT. To change character sets, simply store the address of your
new character set into this variable.

GCLFT — addr

A variable which holds the column position of the left margin.
Normally two, this can be changed to obtain a different display window.

GCRGT — addr

A variable which holds the column position of the right margin.
Normally 39, this can be changed to obtain a different display window.

XIII-3

^':$^?"'§sS§ljft?'

o

CM#f»tfonafly left blank)

5

:XII|-4

MISCELLANEOUS UTILITIES

This is a grab-bag of useful words. Here they are...

XR/W Isecs addr blk flag ~

"Extended read-write.11 "The same as R/W except that XR/W accepts a sector
count for multiple sector reads and writes. Starting at address addr and
block blk, read (flag true) or write (flag false) #secs sectors from or to
disk.

SMOVE org des count --

Move count screens from screen # org to screen # dest.

The primary disk rearranging word, also used for moving sequences of screens
between disks. This is a smart routine that uses all memory available below
the current GR.-generated display list, with prompts for verification and
disk swap if desired. See valFORTH Editor 1,1 documentation for further details,

LOADS start count —

Loads count screens starting from screen # start. This word is used if you
want to use words that are not chained together by ~> "s.- It will stop
loading if a CONSOLE button is held down when the routine finishes loading
its present screen.

THRU start finish — start count

Converts two range numbers to a start-count format. Example:

120 130 THRU PLISTS

will print screens 120 thru 130.

SEC n ~

Provides an n second delay. Uses a tuned do-loop.

MSEC n --

Provides an n millisecond delay, (approx)
Uses a tuned do-loop.

H~>L n — b

Moves the high byte of n to the low byte and zero's the high byte, creating
b. Machine code.

L~>H nl — n2

Moves the low byte of nl to the high byte and zeross the low byte, creating
n2. Machine code.

H/L nl ~ nl(hi) nl(lo)
Split top of stack into two stack items: New top of stack is low byte of old
top of stack. New second on stack is old top of stack with low byte zeroed.
Example: HEX 1234 H/L .S <cr> 1200 0034

XIII-5

BIT b — n

Creates a number n that has only its bth bit set. The bits are numbered 0-15, ^
with zero the least significant. Machine code. ;

?BIT n b -- f
Leaves a true flag if the bth bit of n is set. Otherwise leaves a false flag.

TBIT nl b ~ n2

Toggles the bth bit of nl, making n2.

SBIT nl b — n2

Sets the bth bit of nl, making n2.

RBIT nl b -- n2

Resets the bth bit of nl, making n2.

STICK n ~ horiz vert
Reads the nth stick (0-3) and resolves the setting into horizontal and
vertical parts, with values from -1 to +1. -l «i means-up and to the left,

PADDLE nl — n2
Reads the nlth paddle (0-7) and returns its value n2. Machine code.

ATTRACT f —
If the flag is true, the attract mode is initiated. If the flag is false,
the attract mode is terminated.

NXTATR ~
If the system is in the attract mode, this command cycles to the next color
setup in the attract sequence. Disturbs the timer looked at by 16TIME.

HLDATR --
If the system is in attract mode, zero's fast byte of the system timer so
that attract won't cycle to next color setup for at least four seconds
or until system timer is changed, say by NXTATR. Disturbs the timer looked
at by 16TIME.

16TIME •-- n

Returns a 16 bit timer reading from the system clock at locations 19 and 20,
decimal. This clock is updated 60 times per second, with the fast byte in
20. Machine code, not fooled by carry.

8RND — b
Leaves one random byte from the internal hardware. Machine code.

16RND — n

Leaves one random word from the internal hardware. Machine code with 20
cycle extra delay for rerandomization.

CHOOSE ul ~ u2
Randomly choose an unsigned number u2 which is less than ul.

XIII-6

~>

^

CSHUFL addr n ~

Randomly rearrange n bytes in memory, starting at address addr.
Pronounced "c-shuffle."

SHUFL addr n —

Randomly rearrange n words in memory, starting at address addr. Pronounced
"shuffle." SHUFL may also be used to shuffle items directly on the stack by
doing SP@ n SHUFL.

H, n -

See DEBUG Glossary.

A. addr —
Print the ASCII character at addr, or if not printable, print a period.
(Used by DUMP).

DUMP addr n ~
Starting at addr, dump at least n bytes (even multiple of 8) as ASCII and
hex. May be exited early by pressing a CONSOLE button,

BLKOP system use only

BXOR addr count b —
Starting at address addr, for count bytes, perform bit-wise exclusive or
with byte b at each address. Useful for toggling an area of display memory
to inverse video or a different color, and for other purposes. For instance,
in 0 GR., do

DCX 88 @ 280 128 BXOR

Then do Shift-Clear to clear the screen. Pronounced "block ex or."

BAND addr count b ~
Starting at address addr, for count bytes, perform bit-wise AND with byte b
at each address. Applications similar to.BXOR.
Pronounced "block and."

BOR addr count b -
Starting at address addr, for count bytes, perform bit-wise or with byte b
at each address. Applications similar to BXOR.
Pronounced "block or."

STRIG n — flag
Reads the button of joystick n (0-3). Leaves a true flag if the button is
pressed, a false flag if it isn't.

PTRIG n — flag
Reads the button of paddle n (0-7). Leaves a true flag if the button is
pressed, a false flag if it isn't.

XIII-7

i|f^*lGr«py ifeftvblimtkp

;»£$-

TRANSIENTS

One of the more annoying parts about common releases of FORTH concerns the
FORTH machine code assemblers. On the positive side, FORTH-based assemblers
can be extraordinarily smart and easy to use interactively, and can compile
on the fly as.you type, rather than in multiple-pass fashion. (The 6502
assembler provided with valFORTH is a good example of a smart, structured,
FORTH-based assembler.) On the other hand, since the assembler loads into
the dictonary one usually sacrifices between 3 and 4K of memory on a utility
that is only a compilation aid, and is not used during execution. With the
utility described below, however, you can use the assembler and then remove
it from the dictionary when you're finished with it.

In the directory of the Utilities/Editor disk (screen 170) you will find a
heading of Transients. Loading this screen brings in three words: TRANSIENT,
PERMANENT, and DISPOSE, and a few variables. It also defines a new area of
memory called the Transient area. This area is used to load utilities like
the assembler, certain parts of case statements, and similar constructs, that
have one characteristic in common: They have compile-time behavior only, and
are not used at run-time. An example will help make clear the sequence of
operations. You may recall that on the valFORTH disk, in order to load float
ing point words you needed the assembler. Let's make a disk that has floating
point but no assembler:

* Boot your valFORTH disk. It can be the bare system, or your normal program
ing disk if it doesn't have the assembler already in it.

* Insert your Utilities/Editor disk, find the Transient section in the
directory, and load it.

* Do MTB (EMPTY-BUFFERS) and swap in your valFORTH disk. (It is a VERY good
idea to get into the habit of doing MTB before swapping disks,) Find the
assembler in the directory, but before you load it, do TRANSIENT to cause it
to be loaded into the transient dictionary area, in high memory. Now go ahead
and load the assembler. When it is loaded, do PERMANENT so that the next
entries will go into the permanent dictionary area, which is back where you
started.

* Now find and load the floating point words*

* Finally, do DISPOSE to pinch off the links that tie the transient area
(with the assembler in it) to the permanent dictionary, with the floating
point words in it. Do a VLIST or two to prove it to yourself. (Note that
there are about a half-dozen words in the assembler vocabulary in the kernel.
These were in the dictionary on boot up and are not affected by DISPOSE.)

You can derive great benefit from the simple recipe above, and if you study
the Transient code a bit, you may learn even more. We offer several comments:

XIII-9

* In the case of the above recipe, you didn't actually have to do PERMANENT
and TRANSIENT because the assembler source code checks at the front to see if
TRANSIENT exists, and does it if so. At the end if checks to see if PERMANENT
exists, and does it if so. This conditional execution is accomplished with
the valFORTH construct

'()()

which is described in valFORTH documentation. Take a look at the assembler
source code to see how this is done.

* If you want to do assembly on more than one section of code, you needn't
DISPOSE until you really finished with the assembler; or, if you have DISPOSED
of the assembler, you can bring it back in later without harm, by the same
method. You can also code high-level definitions, and then more assembly
code, and so on, and only do DISPOSE when you were finished. Be sure to do
DISPOSE before SAVE or AUTO, however, because either your system will crash
or your SAVE'd or AUT08d program won!t work.

The situation is slightly different with "case" words, since if you bring
them in more than once you111 get duplicate names on the run-time words like
(SEL), (CASE) and CASE:, which uses extra space and defeats the purpose of
Transients.

* If you use the Transient structures for otherpurposes, remember only to
send code that is not used at run-time to the transient area. As an example
of this distinction, look at the code for the "case" words on the valFORTH
disk. Note that the '()() construct is again used, but that some of ^>
the parts of the case constructs, for instance (SEL), stay in the permanent
dictionary. That is because (SEL) actually ends up in the compiled code,
while SEL does not.

* Look at the beginning of the code for the Transient structures, and notice
that the Transient area has been set up 4000 bytes below the display list.
(The byte just below the display list in normal modes is pointed to by memory
location 741 decimal, courtesy of the Atari OS.) This is usually a good place
if only the 0 Graphics mode is used. (8 GR., for example, will over-write
this area, crashing the system.) After DISPOSE is executed, this area is
freed for other purposes. If you want to use a different area for Transients,
just substitute your address into the source code on the appropriate screen.
R'emember that you must leave enough room for whatever will go into the Transient
dictionary, and that NOTHING else must write to the area until you have cleared
it out with DISPOSE. (This includes SMOVE, DISKC0PY1, DISKC0PY2, etc.)

****** NOTE ***** NOTE ***** NOTE ***** NOTE ******NOTE ******

In the above example, 4000 bytes have been set aside for the Transient area
just below the 0 GR. display list. This amount of memory will generally hold
the assembler and some case statement compiling words. REMEMBER that if you
have relocated the buffers (see the section on Relocating Buffers) to this
area as well, you will have a collision, and a crashed system in short order.

To cure this, simply locate the Transient area 2113 bytes lower in memory so ^
that there will be no overlap. j

****** mote ***** NOTE ***** NOTE ***** NOTE ***** NOTE ******

XIII-10

r>

ACKNOWLEDGEMENT

Various implementations of the Transient concept have appeared. valFORTH
adopts the names TRANSIENT, PERMANENT, arid DISPOSE from a public domain
article by Phillip Wasson which appeared in FORTH DIMENSIONS volume III no. 6.
The Transient structure implemented in the article has been altered somewhat
in the valFORTH implementation to allow DISPOSE to dispose of the entire
Transient structure, including DISPOSE itself, thus rendering the final
product perfectly clean.

FORTH DIMENSIONS is a publication available through FIG (address listed
elsewhere) and can be a valuable source of information and ideas to the
advanced FORTH programmer.

XIIl-.il

EDITOR/UTILITIES SUPPLIED SOURCE

Screens 36

0 < Transients:

1 BASE 9 DCX

setup

3 HERE

4

7

3

9

.10

.11

13

14

15

741 ® 4®0® - DP !

(SUGGESTED PLACEMENT OF TAREA)

HERE CONSTANT TAREA

0 VARIABLE TP

1 VARIABLE TPFLAG

VARIABLE OLDDP

Screen:

0

1

2

3

6

7

S

9

10

11

12

13

14

Scree* i: 37 Screen

0 (Xsients: TRANSIENT PERMANENT) 0

1 1

£L> . TRANSIENT (—) 2

3 TPFLAG 3 MOT 3

4 IF HERE OLDDP ! TP 9 DP ! 4

S 1 TPFLAG !

6 ENDIF ; 6

7 7

3 . PERMANENT « —) 8

9 TPFLAG 9 9

10 IF HERE TP ! OLDDP 9 DP i 10

11 8 TPFLAG ! 11

12 ENDIF ; 12

13 13

14 14

15 > 15

Screen % 38

0 (Transients: DISPOSE)

1 s DISPOSE PERMANENT

2 CR ." Disposing..." VOC-LINK
3 BEGIN DUP 0_53279 Cl
4 BEGIN 9 DUP TAREA U<

5 UNTIL DUP ROT i DUP 0=

a UNTIL DROP VOC-LINK 9

7 BEGIN DUP 4 -

8 BEGIN DUP 0 53279 C!

9 BEGIN PFA LFA 9 DUP TAREA U<

10 UNTIL

11 DUP ROT PFA LFA ! DUP 0=

12 UNTIL DROP 9 DUP 0=

13 UNTIL DROP [COMPILE! FORTH

14 DEFINITIONS ." Done" CR ;

15 PERMANENT BASE i

Screen:

0

1

4

5

6

7

8

9

10

11

1 d

13

14

39

40

41

Screens 42 Screen s 45

0 (Utilss CARRAY ARRAY) 0 (Utilss XC! X!

1 BASE 9 HEX 1

2 s CARRAY < cccc, n —) 2 : XC! < n0... nrn cnt addr —

3 CREATE SMUDGE < ccccs r» — a) 3' OVER 1- + >R 0

4 ALLOT 4 DO J I - Cf

5 ?CODE CA C, CA C, 18 C, 5 LOOP R> DROP ;
& A5 C, W C, 69 C, 02 C, 95 C, 6

7 00 C, 98 C, 65 C, W 1+ C, 7 s X ! < n0... nrn cnt addr —

8 95 C, 01 C, 4C C, 8 OVER 1- 2* +)R 0

9 ' + (CFA 9) , Cs 9 DO J I 2* - !

10 10 LOOP R> DROP }
11 s ARRAY (cccc, n —) 11

12 CREATE SMUDGE (cccc: r« — a) 12 < Cautions Remember limitation
13 2* ALLOT 13 (on stack size of 30 values
14 ?CODE 16 C, 00 C, 36 C, 01 C, 14 i because of OS conflict.)

15 4C C, » CARRAY 08 + , C; ==<> 15 —

en s 46

(Utilss CVECTOR VECTOR

n

)

Screens 43 Scrs

0 (Utilss CTABLE TABLE) 0

1 1

2 s CTABLE (cccc, —) 2
3 CREATE SMUDGE (cccc s n — a •) 3

4 sCODE 4

5 4C C, ' CARRAY 08 + , Cs 5
6 6

7 s TABLE « cccc, —) 7
8 CREATE SMUDGE (ccccs n — a) 8

9 sCODE 9

10 4C C, ' ARRAY 0A + , Cs 10
11 11

12 12

13 13

14 14

15 —> 15

s CVECTOR (cccc, cnt —)
CREATE SMUDGE (ccccs n — a)

HERE OVER ALLOT XCi

iCODE ^
4C C, ' CARRAY 08 + , C$ J

s VECTOR (cccc, cnt —)
CREATE SMUDGE « ccccs n — a)

HERE OVER 2* ALLOT X!

?CODE
4C C, ? ARRAY 0A + , C;

Screens 44 Screen s

0 < Utilss 2CARRAY 2ARRAY) 0

1 1

2 s 2CARRAY (cccc, n n — > 2

3 <BUILDS < ccccs n n — a) 3

4 SWAP DUP , * ALLOT 4

5 DOES) 5

& DUP >R 9 * + R> +2+ ? 6

7 7

8 i 2ARRAY < cccc, n n —) a

9 (BUILDS < ccccs n n — a) 9

10 SWAP DUP , * 2* ALLOT 10

11 DOES) 11

12 DUP)R 9 # + 2* R) + 2+ I 12

13 13

14 14

15 ==> 15

47

BASE «

^

Screen s 48 Sen

0 (Utilss HIDCHR NOKEY .CURSOR) 0

1 BASE 9 DCX 1

2 2

3 ' C CASE)(28 KLOAD > 3

4 4

5 s HIDCHR (—) 5

6 65535 94 ! ; 6

7 7

8 s NOKEY (—) 8

9 255 764 C! 5) 9

10 10

11 5 CURSOR (f —) 11

12 0= 752 C! 12

13 28 EMIT 29 EMIT ; 13

14 14

15 ==> 15

>ens 51

C Utilss Y/N -RETURN RETURN)

s Y/N < — f)

." <Y/N> " -Y/N DUP

IF 89 ELSE 78 ENDIF

EMIT SPACE i

s -RETURN < —)

BEGIN KEY 155 » UNTIL 3

s RETURN (—)

. " (RETURN) " -RETURN s.

BASE !

ere>eins 49 Screen: 52

0 (Utilss INKEY$) 0 (Screen code conversion 1rtords

1 DCX 1

2 : (INKEY$> < c —) 2 BASE 9 HEX

3 702 C! NOKEY ; 3

4 4 CODE)BSCD (a a n —

5 s INKEY* (— - c) 5 A9 C, 03 c, 20 c, SETUP •>

6 764 C© 6 HERE C4 C, C2 C, D0 C, 07 C,

7 COND 7 C6 C, C3 c, 10 c, 03 C, 4C C.

8 252 = << 128 (INKEY$) 0)) a NEXT , Bl c, C6 C, 48 C,

9 191) << 0)) 9 29 C, 7F c, C9 c, 60 C, B0 C,
10 188 = << 0)) 10 0D C, C9 c, 20 c, B0 C, 06 C,

11 124 = << 64 (INKEY*) 0)) 11 18 C, 69 c, 40 c, 4C C, HERE

12 60 = << 0 (INKEY$> 0 >) 12 2 ALLOT 38 c, E9 c, 20 C, HERE

13 39 = << 0)) 13 SWAP ! 91 c, C4 c, 68 C, 29 C,

14 NOCOND KEY 14

15 CONDEND 5 —) 15 ssss

Screen § 50

0 <: Utilss -Y/N

1

2 ;: -Y/N

3 BEGIN KEY

4 COND

5 89 = << 1 1))

6 78 = < < © 1))

7 NOCOND

8 0

9 CONDEND

10 UNTIL ;
11

12

13

14

15

< — f)

Screen s 53

0

1

2

< Screen code conversion itfords)

80 C, 11 C, C4 C, 91 C, C4 C,
3 C8 C, D0 c, D3 Cf E6 C, C7 C,
4

5

6

E6 C, C5 c, 4C c, * C;

CODE BSCD) < a a r. —)

7 A9 C, 03 c, 20 c, SETUP 5

8 HERE C4 c, C2 c, D0 C, 07 C,
g C6 C, C3 c, 10 c, 03 C, 4C C,
10 NEXT , Bl c, C6 C, 48 C,
11 29 C, 7F G, C9 c, 60 C, B0 C,
12 0D C, C9 c, 40 c, B0 C, 06 C,
13 18 C, 69 c, 20 c, 4C C, HERE

14 2 ALLOT 38 c, E9 c, 40 C, HERE

15 —>

:~5
Screen: 54 Screens 57

0 (Screen code conversion \
1

words) 0

1

2

(Case statements: CASE)

2 SWAP ! 91 C, C4 C, 68 C, 29 C, s CASEND

3 80 C, 11C, C4 C, 91 C, C4 c, 3 DUP 6 =

4 C8 C, D0 C, D3 C, E6 C, C7 c, 4 IF

5 E6 C, C5 C, 4C C, , 5 DROP COMPILE NOOP

6 6 ELSE

7 7 7 7PAIRS

8 s)SCD SP© DUP 1)BSCD ? 8 ENDIF

9 i SCD) SP© DUP 1 BSCD) j 9 HERE 2- 9 OVER 1+ !

10 10 HERE OVER -

11 11 5-2/ SWAP C! s IMMEDIATE

12 12

13 13 '< PERMANENT PERMANENT)()

14 14

15 BASE ! 15 —>

Screen s

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

55 Screen s 58

0 (Case statementss SEL

1

2 M PERMANENT PERMANENT)()

3 s (SEL)

4 R 1+ DUP 2+ DUP R C@

5 2* 2# + R) DROP DUP)R SWAP

6 DO I © 3 PICK =

7 IF I 2+ SWOP DROP LEAVE

8 ENDIF

9 4 /LOOP SWAP DROP ©EX ;
10

11 M TRANSIENT TRANSIENT)()

12 s SEL ?COMP

13 ?LOADING COMPILE (SEL) HERE

14 0 C9 COMPILE NOOP [COMPILE]
15 8 | IMMEDIATE

ere»en s 56 Screens 59

0 (Case Statements? CASE) 0 (Case statements: SEL

1 BASE 9 DCX 1

2 '(PERMANENT PERMANENT)() 2 s NOSEL

3 s (CASE) 3 8 ?PAIRS [COMPILE] ' CFA

4 R C@ MIN -1 MAX 2# 4 OVER 1+ ! 8 ; IMMEDIATE
5 R 3 + + ©EX 5

6 R C© 2* 5 + R) +)R | 6 s -)

7 '(TRANSIENT TRANSIENT)() 7 SWAP 8 7PAIRS , DUP C© 1+
8 s CASE 8 OVER C! CCOMPILE3 '

9 ?COMP COMPILE (CASE) 9 CFA , 8 ; IMMEDIATE
10 HERE 0 C, 10

11 COMPILE NOOP 6 s IMMEDIATE 11 § SELEND

12 12 8 7PAIRS

13 s NOCASE 13 DROP [COMPILE]] i IMMEDIATE
14 6 ?PAIRS 7 ? IMMEDIATE 14 9 (PERMANENT PERMANENT)()

15 ==) 15
in 1

~>

~>

Screen: 60

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(Case statements: COND)

' (TRANSIENT TRANSIENT) ()

s COND

0 COMPILE DUP ? IMMEDIATE

((

1+ [COMPILE] IF

COMPILE DROP s IMMEDIATE

))

[COMPILE]

DUP ROT j
ELSE COMPILE

IMMEDIATE

NOCOND

COMPILE 2DR0P ? IMMEDIATE
(PERMANENT PERMANENT)<) ==)

Screens 61

0 (Case statements?

1

COND)

2 ' (TRANSIENT TRANSIENT)C)

3

4 s CONDEND

5 0 DO

6 [COMPILE] ENDIF

7 LOOP ? IMMEDIATE
8

9 ' (PERMANENT PERMANENT) ()

10

11

12

13

14

15 —>

Screen s 62

0 (Case statements: CASE:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15 BASE

CASE:

(BUILDS

SMUDGE !CSP

[COMPILE]]

DOES)

. SWAP 2* + ©EX

Screen s

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

63

Screen s 64

0 (ValFORTH

1

BASE 9 DCX

Video editor VI.1)

£

3

4

5

6

7

8

9

10

11

12

13

14

15

< XC!)(21 KLOAD)

(HIDCHR)(£4 KLOAD)

C)BSCD)(26 KLOAD)

Screen s 65

11FORTH0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(V« Video editor VI. 1)

—)

Screen s 66 Screen: 69

0 (

1

2 VC

ValFORTH Video editor VI.1 :) 0

1

(ValFORTH Video editor VI. 1)^

3CABULARY EDITOR IMMEDIATE 2 s UPCUR (—)

3 EDITOR DEFINITIONS 3 CBLANK YLOC ©

4 4 1 - DUP 0(

5 0 VARIABLE XLOC (X coord. I> 5 IF DROP 15 ENDIF

6 0 VARIABLE YLOC (Y coord. !) 6 YLOC ! CSHOW ;
7 0 VARIABLE INSRT (insert on? 1> 7

8 0 VARIABLE LSTCHR (last key !i 8

9 0 VARIABLE 7BUFSM (buf same? Ii 9 s DNCUR (—)

10 0 VARIABLE 7PADSM (PAD same?]1 10 CBLANK YLOC 9

11 0 VARIABLE ?ESC (coded char?]» 11 1 + DUP 15)

12 0 VARIABLE TBLK (top block '» 12 IF DROP 0 ENDIF

13 13 YLOC ! CSHOW ;
14 14

15 mm) 15 —>

Screen s 67

0 (ValFORTH Video editor

1

Screens 70

VI. 1) 0 (ValFORTH Video editor

1

LFCUR

CBLANK XLOC 9

1 - DUP 0(

IF DROP 31 ENDIF

XLOC ! CSHOW 5

VI.1)

(—)2 0 VARIABLE LNFLG (oops flag) 2

3 4 ARRAY UPSTAT (update map) 3

4 15 CONSTANT 15 4

5 32 CONSTANT 32 5

6 128 CONSTANT 128 6

7 5 32 * CONSTANT BLEN 7

8 8

9 s LMOVE 32 CMOVE ; 9

10 S BOL 88 9 YLOC © 1+ 32 * + s 10

11 5 SBL 88 © 544 + s 11

12 ! PBL PAD 544 + 5 12

13 5 PBLL PBL BLEN + 32 - ; 13

14 s !SCR 88 9 32 + PAD 512 BSCD) ; 14

15 —) 15

(AT L-SIDE?)

(FIX IF SO)

Scree

0 (
i

n: 68

ValFORTH Vi deo editor VI.1)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

: CURLOC

BOL XLOC ©

(—

+ ; (SCR ADDR
)

)

s CSHOW

CURLOC DUP

C@ 128 OR

SWAP C! s

(—

(GET SCR ADDR

(INVERSE 'CHAR

< STORE ON SCR

)

>

)

)

: CBLANK

CURLOC DUP

C© 127 AND

SWAP C! ;

(—)

(GET SCR ADDR)

(STRIP MSB)

(STORE. IT)

==)

~)
(—)RTCUR

CBLANK XLOC ©

1+ DUP 31)

IF DROP 0 ENDIF

XLOC ! CSHOW :

(AT R-SIDE?)

(FIX IF SO >

EDMRK

1 YLOC 9 4 / UPSTAT

Screen s 71

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(ValFORTH Video editor VI. 1)

INTGL

INSRT

INSRT

9
i

0 =

5

NXTLN

CBLANK 0 XLOC !

CSHOW DNCUR ;

CLREOL

CBLANK !SCR

1 LNFLG ! CURLOC

32 XLOC 9 -

ERASE CSHOW

EDMRK I

(~

TOGGLE THE)

INSRT FLAG)

)

(— >•

(—)

CLEAR

TO END

OF LINE)

—>

>~>
)

Sereen s 72 Sereen s 75

0

1

2

(ValFORTH Video editor VI.1) 0

1

2

(ValFORTH Video editor VI. 1)

: HMCUR (—) s LNDEL (—)

3 CBLANK 0 XLOC ! 3 CBLANK 3 LNFLG ! !SCR

4 0 YLOC ! CSHOW ;i 4 4 YLOC © 4 /

5 5 DO 1 I UPSTAT ! LOOP

6 s BYTINS CBLANK (—) 6 YLOC 9 15 (

7 XLOC 6. 31 ((SPREAD LN) 7 IF BOL < FROM)

8 IF 8 DUP 32 + SWAP (TO)

9 CURLOC DUP 1+ (FROM, TO) 9 15 YLOC 9 - 32 * (# CH)

10 31 XLOC 9 - (# CHARS) 10 CMOVE

11 (CMOVE (MOVE IT) 11 ENDIF

12 ENDIF 12 BOL 15 YLOC 9 -

13 0 CURLOC C! (CLEAR OLD) 13 32 * + 32 ERASE

14 CSHOW EDMRK 5 (CHARACTER) 14 CSHOW EDMRK ;
15 ==> 15 — -)

Sereens 73 Screen s 76

1

2

(ValFORTH Video editor VI.1) 0

1

2

(ValFORTH Video editor VI. 1)

s BYTDEL (—) s BFSHW (—)

3 CBLANK (CLOSE LINE) 3 PBLL 128 - (F » T >
4 XLOC © 31 (4 SBL 160 CMOVE ; (# MOVE)

' 5 IF 5

6 CURLOC DUP (FROM ADDR) 6 s BFROT (—)

7 1+ SWAP (TO ADDR) 7 PBL DUP

8 31 XLOC 9 - (# CHARS) 8 BLEN + LMOVE

9 CMOVE (MOVE IT) 9 PBL DUP 32 +

10 ENDIF 10 SWAP BLEN 32 -

11 0 CURLOC (BLANK OUT) 11 CMOVE PBLL 32 +

12 31 XLOC 9 - + C« (CHAR AT) 12 PBLL LMOVE

13 CSHOW EDMRK s (END OF LN) 13 BFSHW 5
14 14

15 —-> 15 ==>

Screens 74 Screen § 77

0

1

2

(ValFORTH Video editor VI., 1) 0

1

2

(ValFORTH Video editor VI. 1)

: LNINS (--.«-) 0 (BFROT (—)

3 CBLANK 2 LNFLG ! !SCR 3 PBLL DUP

4 4 YLOC © 4 / 4 32 + LMOVE

5 DO 1 I UPSTAT ! LOOP 5 PBL DUP 32 +

6 YLOC 9 15 < 6 BLEN 32 - (CMOVE

7 IF 7 PBL DUP BLEN +

8 BOL DUP 32 + 8 SWAP LMOVE

9 15 YLOC © - 32 * 9 BFSHW ;
10 (CMOVE 10

r 11 ENDIF 11 s BFCLR (—)

12 BOL 32 ERASE 12 PBLL 32 ERASE

13 CSHOW EDMRK ; 13 (BFROT 1
14 14

15 ssss) 15 —)

Screen s 78

© < ValFORTH Video editor VI. 1)

1

2

3

4

5

6

7

8

9

10 : >BFLN BFCPY LNDEL 5
11

12 s BFLN)

13 LNINS PBLL

14 BOL LMOVE

15 CSHOW (BFROT ;

BFCPY

CBLANK BFROT

BOL PBLL

LMOVE BFSHW

CSHOW s

(—)

(BRING LN >

(DOWN TO)

(BUFFER &)

(ROTATE)

s)BFNXT BFCPY NXTLN ; (—)

(—)

(—)

(TAKE LINE)

< UP FROM)

(BUFFER) =sjs)

Screen s 79

0 (ValFORTH Video editor

1

BFRPL

CBLANK

!SCR 4 LNFLG !'

PBLL BOL LMOVE

(BFROT CSHOW

EDMRK 5

VI. 1)

< —)2

3

4

5

6

7

8

9

10

11

12

13

14

15

(TAKE LINE)

(UP TO SCR)

(& ROTATE)

TAB

CBLANK XLOC 9 DUP

31 m IF DROP -1 ENDIF

4 + 4 / 4 # DUP 30)

IF DROP 31 ENDIF

XLOC I CSHOW s

< —)

--)

Screen s 81

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

< ValFORTH Video editor

ARROW,

CBLANK

88 9 541

COND

3341 » ((

7453 = ((

NOCOND

30 3341

CONDEND

3 PICK !

SWAP 2+ C!

1 3 UPSTAT I

CSHOW 5

DUP 9

30

00

7453

0000

))

))

VI. 1 n
(—)

—)

Video editor VI.1)

•ere •en s 82

0 (ValFORTH

1

2 s OOPS

3 LNFLG 9

4 IF

5 CBLANK

6 PAD 88

7 CSHOW

8 0 LNFLG

9 ENDIF ;
10

11

12

13

14

15

(~)

9 32 + 512)BSCD
^

Screens 80 Screen s 83

0

1

2

(ValFORTH Video editor VI. 1) 0

1

2

(ValFORTH Video ed it or VI. 1)

s RUB (—) . SPLIT (—)

3 XLOC © 0= NOT (ON L -EDGE?) 3 YLOC © 15 ()

4 IF 4 IF

5 LFCUR « RUB IF NOT) 5 CBLANK

6 0 CURLOC C! 6 LNINS

7 CSHOW EDMRK 7 BOL DUP 32 + SWAP

B ENDIF 8 XLOC © CMOVE
9 INSRT © 9 BOL 32 +

10 IF 10 XLOC © ERASE

11 BYTDEL 11 CSHOW

12 ENDIF ; 12 ENDIF ;
13 13

14 14

15 *»> 15 —>

^

Screen s 84

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(ValFORTH Video editor

s SCRSV

88 9 32 + PAD 512 BSCD)

4 0

• DO

I UPSTAT 9

0 I UPSTAT i

IF

PAD 128 I * +

TBLK © I + BLOCK

128 CMOVE UPDATE

ENDIF

LOOP

0 INSRT !

0 XLOC ! 0 YLOC ! :

VI. 1)

< —)

Screens 85

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(ValFORTH Video editor VI.1)

s SCRGT (—)

4 0

DO

TBLK 9

I + BLOCK

PAD 128 I * +

128 CMOVE

LOOP

PAD 88 9 32 +

512)BSCD ;

—)

Screen s 86

@ (ValFORTH Video editor VI. 1)

1

2 s NWSCR (-1/0/1 —)

3 CBLANK DUP

4 IF SCRSV ENDIF 2* 2*

5 TBLK © + 0 MAX TBLK ! SCRGT
6 TBLK 9 8 /MOD

7 DUP (ROT SCR !

8 IF 44 ELSE' 53 ENDIF

9 ?1K NOT

10 IF

11 44 = SWAP 2# + DUP SCR ! 0
12 ENDIF

13 88 9 17 + C!

14 0 84 C! 11 85 ! 1 752 C!

15 .2 SPACES CSHOW ; «»>

Sen

0

1

2

3

4

5

6

7

8

9

1®

11

12

13

14

15

en s 87

< ValFORTH Video editor

s PRVSCR -1 NWSCR s

s NXTSCR 1 NWSCR ;

s SPLCHR 1 ?ESC ! ;

s EXIT

HMCUR 19 LSTCHR ! ;

s EDTABT

0 UPSTAT 8 ERASE

EXIT s

Screen s 88

0 (ValFORTH Video editor

VI. 1)

—)

—)

—)

—)

—)

-->

VI. 1)

1

2 s PTCHR (—)

3 INSRT 9 EDMRK

4 IF BYTINS ENDIF

5 LSTCHR 9 127 AND

6 DUP LSTCHR !

7)SCD CURLOC C!

8 RTCUR XLOC 9 %~

9 IF DNCUR ENDIF

10 0 ?ESC ! CSHOW |
11

12 s CONTROL (n —)

13 SEL 19 -) EXIT 17 -) EDTABT

14 28 -> UPCUR 29 -) DNCUR

15 ==)

ereens 89

0

1

2

(Va 1F0RTH «Video editor VI. 1)

30 -) LFCUR 31 -) RTCUR
3 126 -) RUB 127 -) TAB

4 9 •_> INT6L 155 -) NXTLN

5 255 -) BYTINS 254 -) BYTDEL
6 157 -) LNINS 156 -> LNDEL

7 18 -) BFROT 2 -) (BFROT
e 3 -) BFCLR 11 -))BFNXT

9 20 -))BFLN 6 -> BFLN)

10 16 -) PRVSCR 14 -) NXTSCR
11 27 -) SPLCHR 8 -) CLREOL
12 1 -) ARROW 21 -) BFRPL

13 15 -) OOPS 10 -) SPLIT
14 NOSEL PTCHR

15 SELEND. 5 —)

Screen s 9©

0 (ValFORTH Video editor VI.1)

1

2 s (V) (TBLK —)

3 DECIMAL

4 DUP BLOCK DROP TBLK !

5 1 PFLAG ! 0 GR0 1 752 C! CLS

6 1 559 C@ 252 AND OR 559 Cl

7 112 560 © 6 + C!

8 112 560 © 23 + C!

9 ." Screen #" 11 SPACES

10 ." #Bufss " BLEN 32 / . HIDCHR

11 0 UPSTAT 8 ERASE 0 NWSCR

12 PAD ?PADSM © OVER 7PADSM ! =

13 PBL 9 ?BUFSM 9 = AND NOT

14 IF PBL BLEN ERASE ENDIF

15 ==)

Screens 91

0 (ValFORTH Video editor VI.1)

1 BFSHW

2 BEGIN

3 INKEY$ DUP LSTCHR ! -DUP

4 IF

5 ?ESC 9

6 IF DROP PTCHR 0 LSTCHR !

7 ELSE CONTROL ENDIF

8 ELSE

9 INSRT 9

10 IF

11 CBLANK CSHOW

12 ENDIF

13 ENDIF

14 LSTCHR 9 19 =

15 UNTIL —)

Screen s 92

0 (ValFORTH Video editor VI.1)

1

2 CBLANK SCRSV 0 767 Cl

3 2 560 9 6 -*- C!

4 2 560 9 23 + C!

5 PBL © ?BUFSM !

6 2 559 C@ 252 AND OR 559 C!

7 0 LNFLG ! 0 752 C! CLS CR

8 ." Last edit on screen # "

9 SCR 9 . CR CR 0 INSRT ! ;
10

11 FORTH DEFINITIONS

12

13 : V (s —)

14 1 MAX B/SCR *

15 EDITOR (V) ? ==)

Screens 93 -,
0 (ValFORTH Video editor VI. 1)~
1

2 s L (—)

3 SCR © DUP 1+

4 B/SCR * SWAP B/SCR *

5 EDITOR TBLK © DUP (ROT

6 <- (ROT) AND

7 IF

8 EDITOR TBLK 9

9 ELSE

10 SCR 9 B/SCR #

11 ENDIF

12 EDITOR (V) s

13

14

15 —)

Screen: 94

0 (ValFORTH Video editor VI.1)

1

2 s CLEAR (s —)

3 B/SCR"* B/SCR 0+S

4 DO

FORTH I BLOCK ^
6 B/BUF BLANKS UPDATE

7 LOOP 5
8

9 : COPY (si s2 —)

10 B/SCR * OFFSET 9 +

11 SWAP B/SCR # B/SCR O+S

12 DO DUP FORTH I

13 BLOCK 2- !

14 1+ UPDATE

15 LOOP DROP (FLUSH) $ ==>

v

Screen s 95

0 (ValFORTH Video editor VI.1)

1

2 : CLEARS (s # ~)

3 OVER)R Q+S

4 2DUP CR

5 ." Clear from SCR " . CR

6 ." thru SCR " 1 - . Y/N

7 IF

8 DO

9 FORTH I CLEAR

1© LOOP

11 ELSE

12 2DR0P

13 ENDIF

14 R) SCR ! FLUSH ?
15 —)

^

Screen s 96

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(ValFORTH Video editor VI. 1)

s WHERE EDITOR

OVER OVER

DUP 65532 AND

SWAP OVER'- 128

ROT + 32 /MOD

YLOC C!

2- 0 MAX XLOC C!

1 INSRT !

EDITOR (V) s

s #BUFS

(n n)

(# —)

5 MAX 320 MIN 32 * EDITOR

' BLEN ! 0 ?PADSM §

Screen s

0

1

2

3

4

5

6

7

8

9

1®

11

12

13

14

15

Sere»eins 97 Screen s

0 (ValFORTH Video editor VI.1) 0

1 1

2 s (LOC) (sys) 2

3 BLK 9., IN 9 C, | 3

4 4

5 s LOCATOR (f —) 5

6 IF 6

7 [' (LOC) CFA] LITERAL 7

8 ELSE 8

9 C ' NOOP CFA 3 LITERAL 9

10 ENDIF 10

11 ' CREATE 1 ? 11

12 12

13 13

14 14

15 —.> 15

Screen s 98 Screen s

0 (ValFORTH Video editor VI. 1) 0

1 1

2 ss LOCATE 2

3 [COMPILE] » DUP NFA 1- DUP 3

4 2- © DUP 1439 U(SWAP 0# AND 4

5 IF 5

6 SWAP DROP DUP C@ 6

7 SWAP 2- © WHERE 2DR0P 7

8 ELSE 8

9 CR . " Cannot locate" 9

10 ' (DCMPR DROP DCMPR 10

11)< 2DR0P CR) 11
12 ENDIF s 12
13 13

14 14

15 BASE ! 15

99

100

101

Screen s

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Screen:

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Screen:

0

1

2

3

4

5

6

7

a

9

10

11

12

13

14

15

102

103

104

Screen s

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

105

Screens 106

0

1

2

3

4

< Hi-resolution text printing

BASE 9 DCX

' <)SCD > (26 KLOAD >

5

6

7

? (COND)(28 KLOAD)

57344 VARIABLE 6CBAS

8 0 VARIABLE GCPTR

9 2 VARIABLE GCLFT

10 39 VARIABLE GCRGT

11 0 VARIABLE GMOD

12 0 VARIABLE GCCOL

13 0 VARIABLE GCROW
14 120 VARIABLE VMI#

' 15

Screens 107

0 (Hi-res

1

2 s GCR

3 1 GCROW © + DUP 20

4 703 C© MAX (

5 IF GCROW !

6 ELSE

7 DROP 88 9 320 O+S

8 703 C© 4 =

9 IF 6400 ELSE 7680 ENDIF 2DUP

10 + 320 - >R CMOVE ^^
11 R> 32® ERASE ^}
12 ENDIF

13 GCROW © 320 *

14 GCLFT © DUP GCCOL !

15

GCR

^

D

)

(—)

GCPTR I —)

Screens 108 Screens 111
0

1

2

(Hi-ress [GCEMIT]) 0

1

2

(Hi-ress GCEMIT GCTYPE

s (GCEMIT) (c —) 8 GCEMIT (chr
3)SCD 8 * GCBAS © + 3 DUP

4 GCPTR 9 88 © + 320 Q+S 4 COND

5 DO 5 28 = ((DROP SUPER))
6 DUP C© GMOD C@ 6 29 = ((DROP SUB))
7 IF I C© OR ENDIF 7 30 = ((DROP ©CBKS))
8 I C! 1 + 8 NOCOND (GCEMIT)
9 40 /LOOP 9 CONDEND ;
10 DROP 1 GCPTR +! 10

11 1 GCCOL © + DUP 6CR6T 9) 11 s GCTYPE (adr count
12 IF DROP GCR 12 0 MAX -DUP

13 ELSE GCCOL ! 13 IF O+S DO I C@ GCEMIT LOO
14 ENDIF ; 14 ELSE DROP
15 ==> 15 ENDIF ;

—)

—)

-->

Screens 109 Screei'is 112

0

1

2

(Hi-ress GCBKS 1DSTRIKE GCINIT) 0

1

2

(Hi-ress [GC"3 GC"

GCBKS (—) s (GC">

3 GCCOL © GCLFT 9) 3 R COUNT DUP 1+ R) +)R

4 IF 4 GCTYPE j
5 -1 GCCOL +! (backspace) 5

6 -1 GCPTR +! 6

7 ENDIF ? 7 s GC"

8 8 34 STATE 9

9 s OSTRIKE (f —) 9 IF

10 GMOD ! ? (overstrike) 10 COMPILE (GC") WORD

11 11 HERE C@ 1+ ALLOT

12 s GCINIT (—) 12 ELSE

13 0 GCROW 1 GCLFT 9 DUP 13 WORD HERE COUNT GCTYPE

14 GCCOL 1 GCPTR ! ? 14 ENDIF s IMMEDIATE

15 —> 15

(—)

Screens 110

0 (Hi-res: GCPOS SUPER SUB

1

2 s GCPOS (col row

3 2DUP 320 * + GCPTR !

4 GCROW ! GCCOL ! s

5

6 s SUPER (

7 VMI# © MINUS GCPTR +'! ;
8

9 s SUB (

10 VMI# 9 GCPTR +! ;
11

12

13

14

15

Screen s 113

) 0

1

2

(Hi-ress GCSPACE[S] BCD.R)

) s GCSPACE (—)

3 BL GCEMIT 5
4

5 s GCSPACES (n —)

) 6

7

8

0 MAX -DUP

IF 0

DO GCSPACE

) 9

10

11

LOOP

ENDIF 5

12 s BCD. R (d n —)

13 >R SWAP OVER DABS

14 (# #S SIGN #) R) OVER -

) 15 GCSPACES GCTYPE s —)

Screen s 117ere•eiris 114 Scr<

0 (Hi-ress GCR GC. GCLEN) 0

1 1

2 89 GCR (n n —) 2

3)R S-)D R) GCD. R j 3

4 4

5 a GC (• n —) 5

6 0 GC R GCSPACE ? 6

7 7

8 m 6CLEN (adr cnt — #chrs) 8

9 0 (ROT 0+S 9

10 DO I C@ 28 - 10

11 CASE 0 0 0 11

12 NOCASE 1 12

13 CASEND + 13

14 LOOP s 14

15 ==> 15

Screens 115

0 (Hi-res:

1

2 s VMI

40 * VMI# I

VMI GC %

(n —)

4

6

7

a

9

10

11

12

13

14

15 GCINIT

GC$.

COUNT GCTYPE ;
(adr

GCLS

88 ©

703 C© 4 =

IF 6400 ELSE 7680 ENDIF

ERASE

GCRGT © 0 GCPOS s

(—)

BASE !

Screens 116

0

1

2

3

4

5

6

7

a

9

10

11

12

13

14

15

Screen s

0

1

2

- 3

4

5

6

7

a

9

10

11

12

13

14

15

Screen s

0

1

4

5

6

7

8

9

10

11

12

13

14

118

119

^^^L

**>

~>

Screens 120

0 (Doubles DVAR DCON D- D)R DR))
1 BASE 9 DCX

3 s DVARIABLE

4 VARIABLE , s
5

6 : DCONSTANT

7 (BUILDS , ,
8 DOES) D© ;
9

10 0. DCONSTANT 0.

11

12 s D-

13 DMINUS D+ s

14

15

(cccc — adr)

(cccc — d)

1. DCONSTANT 1.

(d d — d)

ssss)

Sere

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

ens 123

(Doubles D)R DR) D, M+)

s D) R (d —)
R) (ROT SWAP)R)R)R ;

s DR) (— d)

R) R) R) SWAP ROT)R s

s D,

» » ?

s M+

S-)D D+ ;

crs>eir. s 121 Screein: 124

0 (Doubles D0= D= D0(D< D) •> 0 (Doubles

1 1

2 ; D0= (d — f) 2 s DU<

3 OR 0= ; 3 DUP 4 PI

4 4 IF

5 a D= (d d — f) 5 2DR0P

6 D- D0= ; 6 ELSE

7 7 D- D0(

8 as D0(< d — f) 8 ENDIF |
9 SWAP DROP 0(; 9

10 10

11 Z D< (d d — f) 11

12 D- D0(§ 12

13 13

14 n
S3 D) < d d — f) 14

15 2SWAP D< ; — -) 15

DU(

ere>en s 122

0 (Doubles DMIN

1

2 s DMIN

3 20VER 20VER D)

4 IF

5 2SWAP

6 ENDIF

7 2DR0P ;
8

9 s DMAX

10 20VER 20VER D(

11 IF

12 2SWAP

13 ENDIF

14 2DR0P ;
15

DMAX

< d d —

)

d)

(d d — d)

Screen s

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1SJ

XOR 0(

D0(NOT

(d —)

(d n — d)

—>

BASE

Screens 126

3

4

5

6

7

8

9

10

11

12

13

14

Screens 127

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Screen

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

128

Screens 129

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Screen s 130

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Screen s 131

0

1

6

7

8

9

10

11

12

13

14

15

1

/^^^

^

Screen s

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Screen s

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

132

133

Screens 134

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(Utilss Initialization

BASE © DCX

' (XC! > < 21 KLOAD)

'(HIDCHR)(24 KLOAD)

'()BSCD)(26 KLOAD)

Screen s 135

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(Utilss

—)

creens 136

0 (Utilss XR/W)

1

2 : XR/W (#secs a blk# f —)

3 4 PICK 0

4 DO

5 3 PICK 1 B/BUF * +

6 3 PICK I + 3 PICK R/W

7 LOOP

8 2DR0P 2DR0P 5
9

10

11

12

13

14

15 ==>

Screen: 137

0 (Utilss

1

SMOVE)

2 s SMOVE

3 FLUSH MTB

4 741 9 PAD DUP 1 AND 2DUP

5 SWAP B/SCR * B/BUF * U(

6 IF CR ." Too many: "
7 B/BUF B/SCR * / U.

8 ." max." DROP 2DR0P

9 ELSE DROP

10)R DCX MTB CR

11 ." SMOVE from " OVER DUP 3 . R

12 ." thru " R + 1- 3 . R CR

13 8 SPACES

14 ." to " DUP DUP 3 . R

15 ." thru " R + 1- 3 .R -->

(org des cnt —)

Screen: 138

0 (Utilss

1

SMOVE)

2 SPACE Y/N

3 IF

4 CR ." Insert source" RETURN

5 R B/SCR * PAD DUP 1 AND -

6 4 ROLL B/SCR * OFFSET © +

7 1 XR/W

8 CR ." Insert dest." RETURN

9 R) B/SCR * PAD DUP 1 AND -

10 ROT B/SCR # OFFSET 9 +

11 0 XR/W

12 ELSE R) DROP 2DR0P

13 CR ." Srnove aborted..." CR

14 ENDIF

15 ENDIF s)

Screen s 139

0 < Utilss LOADS

1

2

3 M
tt LOADS

4 0+S

5 DO

6 I LOAD ?EXIT

7 LOOP ;
8

9

10 5 THRU

11 OVER - 1+ ;
12

13

14

15

THRU

(n cnt —)

(n n — n cnt)

—)

Screen s 140

0 (Utilss SE

1

2 at SEC

3 0 DO

4 9300 0

5 DO

6 LOOP

7 LOOP s

8

9 s MSEC

10 0 DO

11 6 0

12 DO

13 LOOP NOOP

14 LOOP ;
15

MSEC

(n —)

(r. ™)

Screens 141

0 (Utils:

1

HEX

H-)L L-)H H/L O
2

3

4

5

6

7

8 CODE L-)H

CODE H-)L

B5 C,
94 C,

(n —

00 C,
NEXT ,

(n —

01 C,
NEXT , C;

n)

01

01

C,

C,
95 C,
4C C, C5

n)

9

10

11

12 CODE H/L

13

14

15 DCX

B5 C,
94 C,

00 C,
00 C,

95 C,
4C C,

B5 C,
4C C,

(n — n n)

00 C, 94 C, 00 C,
PUSH0A , Cs

—>

Screens 142

(Utilss BIT ?BIT TBIT

HEX

CODE BIT

B4 C, 00 C,
95 C,
36 C,
88 C,

C?
s ?BIT BIT AND 0#

00 C,
00 C,
D0 C,

C8 C,
95 C,
36 C,
F8 C,

(b — n

A9 C, 00 C,
01 C,
01 C,
4C C,

38 C,
18 C,
NEXT ^

0

1

2

3

4

5

6

7

6

9

10

11

12

13

14

15

. < r, b __ f >

TBIT BIT XOR ;

SBIT BIT OR ;

(n b — n)

(n b — n)

s RBIT (n b — n

FFFF SWAP TBIT AND s

Screen: :143

0 (Utilss STICK)

1 HEX

2

3

4

5

6

HERE DUP 2DUP 0 , i s - 1 , 0 ,

CODE STICK (n - - h v)

B4 C, 00 C, B9 C, 78 C, 02 c,
7 48 C, CA C, CA C, 29 C, 03 C,
8 0A c, A8 c, B9 C, i 95 c,
9 02 C, C8 c, B9 C, i 95 c,
10 03 c, 68 c, 4A C, 4A C, 29 c,
11 03 c, ©A c, AS C, B9 C, f

12 95 c, 00 c, €8 C, B9 C,
9

13 95 c, 01 c, 4C C, ' SWAP ,
14

15 CURRENT © CONTEXT ! — >

~)

n)

Screen s 144

0 (Utilss STRIG PADDLE

1 HEX

2

3

4 CODE PADDLE (n —

5 B4 C, ©0 C, B9 C, 270 ,
6 4C C, PUT0A , C?
7

8 CODE STRIG (n —

9 B4 C, 00 C, B9 C, 284 ,
10 49 C, 01 C, 4C C, PUT0A ,
11

12 CODE PTRIG (n —

13 B4 C, 00 C, B9 C, 27C ,
14 49 C, 01 C, 4C C, PUT0A ,
15

— f)

Cs

C;

Screen s 145

0 (Utilss ATRACT NXTATR)

1

2 DCX

3

4 s ATTRACT (f —)

5 IF 255 ELSE 0 ENDIF 77 C! ;
6

7 s NXTATR

8 255 20 C! 5 (—)
9 (Changes user clock)
10

11 s HLDATR

12 0 20 C! ; (—)
13 (Changes user clock)
14

15 —)

Screen: 146

0 (Utilss 16TIInE

1 HEX

2

3 CODE 16TIME

4 CA C, CA C,
5 A5 C, 13 C, 95 C, 01 c,
6 A3 C, 14 C, 95 c, 00 c,
7 D0 C, 04 C,
8 A5 C, 13 C, 95 c, 01 c,
9 4C C, NEXT , Cs

10

11

12

13

14

15

Screen s :L47

0 (Utilss 8RND

1 HEX

2

3 CODE 8RND

4 AD C, D20A ,
5 4C C, PUSH0A
6 Cs

7

8 CODE 16RND

9 AD C, D20A ,
10 68 C, 48 C, I
11 4C C, PUSH ,
12

13 s CHOOSE

14 16RND U* SWA

15

16RND CHOOSE)

(— b)

48 C,
AD C,

C;

(— n)

68 C, 48 C,
D20A ,

Screens 148

0 (Utils: CSHUFL SHU

1 DCX

2 : CSHUFL

3 1- 0 SWAP

4 DO

5 DUP I CHOOSE + OV

8 2DUP C@ SWAP C©

7 ROT C! SWAP Ci

8 -1 +LOOP DROP 5
9

1© : SHUFL

11 1- 0 SWAP

12 DO DUP I CHOOSE 2*

13 OVER I 2# +

14 2DUP 9 SWAP © ROT

15 -1 +LOOP DROP s

Screen s 149

0 (Utilss H. A.

1

2 : A.

3 C© 127 AND

4 DUP 32 (OVER

5 124) OR

6 IF DROP 46 ENDIF

7 SPEMIT ;
8

9 » < H. —> > ()

10

11 5 H.

12 BASE © HEX SWAP

13 0 (####) TYPE

14 BASE ! :

15

(n — n)

—)

n —)

I +

(a r, ~~)

SWAP

(a —)

(d —)

—)

Screens 150

0 (Utilss

DCX

DUMP

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

DUMP (a n —)

0+S

DO

CR I H-)L H. I H.

2 SPACES I 8 O+S 2DUP

DO

I C© H. SPACE

LOOP CR 7 SPACES

DO

I A. 2 SPACES

LOOP ?EXIT

8 /LOOP

CR : ==)

Screens 153

0

1

2

3

4

5

6

7

a

9

10

11

12

13

14

Screen s 151 Scr

0 (Utils: BLKOP — system > 0

1 HEX 1

2 2

3 CODE BLKOP (adr cnt byte — -) 3

4 A9 C, 03 C, 20 C, SETUP ? 4

5 HERE C4 C, C4 C, D0 c, 5

6 07 C, C6 C, C5 C, 10 C, 03 c, 6

7 4C C, NEXT , Bl C, C6 c, 7

6 A5 C, C2 C, 91 C, C6 C, ca c, 8

9 D0 C, EC C, E6 C, C7 C, 4C •*** ? 9

10 , DCX 10

11 C; 11

12 12

13 13

14 14

15 __> 15

Screen s :152

0 (Ut:Lis: BXOR

1 HEX

2 CODE BXOR (adr cnt byte -
3 A9 L| HrvJ L*|

4 8D C, ' BLKOP 12 + .
5 4C C, ' BLKOP , c?
6

7 CODE BAND (adr cnt byte —
8 A9 L*l &»oiJ L«tp

9 8D C, ' BLKOP 12 + ,
10 4C C, 5 BLKOP , C|
11

12 CODE BOR (adr cnt byte —
13 A9 C, 05 C,
14 8D C, ' BLKOP 12 + ,
15 4C C, ' BLKOP , Cf BASE !

Screen:

0

1

CL

3

4

5

6

7

8

9

10

11

12

13

14

.15

155

^

^

^

$CON *VAR ["])

(

SWAP OVER

-2 ALLOT

RE C@ 1+ ALLOT

ere*en s 156 Screens 159

0 (Strings: -TEXT) 0 (Strings:
1 BASE © DCX 1

2 s -TEXT (a u a —) 2 : ^CONSTANT
3 2DUP + SWAP 3 PAD 512 +

4 DO 4 0 VARIABLE

5 DROP 1+ 5 HERE $! HE

6 DUP 1- C@ 6

7 I C© - DUP 7 s ^VARIABLE

8 IF 8 0 VARIABLE

9 DUP ABS 9 1- ALLOT ;
10 / LEAVE 10

11 ENDIF 11 s (")

12 LOOP 12 R DUP C@ 1

13 SWAP DROP DUP 13

14 IF 1 SWAP +- ENDIF ; 14

15 ==) 15

$ cec

$!

—)

Screens 157

(Strings -NUMBER

2 0 VARIABLE NFLG

-NUMBER (addr — d)

BEGIN DUP C@ BL = DUP + NOT

UNTIL 0 NFLG ! 0 0 ROT DUP 1+

C@ 45 m DUP)R + -1

BEGIN DPL ? (NUMBER) DUP C©

DUP BL () SWAP 0# AND

WHILE DUP C@ 46 - NFLG !

0 REPEAT DROP R) IF DMINUS

ENDIF NFLG ©

IF 2DR0P 0 0 ENDIF

NFLG © NOT NFLG I ;
—>

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Screens 158

0 (Strings: UMOVE ,
1

2

3 FORTH DEFINITIONS

4

5 s UMOVE

6 (ROT OVER OVER U<

7 .IF

8 ROT (CMOVE

9 ELSE

10 ROT CMOVE

11 ENDIF |
12

13 s $!

14 OVER C@ 1+ UMOVE s

15

*!

(a a n —)

(len ccc —)

(— $)

R) +)R i

—)

cresm s 160

0

1

2 :

(Strings: "

! "

3 34 (Ascii quote)
4 STATE ©

5 IF

6 COMPILE (") WORD

7 HERE C@ 1+ ALLOT

8 ELSE

9 WORD HERE (

10 PAD *! PAD

11 ENDIF :

12

13 IMMEDIATE

14

15

(cccc" —)

Screen: 161

0

1

2

(Strings: *. ,

s .*.

3 DUP C© 0)

4 IF

5 COUNT TYPE

6 ELSE

7 DROP

8 ENDIF 3
9

10

11 s *XCHG

12 DUP PAD 256 +

13 OVER SWAP *!

14 PAD 256 + SWAP

15

(cccc" — $)

*XCHG

($ —

($1 *2 —)

♦ ! ;
—>

Screens 162 Screens 165

) 0

1

(Strings: *(,

*) 2 : *(

3 ^COMPARE 0(i
4

5 s *=

6 *COMPARE 0= ;
7

8 s *)

9 ^COMPARE 0) ;
10

*) 11 E3
m SAVE*

12 PAD 512 + SWAP

13 OVER *! ;
14

==> 15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(Stringss *+ , LEFT*

*+

SWAP PAD 256 +

)R R *!

DUP C© SWAP 1+

R C© 1+ R +

3 PICK UMOVE

R C@ + 255 MIN

R C! R) PAD *!

(*1 $2 —

PAD s

LEFT* < * N —

SWAP PAD (ROT PAD *!

OVER C© MIN

OVER C! ?

Screens 163

(Strings: RIGHT* , MID*

RIGHT*

SWAP PAD (ROT PAD

OVER (ROT OVER C©

DUP 4 PICK +

(ROT MIN DUP

(ROT 1

SWAP ROT OVER OVER

C! 1+ SWAP CMOVE ;

(*

*!

n —

)

*)

SV*) o
< *1 *2 — f)

($1 *2 — f)

(*1 *2 — f)

($ — $)

—)

0

i

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Screen s 166

0 (Stringss INSTR)
1

2 0 VARIABLE INCNT

3

4 s INSTR (*1 *2 — n)

5 0 INCNT ! 1+ SWAP DUP

6)R OVER 1- C@)R 1+

7 DUP 1- C@ R - 1+ 0 MAX

8 OVER + SWAP R) (ROT

9 DO

10 2DUP I -TEXT 0=

11 IF

12 I J - INCNT ! LEAVE

13 ENDIF

14 LOOP

15 2DR0P R) DROP INCNT © s

~)

MID* (* start

3 PICK C© 1+ ROT -

0 MAX ROT SWAP

RIGHT* SWAP OVER

C© MIN OVER C! ;

len — *)

—)

Screen s 164

0

1

2

3

4

5

6

7

a

9

10

11

12

13

14

15

(Strings: LEN , ASC , *COMP)

LEN

C© ",

ASC

1+ C@

(* — length)

5

*COMPARE

2DUP C@ SWAP C©

2DUP MIN (ROT -

ROT 1+ (ROT SWAP

-TEXT -DUP 0=

IF R) DUP IF 1 SWAP +- ENDIF

ELSE R) DROP ENDIF :

(* — c •)

(*1

SWAP

)R

1+

*2 — f)

erg»ein: 167

0 (Strings: CHR* ,
1

2 s CHR*

3 1 PAD C!

4 PAD 1+ C!

5 PAD ;
6

7 s DVAL

8 PAD *! PAD

9 DUP C@ OVER 1+ +

10 0 SWAP C!

11 -NUMBER i
12

13 s VAL

14 DVAL DROP ;
15

DVAL VAL)

(c — *)

(* — d)

^
(* — n)

—>

Screens 168 Screen s

0 (Strings: DSTR* , STR[ING3*) 0

1 1

2 s DSTR* (d — *) 2

3 DUP (ROT DABS 3

4 (# #S SIGN #) 4

5 SWAP 1- DUP 5

6 (ROT C! PAD *! PAD ; 6

7 7

8 : STR* (d — *) 8

9 S-)D DSTR* ? 9

10 10

11 s STRING* (n * — * > 11

12 1+ C© OVER 12

13 PAD C! PAD 13

14 1+ (ROT FILL PAD ; 14

15 ~—) 15

Screen s 169

0 (Stringss *-TB , #IN* , IN*)
1

2

3

4

5

6

7

8

9

10

11

12

13 s IN* (— *)

14 0 #IN* s

15 BASE !

*-TB

DUP DUP 1+ SWAP C@

-TRAILING SWAP DROP

OVER C! s

(* — *)

#IN*

-DUP 0= IF 255 ENDIF

PAD 1+ SWAP EXPECT PAD

BEGIN 1+ DUP C© 0= UNTIL

PAD 1+ - PAD C! PAD s

Screen s 170

0 CONTENTS

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

OF THIS DISKs

(n — *)

TRANSIENTS: 36 LOAD

ARRAYS & THEIR COUSINSs 42 LOAD

KEYSTROKE WORDSs 48 LOAD

SCREEN CODE CONVERSIONS 52 LOAD

CASE STATEMENTS: 56 LOAD

valFORTH EDITOR 1.1s 64 LOAD

HIGH-RES TEXTs 106 LOAD

DOUBLE NUMBER XTNSIONSs 120 LOAD
MISCELLANEOUS UTILSs 134 LOAD

STRING WORDS: 156 LOAD

Screen s

0

1

2

3

4

5

6

7

a

9

10

11

12

13

14

15

Screen;

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

171

172

173

Screens 174

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Screen: i75

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Screen: 176

0 (Error messages
1

2 Stack empty
3

4 Dictionary full
5

6 Wrong addressing mods
7

8 Is not unique
9

10 Value error

11

12 Disk address error

13

14 Stack full

15

Scrs

0

1

2

3

4

5

6

7

3

9

10

11

12

13

14

15

>en: 177

Disk Error!

Dictionary too big

Screens 178

0 (Error messages
1

2 Use only in Definitions
3

4 Execution only
5

6 Conditiona1s not paired

7

8 Definition not finished

9

10 In protected dictionary
11

12 Use only when loading
13

14 Off current screen

15

Screen: 179

0 Declare VOCABULARY

1

2

3

4

5 .

6

7

8

9

10

11

12

13

14

15

^

~>

^

• —'VALPAITT

INTERNATIONAL
3BO! E. 3a™ STREET
TUCSON* ARIZONA 35*713
soa-Tso-Tiai

valFORTH
T.M.

SOFTWARE SYSTEM
for ATARI*

wjem*®m»& ii<ifwaea

p

Software and Documentation

©Copyright 1982
*Atari isa trademark ofAtari, Inc., a division ofWarner Communications. Valpar International

valFORTH
SOFTWARE SYSTEM

Stephen Maguire

Software and Documentation

©Copyright 1982
Valpar international

Purchasers of this software and documentation package are
authorized only to make backup or archival copies of the
software, and only for personal use. Copying the accompanying
documentation is prohibited.

Copies of software for distribution may be made only as speci
fied in the accompanying documentation.

f

valFORTH

Version 1.0
April 1982

The following is a description of commands used in creating seemingly
difficult video displays using players and missiles. Used alone or in combina
tion with the other available systems by Valpar International, it is possible to
obtain graphic displays which compare with those of the best arcade games. The
use of players and missiles (also called np1ayer/missilesn) allows the beginner
to create high quality moving video displays*

Software and Documentation
©Copyright 1982

Valpar international

VALPAR INTERNATIONAL

Disclaimer of Warranty
on Computer Programs

All Valpar International computer programs are distributed
on an uas is58 basis without warranty of any kind. The total
risk as to the quality and performance of such programs is with
the purchaser. Should the programs prove defective following
their purchase* the purchaser and not the manufacturer* distributors
or retailer assumes the entire cost of all necessary servicing-or
repair,

Valpar International shall have no liability or responsibility
to a purchaser, customer* or any other person or entity with
respect to any liability, loss, or damage caused directly or
indirectly by computer programs sold by Valpar International.
This disclaimer includes but is not limited to any interruption
of service, loss of business or anticipatory profits or conse
quential damages resulting from the use or operation of such
computer programs.

Defective media (diskettes) will be replaced if diskette(s)
is returned to Valpar International within 30 days of date of sale
to user.

Defective media (diskettes) which is returned after the 30 day
sale date will be replaced upon the receipt by Valpar of a $12,00
Replacement Fee.

f

r

PLAYER/MISSILE GRAPHICS PACKAGE

XXI. PLAYER/MISSILE GRAPHICS

a) STROLLING THROUGH PLAYER/MISSILE GRAPHICS 1
b) PLAYER/MISSILE GLOSSARY

1) ENABLING PLAYER/MISSILE GRAPHICS . 6
2) CREATING PLAYERS AND MISSILES 10
3) MOVING/PLACING PLAYERS AND MISSILES . . 12
4) SETTING PLAYER/MISSILE BOUNDARIES 14
5) COLLISIONS BETWEEN PLAYERS AND MISSILES 16

XXII. CHARACTER EDITOR

User's manual for the character set editor.

XXIII. SOUND EDITOR
Description of the audio-palette sound editor.

XXIV. PLAYER/MISSILE SUPPLIED SOURCE

As knowledge of the internal workings of player/missile graphics is not
necessary to use this valFORTH package effectively, the internal workings are
not explained in this manual. However, for the serious programmer trying to
optimize his/her program in every way* an understanding of these internal
workings could at times improve code efficiency and/or speed of execution.
For a complete explanation of player/missile graphics at the nut-and-bolt level,
see the series of articles by Dave and Sandy Small in Creative Computing-

Player Missile Graphics LO

STROLLING THROUGH PLAYER/MISSILE GRAPHICS

One of the biggest differences between the Atari graphic capabilities and
those of most other computers is the Atari's ability to use players and missiles.
This discussion will not explain the internal workings of player/missile graphics
on the Atari; rather9 it will explain how to use the basic commands in this
valFORTH package* Before we proceed, please load the player/missile graphic
routines from the Player/Missile disk* The directory on screen 170 will show
what screen to load. Also, if you halve the valFORTH Editor/Utilities package,
load in the high speed STICK command!found in the Miscellaneous Utilities;
otherwise, load in the slower versiori on your Player/Missile disk. (Check the
directory for its location).

To start with, let§s get a simple player up on the screen to experiment with.
First we must initialize the player/missile graphic system and design the player's
image. This is simple:

i PMINIT

2 BASE S

LABEL CROSS

00011000 C5
00011000 C,
00011000 C5
11111111 C,

11111111 C,
00011000 c,
00011000 c,
00011000 c,

DECIMAL

PMCLR

ON PLAYERS '

CROSS 8 180 5(

{ Initialize for single
resolution players)

(Change to binary for ease)

(Give the player image a name)

(A large plus sign)

(Now back into base. 10)

(Clear player/missile memory)

(Turn on the players)

0 BLDPLY (Build a player)

You should now see the cross in the upper right-hand corner of the video screen.
Now let's take a look at this and see how it works.

First, players are initialized using the PMINIT command. Players can be in
either a single or double resolution mode (double res players are twice as tall),
"1 PMINIT" is used for single res players. If we had wanted double res players9
we would have used "2 PMINIT".

images as l's and 0"s5
the image

Next, the player image is created. Since it is much easier to make player
we use binary (base two) number entry. Before we design

it must be given a name* The LABEL command does this nicely for us.

XXI-1

Player Missile Graphics LO

This image is named CROSS* All that need be done now is to draw the picture.
Notice how easy it is to see the image when using base two. Of course, we could
have stayed in base 10 and still designed the image, but this is usually more
difficult. The word 0, after each number simply tells FORTH to store that number
in the dictionary. Once the picture is designed* we return to decimal for ease.

Both the PMCLR and ON PLAYERS commands are fairly self-descriptive: PMCLR
erases all players and missiles so that no random trash appears when the PLAYERS
are turned ON. Next, the BLDPLY (build player) command takes the image named
CROSS which is 8 bytes tall and assigns it to player 0 at horizontal location 180
and vertical location 50 on the display. Of course, we could have built player
1, 2, or 3 instead*

The cross should be black. Suppose we wanted a blue or green cross instead.
This can be done using the PMCOL (player/missile color) command. Try this:

0 9 8 PMCOL (player hue lum PMCOL)

The cross should now appear blue. This command assigns a BLUE (9) hue with a
luminance of 8 to player 0, If-the color commands are loaded from the valFORTH
disk,

0 BLUE 8 PMCOL

could have been used with the same results. Try changing the color of the player
to GREEN (12) or'PINK (4)- Note that the default colors for players 2 and 3 make
them invisible: Their colors should be set immediately upon being built.

Now that we have a player on the screen, let's move it around. We use the
PLYMV (player move) command for this. PLYMV needs to know which player to move
(there could be as many as five), how far to move it in the horizontal direction,
and how far to move it in the vertical direction. Try this:

1 1 0 PLYMV (horz vert player PLYMV)

This moves player 0 down 1 line and right one horizontal position, thus giving the
effect of a diagonal move towards the lower right-hand corner. Try these as well:

10 0 PLYMV (move right one position)
-5 0 0 PLYMV (move left five positions)

0 20 0 PLYMV (move down 20 lines)
0-15 0 PLYMV (move up 15 lines)

-5 2, 0 PLYMV (move left five, and down two)

That*s all there is to moving a player. Positive horizontal offsets move the
player right, and negative values move the player left* Likewise, positive
vertical offsets move the player down while negative ones move the player up.
The following program can be typed in and you will have a joystick controlled
player:

XXI-2

^

/^k

/^^fe>

: JOY

BEGIN

0 STICK

0 PLYMV

7TERMINAL

UNTIL ;

JOY <ret>

Player Missile Graphics LO

(STICK leaves two offsets)
(for PLYMV to use.)

Move the player with stick 0, the left-most stick port,
to exit the program.

Press any console button

Currently, if the player is moved off any edge, it l8wrapsu to the opposite
side. In other words, we have an "unbound81 player. This is rarely desirable.
Normally, we want to restrict player movement to certain boundaries. The PLYMV
command has a built in boundary check routine specifically for this reason.
Right now, new boundaries are set so. wrapping occurs. Let's set some boundaries:

60 150 50 200 0 PLYBND

This sets the boundaries of player zero to 75 on the left, 150 on the right, 50
on the top, and 200 on the bottom. Type JOY again to verify that you can no
longer move freely about the display. Try different boundary settings and
experiment to get the feel of the command, Boundary checking can be disabled
for any or all of the edges. Setting the left or upper boundary to 0 will
disable the check on that edge, likewise, 255 in either the right or lower
boundary will do the same.

Let?s build another player in the lower right-hand corner of the screen.
This time, instead of designing the player ourself, let!s borrow the image
from the standard Atari character set stored in ROM. The image of the digit
zero starts at address 57472. The other numbers follow zero. Try this:

57472 16 160 150 1 BLDPLY

You should now see the numbers 0 and 1 on your screen. This command builds
player 1 with the image at address 57472 that is 16 bytes tall and puts it at
horizontal position 160 and vertical position 150. Give this player a color
if you want.

Until now, we have been using normal size players. It is possible to make
the two players on the display different widths using the PLYWID command.
PLYWID expects a width specification of 0 or 2 (normal), 1 (double), or 3
(quadruple). Its command form is:

width player PLYWID

Thus,

3 1 PLYWID

should make player one four times its original size. The same can be done with
player zero:

3 0 PLYWID

XXI-3

Player Missile Graphics 1.0

Type JOY again and notice that the width has no effect on movement whatsoever.
Also notice that player one is unaffected by movement of player zero. /-**

Now that we have two players on the screen, let's interface both of them
to the joystick. Type in the following program:

: J0Y2

BEGIN

0 STICK (Record stick movement }
2DUP (Make a copy)
0 PLYMV (Move player 0)
SWAP (Rotate stick 90 degrees)
1 PLYMV (Move player 1)
7TERMINAL

UNTIL ;

J0Y2 <ret>

Notice that when you push the stick up, player zero goes up, but player one
moves left. The SWAP instruction exchanges the vertical and horizontal offsets
from STICK before moving player one. If we were to take the SWAP out, the
players would move identically.

In many applications, it is necessary to know when a player has hit another
player or some background image. Fortunately, the Atari computer automatically
makes this information available. An entire collection of valFORTH words allows
checking of all collisions possible. The most general word is ?C0L which simply
returns a true flag if anything has hit anything else. Here is an example: ^

: BUMP

BEGIN

HIT.CLR

0 STICK

0 PLYMV

?C0L

IF

CR ." oopsi"
ENDIF

'TERMINAL

UNTIL ;

BUMP <ret>

Move the player around and watch the results. Every time you hit any letters
or player one, the word "oops!" should be printed out. This program is quite
simple. First, the HITCLR command is issued which erases any old collision
information. If this command were omitted, the first time a collision occurred,
"oops!" would be continuously printed out. Next the joystick is read and the
player moved. If the player touches anything when moved, the collision
registers are set. ?C0L reads these registers and leaves a true flag if the
player has hit something, and the IF statement will then print out "oops!".

^

XXI-4

Player Missile Graphics 1.0

Using other commands found in the glossary, we can tell specifically what
the player has hit* For example, the ?PXPF command checks to see if a specific
player has hit a playfield, and if so, it returns information indicating which
playfield.

Although this discussion was limited to using players, the routines for
missiles function similarly and can be found in the following glossary. Two
player/missile example programs can be found on your Player/Missile disk.
These demonstrate how short player/missile routines can'be.

XXI-5

Player Missile Graphics LO

PLAYER/MISSILE GLOSSARY

Enabling Player-Missile Graphics

To make use of players and missiles* the video processor must be activated.
Players can be several sizes9 they can have different overlap priority schemes,
and they can have different colors. The following collection of "words11 makes
this setup task quite simple. Note: Players and missiles are numbered 0 through
3. The fifth player is numbered as four.

(PMINIT) (addr res —)

The (PMINIT) command (or PMINIT below) must be used to initialize
the player missile routines before any other player missile command may
be used, (PMINIT) expects both the address of player/missile memory
and a 1 or a 2 indicating whether single or double resolution is desired.

NOTE: The difference between single and double resolution is shown
graphically below:

Player as defined single res double res

in memory: on screen: on screen:

00011000 •• ««

00111100 •••• SB

01111110 «••••• ««»•

00111100 •••• seee

00011000 •• •eeees

••••

se
•«

^

^

PMINIT (res —)

The PMINIT command functions identically to the (PMINIT) command
above, except that no address need be given. PMINIT calculates an address
based on the current graphic mode. It uses the first unused 2K block of
memory below the highest free memory (i.e., below the display list).
This should only be used while first learning the system, after that,
(PMINIT) should be used to optimize memory utilization. Note that the
variable PMBAS contains the calculated address upon return.

PMBAS (— addr)

A variable containing the address of player/missile memory. This
value must lie on a 2K boundary if single resolution players are used
and on a IK boundary if double resolution players are used. This is set
using the (PMINIT) command and is automatically set by the PMINIT command
described above. This value should never be set directly, but can be
read at any time. ^

XXI-6

&

Player Missile Graphics LO

PLAYERS (ON/OFF —)

If the flag found on the top of the stack equates to TRUE or ON,
then the player/missiles are activated, This does not clear out player
missile memory; therefore5 the PMCLR command described below is usually
used prior to enabling the players and missiles to ensure that no random
trash appears on the screen.

If the flag found on the top of the stack equates to FALSE or 0FF9
then the player/missile graphic mode is de-activated* Turning players off
does not clear player-missile memory; therefore, a subsequent ON PLAYERS
command would redisplay any previously defined players and missiles.
If players are already disabled* the command is ignored.

5THPLY (flag —)

In many applications it is desirable to combine the four missiles and
simulate a fifth player, thus giving five players (numbered 0-4), and no
missiles. If the flag on the stack is non-zero, then the fifth player mode
will be initiated; otherwise, the missile mode will be re-activated.

Normally, missiles take on the color of their corresponding players;
however, when a fifth player is asked for, all missiles take on the common
color of playfield #3. In addition, it also allows the fifth player to be
treated exactly as any other player would be treated. Bear in mind that
although it is called a "fifth11 player, its reference number is four (4).
The fifth player is "built" with missile zero on the right, and missile
three on the left:

|m3|m2|ml|m0| = fifth player

(Note: For convenience, the words ON and OFF have been defined to allow
niceties such 'as:

ON 5THPLY

OFF 5THPLY

These two words are recognized by all words that require an ON/OFF type
indication*)

PLYCLR . (pl# —)

Few applications use all available players. To keep these unused
players from displaying trash, they can be cleared of all data by
using the PLYCLR command, The PLYCLR command expects the player number
on the top of the stack and fills the specified player with zeroes.
This command can be used to "turn off" players which are no longer
needed*

MSLCLR (ml# —)

The MSLCLR command is very much like the PLYCLR command, described above,
except that it clears the specified missile. In addition, this can be
used when the fifth player is activated to erase parts of the fifth player
for special effects.

XXI-7

Player Missile Graphics LO

PMCLR (...)

This command clears all players and all missiles. This is generally
used just prior to activating the player-missile graphic mode to ensure
that no random trash ts placed on the video screen, PMCLR expects no
values on the stack, nor does it leave any.

MCPLY (F —)

The MCPLY (Multi-Color Player) command expects one value on the top
of the stack. If this value is 0 or OFF, then the multi-color player mode
is disabled. If this value is 1 or ON, this command instructs the video
processor to logically "or" the bits of the colors of player zero with
player one, and also of player two with player three. In other words,
when players 0 and 1 overlap (or players 2 and 3), a third color (determined
by the colors of the overlapping players) will be assigned to the overlapped
region rather than assigning one of the players a higher priority. Since
players must be one color, this allows for multi-colored players. For
example:

PRIOR

Player 0
Pink color

(4)

PPPPPPPP

PPPPPPPP

PPPPPPPP

PP PP
pppp

Player 1
Blue color

(8)

BBBB

BBBBBBBB

BB BB

MCP1ayer
Pink/blue
(4 OR 8
= green)

BBBB

BBBBBBBB

PPPPPPPP

P6GPPG6P

PPPPPPPP

PP PP

PPPP

NOTE: The lums of the two players are also OR'd.

(n —)

The PRIOR command expects one value on the top of the stack. This
value must be 8, 4, 2, or 1, otherwise unpredictable video displays may
occur. PRIOR instructs the video processor as to what has higher priority
for a video location on the screen. For example, it will determine whether
a plane (a player) will pass in front of a building (a playfield), or
whether the plane will pass behind the building. Objects with higher
priorities will appear to pass in front of those with lower priorities.
The following table shows the available priority settings:

XXI-8

^

r>

O

Player Missile Graphics LO

n=8 n=4 n=2 .n=l

PFO PFO PLO PLO

PF1 PF1 PL1 PL1

PLO PF2 PFO PL2

PL1 PF3* PF1 PL3

PL2 PLO PF2 PFO

PL3 PL1 PF3* PF1

PF2 PL2 PL2 PF2

PF3* PL3 PL3 PF3*

BAK BAK BAK BAK

* PF3 and PL4 share the same priority

Objects higher on the list will appear to pass in front of objects
lower on the list.

XXI-9

Player Missile Graphics 1.0

CREATING PLAYERS AND MISSILES

Once the player/missile graphics system has been activated and the)
priorities set, all that need be done is to create the players themselves.
Normally, this would be quite difficult to do; however, using the commands and
designing techniques described below, this task is made very simple.
There are really only three things to do in the creation of a player: setting
the width size, setting the color, and creating the picture.

PLYWID (width pl# —)

The PLYWID command sets the specified player to the desired width.
Players are numbered 0, 1, 2, 3, or in the case of the fifth player, 4.
Legal widths are:

image: 10111101

0 = normal width: • SMI

1 = double width: •• «•'

2 = normal width: • «»••

3 = quad, width: •••• •«••

Any other value may cause strange results.

MSLWID •(size ml# —)

The MSLWID command is identical to the PLYWID command described above ^
except that it is used to set the size of the missiles. The same size -)
values apply also. The MSLWID command should only be used when in the
missile mode (i.e., with the fifth player deactivated).

PMCOL (Pl# nue 1um -"")

To set the color (hue and lum) of a player, the PMCOL (Player-
Missile-Color) command is used. It sets the specified player to the hue
and lumina desired. Note that there is no corresponding command to set
the colors of missiles as missiles take on the colors of their respective
players. To set the color of the 5th player, "p1#" should be 4. If the
color words on the valFORTH 1.1 disk are loaded, they can be used to set
player colors:

0 BLUE 8 PMCOL

This sets player #0 to a medium blue color.

^

XXI-10

Player Missile Graphics LO

BLDPLY (addr len horz vert pl# —-)

The BLDPLY command is probably the most useful of all the commands in
this graphic package. It takes an easily predefined picture that resides
in memory at address "addr" whose length is "len" and converts it to the
specified player "pl#". It then positions the player at the coordinates
(horz,vert), The player is then ready to-be moved about the screen using
the PLYMV command described below.

As an example, a player in the form of an arrow pointing upward will
be created, assuming that priorities and such have already been taken care
of. Practice has proven that the following method is easiest for creating
players:

2 BASE ! (put into binary mode)

LABEL PICTURE (the image is named PICTURE)
00011000 C5
00111100 C5
oninio cs
nonon c,
00011000 c5
ooonooo c,
00011000 c,
ooonooo c9

DECIMAL

1 PMINIT (initialize for single resolution)
PICTURE 8 80 40 0 BLDPLY

Takes the image at location PICTURE which is 8 bytes long, and builds
player #0 at location (8094Q),

BLDMSL (addr len horz vert ml# ~~)

The BLDPLY command described above does just about everything necessary
to create a high-resolution player. The BLDMSL command functions identically
to the BLDPLY command except that it is used for setting up missiles (which
are in effect just skinny players). The method for creating players can be
used for creating missiles as well. Note that if the fifth player mode is
activated, the BLDPLY command must be used to create the player.

Building missiles takes a bit more care than building players. Players
occupy separate memory, while the four missiles share the same memory.
Each missile is two bits wide; all four together are exactly a byte wide.
Missile memory is shared with the two lowest bits devoted to missile zero,
and the two highest bits devoted to missile three:

|m3 | m3 | rn2 |m2)ml jml | mO | mO |
All players with the same shape can use the same image without any problem
since they all are a full byte wide. Missiles9 however, cannot use the
same shape since their images must be ORed into missile memory. This means
that the missile images must be in the proper bit columns. For example,
the same image for separate missiles could be:

11000000 00110000 00001100 00000011

11000000 00110000 00001100 00000011
11000000 00110000 00001100 00000011

msl#3 msl#2 msl#l msl#0

XXI-11

Player Missile Graphics 1.0

PUTTING PLAYERS AND MISSILES IN THEIR PLACE

Generally, once a player or missile has been created and put to the video
screen, it is moved around. This can be accomplished very easily with the next
set of words. Interfacing a movable player with the joystick can improve just
about any program which requires input. As a result, it usually gives the
program a more professional appearance.

PLYLOC (pl# —. horz vert)

The PLYLOC command (PLaYer LOCation) returns the vertical and
horizontal positions of the specified player. This is normally used
when a joystick/button setup is being utilized — i.e., when a joystick
is moving a player and the button is used to pinpoint where the player
is. A program which draws lines between two dots could use this. The
joystick is used to move the player to the desired spot on the screen.
Pressing the button tells the program that a selected spot has been made.
Once a second spot has been selected, the program then draws a line
between them.

MSLLOC (nrt# — horz vert)

The MSLLOC command performs the same function as the PLYLOC command
described above except that it is used to find locations of missiles
instead of players. Note that using MSLLOC on a fifth player gives
meaningless results.

PLYMV (horz vert pl# ---) J

The PLaYer MoVe command moves the specified player the direction
specified by "vert" and "horz". If "vert" or "horz" is negative, the
player is moved up or left respectively, otherwise it is moved down or
right unless they happen to be zero in which case nothing happens. The
following examples clarify this:

0-5 0 PLYMV (Move player 0 up 5 lines)
-1-1 3 PLYMV (Move player 3 left and up one line)
3-1 2 PLYMV (Move player 2 up one dot and right 3)

MSLMV (horz vert ml# —)

The MSLMV is identical in function as the PLYMV command described
above except that it is used to move missiles about the video screen.

PLYPUT (horz vert pl# —)

The PLYPUT command positions player "pl#" to the location (horz,vert)
on the video screen.

XXI-12 ^

Player Missile Graphics 1.0

PLYCHG (addr len pl# —)

Oftentimes it is necessary to change the image of a player after it
has been built. The PLYCHG command allows this to be easily done. The
PLYCHG command takes the image with length "len" at address "addr" and
assigns it to player "pl#". Note that if the new image is shorter than
the previous one, part of the previous image will remain. This can be
overcome by executing a PLYCLR command prior to PLYCHG.

PLYSEL (addr # pl# —)

The PLYSEL command is used to select image "#" out of a table of
images of the same length and assigns that image to the specified player.
PLYSEL is typically used to animate players. An example usage of this can
be found in Player/Missile Example #2 found in the directory of the disk.

XXI-13

Player Missile Graphics 1,0

PLAYER/MISSILE BOUNDARIES

It is often desirable to put limitations on the movements of players
and missiles. Boundaries can be set up for each player and missile independently
and upon each move command, they will remain within those boundaries. Additionally,
a boundary status byte for each player is available for scrutiny at any time.
This section explains how this is used.

PLYBND (left right top bottom pl#)

In most applications, the movements of players are kept within certain
boundaries. The PLYBND command frees the user from having to worry about
boundary checking. This command expects the player number and all four
boundaries. Whenever a PLYMV is then used* the player is always kept
within the set boundaries. Also, upon each move a boundary status byte
is left in the c-array PLYSTT (see 7PLYSTT below). The edge boundaries of
the screen are:

32 for single, 16 for double

48 for both

resolutions

207 for both

resolutions

223 for single, 111 for double

Note that in special cases the boundary checker will fail. If the
left boundary is 0 and the player is at the boundary, any move left will
not be checked as expected. For example, if it were moved left by one
position (-1), the new horizontal position would be -1 or FFFF in hex.
Since only 8 bit unsigned comparisons are made, the horizontal position
appears to be 255 (FF hex). Post calculating boundary checking turns
out to be more useful because it allows any or all edges to be unbounded.
If an unbounded player is desired, use this;

0 255 0 255 pl# PLYBND

For an example of PLYBND, see the example program found in the directory
on screen 170 of your disk.

MSLBND (left right top bottom ml# —)

The MSLBND command is the same as the PLYBND command above, except
that it is used for missiles. Upon each move a boundary status byte is
left in the array MSLSTT. See ?MSLSTT below.

XXI-14

^

r>

o

Player Missile Graphics 1.0

?BND (n)

This command leaves the boundary check status of the last PLYMV or
MSLMV performed. The value has the following form:

0 0 ♦ « . 0 1 r t b

15 14 0

Only the lower four bits are of use. Each bit represents a different
edge. If the bit is set, then the player or missile has attempted to move
beyond that boundary. Note that only two of the four bits can be set at
any time.

Note:

?PLYSTT

DECIMAL

?BND 3 AND
IF hit-vertical-boundary ENDIF
?BND 12 AND
IF hit-horizontal-boundary ENDIF

(Pl# val)

Given a player number, returns the boundary check byte of that player.
This byte is the status byte for the most recent PLYMV of that player.
See ?BND above for the description of the status byte.

7MSLSTT (mi# ... val)

Given a missile number, returns the boundary check byte of that missile,
This byte is the status byte for the most recent MSLMV of that missile.
See ?BND above for the description of the status byte.

XXI-15

Player Missile Graphics 1.0

CHECKING FOR INTERACTION BETWEEN PLAYERS

All the commands given so far allow the creation of any player or missile
desired. But once that player is on the screen and moving around, it is often
necessary to know when two or more objects (players, missiles, and playfields)
touch or "crash" into each other. This remaining collection of commands allows
checking of all possible "hit" combinations.

?C0L (— f)

The ?C0L command is a very general collision detector. It does nothing
more than indicate whether two or more objects have "crashed" — it does not
give any indication of what has collided. It leaves'a 1 on the stack if a
collision has taken place; otherwise it

leaves

leaves a zero.

?MXPF (ml# — n)

The ?MXPF command is a much more specific collision detection command.
It stands for "'collision of Missile #X with any PlayField". It is used
to check if a specific missile has hit any playfield. It returns a zero
if no collision has taken place, and leaves an 8, 4, 2, 1, or combinations
of these (e.g., 12 = 8+4) if a collision has occurred. Each of these
four basic values represents a specific playfield:

3 7MXPF (Has missile #3 hit any playfields?)

TOS binary meaning of val

0 0000 no collisions

1 0001 with pf#0
2 0010 with pf#l
3 0011 with pf#0,l
4 0100 with pf#2
5 0101 with pf#2,0
6 0110 with pf#2,l .
7 0111 with pf#2,l,0
8 1000 with pf#3
9 1001 with pf#3,0

10 1010 with pf#3,l
11 1011 with pf#3,l,0
12 1100 with pf#3,2
13 1101 with pf#3,2,0
14 1110 with pf#3,2,l
15 1111 with pf#3,2,l,0

To test for a collision with one specific playfield, use one of the
following:
1 AND (Leaves 1 if collision with pf#0, else 0)
2 AND (" 1 " • " pf#l, " 0)
4 AND (" 1 " " pf#2, " 0)
8 AND (" 1 " " pf#3, " 0)

XXI-16

~)

~>

^

Player Missile Graphics 1.0

?PXPF (pl# ... n }

The ?PXPF command (?collision of Player #X with any PlayField)
behaves in exactly the same manner as the ?MXPF command above except that
it tests for collisions with players and playfields instead of missiles
and playfields.

?MXPL (ml# ... n)

The ?MXPL command (?collision of Missile #X with any Player) behaves
in exactly the same manner as the ?MXPF command above except that it
tests for collisions between missiles and players. Note that it is
impossible for. a missile to collide with a fifth player since it would be,
in effect, colliding with itself.

?PXPL (pl# — n)

The ?PXPL command (?collision of Player #X with any other players)
behaves in exactly the same manner as the ?MXPF command above except that
it tests for collisions between players. Note that it is impossible for
a player to collide with itself.

HITCLR (—)

The HITCLR command clears all collision registers. In other words,
it sets the collision monitor to a state which indicates that no collisions
have occurred.

XXI-17

c^

THE CHARACTER SET EDITOR

Character Sets

Whenever the computer has to display a character on the video screen, it
must refer to a table which holds the shape definition for that character.
By changing this table, new character sets can be formed.

The shape of a single character in the table (or character set) is made
up of 8 bytes of data. A character is one byte wide and 8 bytes tall forming
an 8 by 8 bit matrix. If a bit in this matrix is set (1), then a dot will
appear on the screen. If a bit is reset (0), nothing is displayed. For
example, the letter I could be defined as:

00000000 $00 = 0

•••«•• 01111110 $7E = 126

•• ooonooo $18• = 24

•• ooonooo $18 = 24

§1 ooonooo $18 = 24

•• ooonooo $18 - 24

•••••• oinino • $7E = 126

00000000 $00 = 0

Thus, the sequence 0, 126, 24, 24, 24, 24, 126, 0, represents the letter I.
The entire alphabet is constructed in this fashion. By selectively setting
the bit pattern, custom made characters can be formed. This can find many
uses. A British character set can be made by changing the one character "#"
to the British monetary symbol. Likewise, a Japanese character set could be
made by replacing the lowercase characters with Katakana letters.

Another use would be to design special symbol sets. For example, an
entire set could be devoted to special mathematical symbols such as plus-minus
signs, square-root signs integration signs, or vector signs. (Although this
would be of little use in normal operation where character sets cannot be mixed
on the same line, usinq the high resolution text output routines in the
Editor/Utilities package. It becomes easy to mix character sets in this
fashion.) Assuming the character sets were defined, it would be possible to
have a Japanese quotation (in kana of course) embedded within the text of a
mathematical explanation of some kind all on the same line!

A final use for custom character sets is for "map-making." Characters
can be designed so that they can be pieced togehter to form a picture. An
excellent example of this can be found in Cris Crawford's Eastern Front game
available through the Atari Program Exchange. When done properly, the final
"puzzle" will appear as though it is a complicated high resolution picture.

Now, on to the editor...

XXII-1

The Editor

The following description explains how to use the character editor found on .J
the Player/Missile disk. This editor allows a character set to be designed and
then saved on disk for later modification or use, A copy of the standard
character has already been saved and can be located through the directory on
screen 170.

After loading the character editor* it is executed by typing:

CHAR-EDIT <ret>

The screen has an 8 by 8 grid in the upper-lefthand corner. On the right side
there is a command list, and at the bottom, a section is reserved to display
the current character .set.

The Commands:

I) The joystick
A joystick in port 0 (the leftmost port) is used to move the

character cursor (the solid circle) within the 8 by 8 grid. The
cursor indicates where the next change to the current character
will be made.

II) The button
When pressed, the joystick button will toggle the bit under the

character cursor in the 8 by 8 grid. If the bit is set (on), it ^%
will be reset. If the bit is reset (off), it will be set. The ^
character will be updated in the character set found at the bottom
of the screen.

Ill) "l" command
By pressing the nT the current character is cleared in both

the grid and in the character set at the bottom of the display.
There is no verify prompt for this command,

IV) "2" command
By pressing the "2" key the current character and character

set are cleared. User verification is required before any action
is taken.

V) u3n command
By pressing the "3" key the current character is saved to disk.

User verification is required with a yes/no response. If a yes
response is given* a screen number is asked for and the current
character set is saved on the specified screen. The current
character is not destroyed upon a save,

VI) "4" command
By pressing the "4" key a character set is loading from disk,

destroying the current character set. User verification is required
with a yes/no response. If a yes response is given, a screen number
is asked for and a character set loaded from the specified screen. ^

XXII-2

VII) "<--u and Si-~>n commands
These two arrow keys move the character pointer through the

character set to allow modification of any character in the current
set.

VIII) Console key
Pressing any console key terminates the edit session and returns

control to the FORTH system. The current character set is lost
unless it is saved to disk prior to ending the session.

Loading Character Sets

The following three words allow easy use of custom character sets.

CHLOAD (addr scr# cnt —)

The CHLOAD command takes the first "cnt11 characters on screen yscr#if
and stores them consecutively starting at address !laddrfj. Each screen
(in half~K mode) will only hold 64 character definitions. If "cnt" is
greater than 64, CHLOAD will continue loading from the next screen-
Many character sets could be loaded at one time by giving a very large
"cntl{ value. Besides being able to load a full set, the CHLOAD command
allows the building of a new set from several other sets.

Note that if a 20 character/line mode is being used, "addr18 should
lie on a half-K boundary (only upper 7 bits significant). If a 40
character/line mode is being used, "addr" should lie on an IK boundary
(only upper 6 bits significant). Also note that PAD is modified by
CHLOAD.

SPLCHR (addr —)

The SPLCHR commands activates the character set at the address

specified.

NMLCHR (—)

The NMLCHR command re-activates the normal character set.

XXII-3

t)

AUDIO-PALETTE — A SOUND EDITOR

Audio-Palette is a sound editor which generates all possible time-in
dependent sounds that the Atari 400/800 microcomputer can produce. Each of
the four channels are interfaced to one of the four joystick ports. The joy
sticks allow the setting of the pitch (horizontal) the distortion (vertical)
of their corresponding channel. When the joystick button is pushed* the
sound is made. To get a better idea of how this works, load the editor
(see. screen 170) and type:

AUDED <ret>

The screen should clear and a table of values should appear at the bottom of
the display. In the upper lefthand corner of the screen, there should be four
numerals (players) overlayed (one for each channel). Each of these players
can be moved around the display by using a joystick in the appropriate port.

As a player is moved vertically, the distortion changes. As a player is
moved horizontally, the pitch changes. By pressing the button, a sound will
be made according to the current frequency (pitch), distortion, volume, and
audio control settings. To increase the volume, the up-arrow is used, Any
time the up-arrow- is pressed, all channels whose corresponding joystick
buttons are pressed will have their volumes increased. Likewise, the down-
arrow will decrease the volumes.

Each bit of the audio control value performs some function in the
sound generator. The bits are numbered 0 to 7. Pressing the keys 0 to 7
will toggle the corresponding bits in the audio control register. For a
description of these bit settings, please refer to the explanation of SOUND
in the valFORTH LI package*

XXIII-1

XXIV. PLAYER/MISSILE SUPPLIED SOURCE

33

< PlyMsls PMINIT PLAYERS
icreen: 30 bcr

0 (PlyMsls arrays arid variables) 0

i BASE e 1

£ DCX '(ARRAY)(80 KLOAD) £

3 0 VARIABLE PMBAS 3

4 5 CARRAY PLYVRT 4

5 5 CARRAY PLYHRZ 5

6 5 CARRAY PLYLEN 6

7 5 ARRAY PLYADR 7

8 4 CARRAY MSLVRT 8

9 4 CARRAY MSLHRZ 9

10 4 CARRAY MSLLEN 10

11 4 ARRAY MSLADR 11

12 5 ARRAY PMADR 12

13 0 VARIABLE PMLEN 13

14 0 VARIABLE PMRES 14

15 0 VARIABLE MSLSZ ==> 15

PMINIT

£E6 C@ 8 - F8

OVER 1- 4 * +

SWAP (PMINIT)

(res —)

Screens 31

0 (PlyMsl
1

2 0 VARIABLE BOUNDS 34 ALLOT

3 5 CARRAY PLYSTT

4 4 CARRAY MSLSTT

VARIABLE BNDCOL

arrays and variables)

2 VARIABLE 5THWID

CTABLE 5THDAT

HEX

8 C,

CTABLE MSLDAT

i w w f » %~t L*«} wj Lf w! ui|

£

7

8

9

10

11

12

13

14

15 —>

Screen : 32

0 (PlyMsls EPMINIT3
1

£ s (PMINIT) (

3 SWAP PMBAS ! 1

4 NOT 10 * 0C OR

5 22F C© EF AND OR

6 PMBAS 9 180 PMRES

7 NOT 1+ >R

8 R * + DUP 4 PMADR

9 80 R> * > R

10 R + DUP 0 PMADR

11 R + DUP 1 PMADR

12 R + DUP 2 PMADR

13 R +' 3 PMADR
14 R> PMLEN ! s

15

addr

DUP

9

res —

PMRES !

>F C!

==>

AND

100

PLAYERS

IF

PMBAS 9 DUP

PMRES 9 1+ (PMINIT)

SP@ 1+ C@ SWAP

DROP D407 C!

SGRCTL 9 3 OR DUP

SGRCTL ! D01D C!

ELSE

(f

Screen 34

0

1

(PlyMsls 5THPLY

SBRCTL 9 FC AND

DUP SGRCTL ! D01D C!

22F C© E3 AND 22F C!

D00D 5 ERASE

ENDIF s

—>

4

5

6

7

a

9

10

11

12

13

14

5THPLY

26F C© SWAP

IF 10 OR

ELSE EF AND

ENDIF

26F C! s

(f —)

1!

PMCLR PLYCLR

creen s 35

0 (PlyMsls
1

2

3 5 PMCLR

4 4 PMADR 9

5 PMLEN 9 5

6 0 FILL ?
7

a

9 s PLYCLR

10 PMADR 9

11 PMLEN 9

12 0 FILL ;
13

14

15

< —)

< pl# ~)

—>

Sereen s 36

0

1

2

(PlyMsls MSLCLR PRIOR

; MSLCLR (

3 4 PMADR © DUP

4 PMLEN © + SWAP

5 DO

& DUP MSLDAT C@

7 I C© AND I C!

8 LOOP

9 DROP ;
10

11 s PRIOR

12 26F C© 0F0 AND

13 OR 26F C! ?
14

15

Sen

0

1

£

3

4

5

8

7

8

9

10

11

12

13

14

15

en s 39

(PlyMsls PLYMV)

N C, D5 C, 03 C, 90 C, "*>
18 C? 65 C, N 4 + C, 38

C, E5 C, N 5 + C, 85 C, N C,
18 C, 65 C, N 1- C, 85 C, N C,

2 C, F0 C, 0B C, A0 C,
98 C, 88 C, C8 C, 91 C,
C4 C, N 5 + C, D0 C,
B5 C, 00 Cf C9 CT 04 C,
14 C, B5 C, 05 C, A© C,
HERE 88 C, 30 C, 0A C,
D004 , 18 C, 6D C, 5THWID

, 4C C, , 4C C, HERE 2 ALLOT
B5 C, 05 C, B4 C, 00 C, 99 C,

(ff!l# —

(n —)

A5 C,
08 C,

B5 C,
00 C,
N C,

F9 C,
D0 C,
04 C,
99 C,

D000 HERE SWAP
==> A5 C, N 6 + C,

B4 C, 00 C,
—>

c,

Screen s 37 Screen: 40

0

1

2

(PlyMfsis PLYMV) 0

1

2

(PlyMsls PLYMV

CODE PLYMV 99 C, 0 PLYSTT , 8D C, BNDCOL

3 84 C, N 6 + C, B5 C, 00 C, 3 B5 C, 3 C, 18 C, 65 C, N 1- C
4 0A C, A8 C, B9 C, 0 PMADR 1+ , 4 85 C, N C, A0 C, 00 C,
5 85 C, N 1+ C, B9 Cf 0 PMADR , 5 Bl C, N £+ C,
6 85 C, N 1- C, B9 C, 0 PLYADR , 6 91 C, N C, C8 C, C4 C, N 4 + i
7 85 C, N £+ C, B9 C, 0 PLYADR 7 D0 C, F7 C, E8 C.i EBC,
8 1+ , 85 C, N 3 + C, B4 C, 0 C, a 4C C, POPTWO , C;
9 B9 C, 0 PLYLEN , 85 C, N 4 + C, 9

10 B9 C, 0 PLYHRZ , 18 C, 75 C, 10

11 04 C, D9 C, BOUNDS , B© C, 5 C, 11

12 B9 C, BOUNDS , E6 C, N 6 + C, 12

13 06 C, N 6 + C, D9 C, BOUNDS 5 + 13

14 , F0 1C, 07 C, 90 C, 05 C, B9 C, 14

15 BOUNDS 5 + , E6 C, N 6 + C, —> 15 ss:

Screen s 38

0 < PlyMsls PLYMV
99 C, 0 PLYHRZ
B9 C,
18 C,
D9 C,
B9 C,
C, 6 C,
F + ,
B9 C,

0 PLYVRT ,
75 C, 2 C,
BOUNDS A +

BOUNDS A +

N 6 + C,

)

95 C, 05 C,
85 C, N C5
06 C, N 6 + C,
, B0 C, 05 C,
, E6 C, N 6 +
D9 C, BOUNDS

F0 C, 07 C, 90 C, 05 C,
BOUNDS F + , E6 C, N 6 +

C, 99 C, 0 PLYVRT , 95 C, 3 C,
38 C, E5 C, N C, B8 C, 05 C,

N C, 38 C, F5 C, 03 C,
02 C, C5 C, N 4 + C,
02 C9 A5 C, N 4 + C,
N 5 + C,

Screens 41

(PlyMsls
HEX

MSLMV

CODE MSLMV

84 C, N 6 + C, B5 C, 0 C, 0A C,
AS C, AD C, 4 PMADR 1+ , 85 C,
N 1+ C, AD C, 4 PMADR , 85 C,
N 1- C, B9 C, 0 MSLADR , 85 C„
N 2+ C, B9 C, 0 MSLADR 1+ ,
85 C, N 3 + C, B4 C, 0 C,
0 MSLDAT , 85 C, N 7 +
0 MSLLEN , 85 C, N 4 +
0 MSLHRZ , 18 C, 75 C,
D9 C, BOUNDS 14 + , B0 C,
B9 C, BOUNDS 14 + , E6 C,

^

1

£

3

4

5

6

7

8

9

10

11

12

13

14

15

A5 C,
95 C,
90 C,
85 C,

0

1

2

3

4

5

6

7

a

9

10

11

12

13

14

15

C,

c,

B9 C,
B9 C,
B9 C,^

04 C, ^
5 C,
N 6 +

—>

Screen: 42 Screen: 45

0

1

2

(PlyMsls MSLMV) 0

1

2

< PlyMsls BLDPLY BLDMSL

c, 6 C, N 6 + c, D9 C, BOUNDS s BLDPLY (a 1 h v pl# -
3 18 + , F0 C, 07 C, 90 C, 3 >R R PLYVRT C!

4 05 C, B9 C, BOUNDS 18 + , 4 R PLYHRZ C! R PLYLEN C!

5 E6 C, N 6 + C, 5 R PLYADR 1 (R PLYCLR)

6 99 C, 0 MSLHRZ , 95 C, 05 C, 6 0 0 R> PLYMV i
7 B9 C, 0 MSLVRT , 85 C, N C, 7

8 18 C, 75 C, 02 C, 6 C, N 6 + C, 8 s BLDMSL (a 1 h v pl# -
9 D9 C, BOUNDS 1C + , BBC, 5 C, 9 >R R MSLVRT C!

10 B9 C, BOUNDS 1C + , E6 C, N 6 + 10 R MSLHRZ C! R MSLLEN C!

11 C, 06 C, N 6 + C, D9 C, BOUNDS 11 R MSLADR ! (R MSLCLR)

12 20 + , F0 C, 7 C, 90 C, 5 C, 12 0 0 R> MSLMV s

13 B9 C, BOUNDS 20 + , E6 C, N 6 + 13

14 C, 99 C, 0 MSLVRT , 95 C, 3 C, 14

15 =r=) 15

-)

—)

—>

Screens 43

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Scri

0

1

2

3

4

5

6

7

a

9

10

11

12

13

14

15

(PlyMsls MSLMV)

38 C, E5 C, N C5 B0 C, 5 C, A5
C, N C, 38 C, F5 C, 3 C, 95 C,
2 C, C5 C, N 4 + C, 90 C, 2 C,
AS Cs N 4 + C, 85 C, N 5 + C,
A5 C, N C, D5 C, 3 C, 90 C,
8 C, 18 C, 65 C, N 4 + C, 38
C, E5 C, N 5 + C, 85 C, N C,
18 C, 65 C, N 1- C, 85 C, N C,
A0 C, FF C, C8 C, Bl C, N C»
25 C, N 7 + C, 91 C, N C, C4
C, N 5 + C, D0 C, F5 C, B5 C,
5 Cs B4 C, 0 C, 99 C, D004 ,

?ns 44

(PlyMsls MSLMV

B4 C, 0 C, A5 C,
C, 0 MSLSTT , 3D C,
BNDCOL , B5 C, 3 C, 18 C,
65 C, N 1- C, 85 C, N C,
A0 C, 00 C, Bl C9 N C,
25 C, N 7 + C, 11C, N 2+ C,
91 C, N C, C8 C,
C4 C, N 4 + C, D® C, F3 C, E8
C, E8 C, 4C C, POPTWO , C;

N 6 + C, 99

ssss)

Screens 46

0

1

2

3
4

5

6

7

8

9

10

11

12

13

14

15

(PlyMsls PLYCHG PLYSEL PLYPUT)

len pl# —)PLYCHG (

>R R PLYLEN C!

R PLYADR !

0 0 R> PLYMV s

PLYSEL

>R R PLYLEN C©

R PLYLEN C© R)

(a # pl# --)
* +

PLYCHG z

PLYPUT

)R R PLYVRT C© -

SWAP R PLYHRZ C© -

SWAP R> PLYMV ;

(h v pl# —)

Screen: 47

0

1

2

(PlyMsls PLYWID)

CODE PLYWID

3 B5 C, 00 C, C9 C, 04 C, F0 C,
4 09 C, AS C, B5 C, 02 C, 99 C,
5 D008 , 4C C, HERE 2 ALLOT
6 A8 C, A0 C, 04 C, 0A C, 0A C,
7 15 C, 02 C, 88 C, D0 C, F9 C,
8 8D C, MSLSZ , 8D C, D00C ,
9 B4 C, 02 C, B9 C, 0 5THDAT ,
10 85 C, N C, 8D C, 5THWID ,
11 AD C, 4 PLYHRZ , A0 C, 04 C,
12 HERE 88 C, 30 C, 09 C, 99 C,
13 D004 , 18 C, 65 C, N C, 4C C,
14 , HERE SWAP ! 4C C, POPTWO ,
15 Cs

Screen s 48 Sen

0 (PlyMsls MSLWID) 0

1 1

2 CODE MSLWID 2

3 B4 C, 00 C, B9 C, 0 MSLDAT , 3

4 2D C, MSLSZ , HERE 4

5 88 C, 30 C, 7 C, 16 c, 02 C, 5

6 16 C, ©2 C, 4C C, , 15 c, 6

7 02 C, 8D C, MSLSZ , 8D c9 7

8 D00C , 4C C, POPTWO » 8

9 C? 9

10 10

11 11

12 12

13 13

14 14

15 ss) 15

sens 51

(PlyMsls ?MXPL ?PXPL PLYBND)

CODE ?MXPL (rnl# — n)

B4 C, 00 C, B9 C, D008 ,
4C Cf PUTOA , Cs.

CODE ?PXPL (pl# — n)
B4 C, 00 C,~ B9 C, D00C ,
4C C, PUT0A , Ci

CODE HITCLR (--)

8C C, D01E , 4C C, NEXT , C;

CODE ?BND

AD C, BNDCOL ,
4C C, PUSH0A , C?

(k1# — n)

—>

n)

^

Screens 49

0

1

2

(PlyMsls PLYLOC MSLLOC MCPLY

CODE PLYLOC (pl# — h v
3 94 C, 01 C, B4 C, 0 C,
4 B9 C, 0 PLYHRZ , 95 C, 0 C,
5

6

7

B9 C, 0 PLYVRT , 4C C, PUSH0A

CODE MSLLOC (ml# — h v

8 94 C, 01 C, B4 c, 0 C,
9 B9 C, 0 MSLHRZ , 95 C, 0 Cs
10 B9 C, 0 MSLVRT , 4C C, PUSH0A
11

12 s MCPLY (f —

13 26F C@ SWAP

14 IF 20 OR ELSE DF AND ENDIF

15 26F C! ? _.

Screen s 52

0

1

£

(PlyMsls MSLBND ?BND

CODE ?PLYSTT (pl# —
3 B4 C, 00 C, B9 C, 0 PLYSTT

4 4C C, PUT0A , Cs
5

6

7 CODE ?MSLSTT (ml# —

8 B4 C, 00 C, B9 C, 0 MSLSTT

9 4C C, PUT0A , C;
10

11 s PLYBND (1 r t b pl# •
12 >R 4 ROLL >R

13 <ROT SWAP R> R>

14 BOUNDS + 14 O+S

15 DO I Cl 5 /LOOP ;

n ,r>

Screen s 50

0 (PlyMsls
1

2

3

4

5

6

7

a

9

10

11

12

13 CODE ?PXPF

14 B4 C, 00 Cs
15 4C C, PUT0A

?COL HITCLR ?MXPF,. .)

CODE ?COL (— f)

CA C, CA C, 98 C, AS C, 0F C,
D0®0 , 88 C, 10 C, FA C,
94 C, 01 C5 95 C, 00 C,

19 C,
C8 C,
4C C, ? 04* (CFA ©)

CODE ?MXPF

B4 C, 00 C,
4C C, PUT0A

B9 C,
C;

B9 C,
Cf

(ml#

D000

(pl#
D004

— n)

~ n)

Screen: 53

0

1.

£

(PlyMsls PMCOL)

s MSLBND (1 r t b rnl# — >

3 >R 4 ROLL >R

4 (ROT SWAP R> R>

5 BOUNDS +14+10 O+S

6 DO I C! 4 /LOOP ;
7

8 s PMCOL (pl# col lum —)

9 SWAP 10 # +

10 SWOP DUP 4 =

11 IF

12 DROP £C7 C!

13 ELSE

14 2C® + C!

15 ENDIF i —>

o

creens 54 Screen s

0 (PlyMsls initialization) 0

1 1

£ DCX 2

3 3

4 BOUNDS 36 0 FILL 4

5 BOUNDS 5+5 £55 FILL 5

6 BOUNDS 15+5 £55 FILL 6

7 BOUNDS 24+4 255 FILL 7

8 BOUNDS 32 +. 4 £55 FILL 8

9 9

10 0 PLYSTT 5 ERASE 10

11 0 MSLSTT 4 ERASE 11

12 12

13 1 PMINIT (Set up defaults) 13

14 14

15 BASE 1 15

Screen s

0

1

£

3

. 4

5

6

7

8

9

10

11

12

13

14

15

Screen s

0

1

•2

3

4

5

6

7

8

9

10

11

12

13

14

15

55

56

Screen s

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Screens

0

1

£

3

4

5

6

7

8

9

10

11

IS

13

14

15

57

58

59

Screen s 60

0 (Audio Editor

1

BASE © DCX

Screen s 63 •

0 (Audio Editor

1 HEX

2 : SETP (

3 £ PMINIT PMCLR 1 PRIOR

4 0 3 (RDORNG) 6 PMCOL

5 1 8 < BLUE) 6 PMCOL

6 2 4 (PINK) 8 PMCOL

7 3 1 (GOLD) 6 PMCOL

8 4 0

9 DO

10 1 I PLYWID

11 E080 I 8 * + 8 37 15 I

12 BLDPLY

13 LOOP

14 ON PLAYERS s.

^
£

3

4

5

6

7

8

9 VOCABULARY AUDPAL IMMEDIATE
10 AUDPAL DEFINITIONS

11

12 4 CARRAY PIT

13 4 CARRAY VOL

14 4 CARRAY DST

15 0 VARIABLE ACTL

' < PLYMV)(15 KLOAD)

'(SOUND)(83 KLOAD)

'(STICK)(84 KLOAD)

Screens 61

(Audio Editor

15 DCX

Screens 64

0 (Audio Editor

1

2 s INIT

3 0 GR. 1 75£ C!

4 ." Chan Freq
5 ." Vol AUDCTL"

6 4 0

7 DO

6 8 I VOL C!

9 0 I PIT C!

10 0 1 DST C!

11 CR I 3 SPACES . I WPIT

1£ I WDST I WVOL

13 LOOP

14 0 ACTL ! WACTL SETP 5
15

—>

)

(—)

CLS 3 19 POS.

Dist "

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

HEX

CTABLE TBL

32 C, IF C,
ID C, IB C,

DCX

IE C, 1A C, 18 C,
33 C, ©F C, 0E C,

^
WPIT

10 OVER 20 +

3 .R ;

WDST

16 OVER 20 +

2 . R 1

(pl# —)
POS. PIT C©

(pl# —)
POS. DST ce

—>

Screen: 62 Screen s 65

0 (Audio Editor) 0

1

2

(Audio Editor)

1

2 s WVOL (pl# --) s SND (pl# f —)

3 20 OVER 20 + 3 IF

4 POS. VOL C@ 2 . R 5 4)R R R PIT C© R DST C©

5 5 R) VOL C@ SOUND

6 s WACTL (~-) 6 ELSE

7 28 21 POS. BASE C@ ACTL C© 7 XSND

8 DUP DUP 3 . R 2 BASE C! 8 ENDIF ?

9 26 22 POS. 0 9 HEX

10 (##########> TYPE 10 CODE DIG (n — n)

11 FILTER! BASE C! ? 11 B5 C, 00 C, 94 C, 00 C,

12 12 94 C, @1 C, 38 C, A8 C,

13 13 36 C, 00 C, 36 C, 01 C,

14 14 88 C, D0 C, F9 C, 4C C,

15 ——) 15 NEXT , C; DCX —>

^

Sere>eins 66 Screen s 69

0

1

2

(Audio Editor) 0

1

2

(Audio Editor)

s VOLUPD (n —) s PDADJ (hrz vrt pl# —)
3 4 0 3 >R -DUP

4 DO 4 IF £# R DST C@ +
5 I STRIG 5 0 MAX 14 MIN R DST C!
6 IF 6 R WDST

7 DUP I VOL C@ + 0 MAX 15 MIN 7 ENDIF

a I VOL C! I WVOL 8 -DUP

9 ENDIF 9 IF I PIT C© +

10 LOOP 10 0 MAX £55 MIN R PIT C!
11 DROP ; 11 R WPIT

12 1£ ENDIF

13 13 R> DROP 5
14 14

15 ——> 15 —)

Screen s 67 Screen s 70
0

1

2

(Audio Editor) 0

1

£

(Audio Editor)

to
a AKEY (— n tf / ff) m DIGMV (pl# —)

3 0 764 C© DUP 255 <> 3 >R R PIT C© £/ 55 +
4 IF 4 R DST C© 4 * £1 +

5 255 764 C! 5 R> PLYPUT ;
6 10 0 6

7 DO 7

8 DUP I TBL C© = 8

9 IF 9

10 DROP NOT I SWAP 0 LEAVE 10

11 ENDIF 11

12 LOOP 12

13 ENDIF 13

14 DROP s 14

15 — > 15 ==>

Screens 68 Screens 71

0

1

£

(Audio Editor > 0

1

2

(Audio Editor AUDED

s ?AKEY (—) FORTH DEFINITIONS

3 AKEY 3

4 IF 4 s AUDED

5 DUP 8 < 5 AUDPAL INIT

6 IF 6 BEGIN 4 0

7 ACTL C© SWAP 1+ DIG XOR 7 DO

a ACTL Ci WACTL 8 I STICK I PDADJ
9 ELSE 9 I DIGMV I I STRIG SND
10 9=2* 1- VOLUPD 10 LOOP

11 ENDIF 11 ?AKEY 7TERMINAL
12 ENDIF ; 12 UNTIL

13 13 OFF PLAYERS 0 752 C!
14 14 0 0 POS. XSND4 «
15 ==} 15 BASE ! FORTH

(—)

Screen s

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Screen s

0

1

£

3

4

5

6

7

8

9

10

11

12

13

14

15

Screen s

0

1

2

3

4

5

6

7

a

9

10

11

12

13

14

15

72

73

74

Screens

0

1

£

3

4

5

6

7

8

9

10

11

12

13

14

15

Screen%

0

1

2

3

4

5

6

7

a

9

10

11

12

13

14

15 •

Sere

0

1

£

3

4

5

6

7

a

9

10

11

12

13

14

15

»ns

75

^

76

^

77

"5

Screen s 78

c
0

1

2

3

4

5

6

7

a

9

10

11

12

13

14

15

Screen s 79

0

1

2

3

4

5

r
6

7

8

9

10

11

12

13

14

15

Screen s 80

0

1

2

3

4

5

6

7

a

9

10

i

11

12

13
!

14

15

Screen s

0

1

2 •

3

4

5

6

7

8

9

10

11

1£

13

14

15

Screen s

0

1

2

3

4

5

6

7

a

9

10

11

12

13

14

15

Screens

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

81

82

83

Screens 84 Screens 87
0 0

1

2 £

3 3

4 4

5 5

6 6

7 .' 7
8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

^

Screens 85 Screens 88

0 0

1 1

2 2

3 3

4 4

5 5

6 6 ^
7 7 - 7
8 8

9 9

10 10

11 11

12 1£

13 13

14 14

15 15

Screens 86 ' Screens 89
0 0

1 1

2 £

3 3 •

4 4

5 5

6 6

7 7

a a

9 9

10 10

11 11 /->
1£ 1£ .J
13 13

14 14

15 15

0

90

5

6

7

8

9

10

11

1£

13

14

15

(Charedits var defs

1 BASE © DCX

£ '< POS.)(s POS. 84 C! 85

3

4 '(STICK)(84 KLOAD)

VOCABULARY CHREDT IMMEDIATE
CHREDT DEFINITIONS

0 VARIABLE HORZ

0 VARIABLE VERT

0 VARIABLE CHAR#

0 VARIABLE CURLOC

0 VARIABLE DEFLOC

0 VARIABLE TPTR

0 VARIABLE CSET-LOC

S >

Screens 91

0 (Chared it

1

£ ; POSCUR

3 SWAP CURLOC ©

4 DUP C© 84 -

5 SWAP C! 40 #

6 88 © + DUP C@

7 84 + OVER C!

a CURLOC ! 5
9

10 S CLICK

11 0 53279 Cl

12 8 53279 C! ;
13

14

15

(n n —)

+ 203 +

(—)

— >

Screen: 93

0

1

£

3

4

5

6

7

8

9

10

11

12

13

14

15

(Charedit

'(NFLG —>) ()

0 VARIABLE NFLG

s -NUMBER (addr — d)

BEGIN DUP C© BL = DUP + NOT

UNTIL 0 NFLG i 0 0 ROT DUP 1+

C@ 45 = DUP >R + -1

BEGIN DPL ! (NUMBER) DUP C©

DUP BL <) SWAP 0# AND

WHILE DUP C@ 46 - NFLG !

0 REPEAT DROP R> IF DMINUS

ENDIF NFLG 9 IF 2DR0P ENDIF

NFLG © NOT NFLG ! ;
—)

Screen s 94

0

1

£

(Chared it)

m DSPCHR (--)

3 88 © £03 + CURLOC ! DUP 320 +
4 SWAP

5 DO

6 I 8 0 DO

7 0 OVER C© 7 I - CHSB1

8 IF 1£8 + ENDIF

9 CURLOC © Cf 1 CURLOC +!

10 LOOP

11 DROP 32 CURLOC +! 40

12 +LOOP 0 0 VERT ! HORZ ! 88 ©

13 203 + DUP DUP CURLOC ! C©

14 84 + SWAP Ci s

15 ssss)

Screen s 92 Screen s 95

0 (Chared it

1

2 HEX

) 0

1

2

(Chared it)

m GRAFC (— n)

3 s ANTIC (f —) 3 88 © 882 + |
4 22F C© SWAP 4

5 IF 20 OR ELSE DF AND ENDIF 5 t 6R8 (— n)

6 22F C! ? 6 88 © 802 + i
7 7

8 CODE CHSB0 (b — n) 8 s SCR/W (n n n —)

9 B4 C, 00 C, CS c, A9 C, 00 C, 9 SWAP B/SCR * OFFSET © +

10 95 C, 00 C, 95 C, 01 C, 38 C, 10 DUP 4 + SWAP

11 36 C, 00 C, 36 c5 01 C, 18 C, 11 DO

12 88 C, D0 C, F8 c, 4C C, NEXT s 12 2DUP I SWAP R/W

13 C| 13 SWAP 128 + SWAP
14 s CHSB1 (n b — f) 14 LOOP

15 CHSB0 AND 0# 'j DCX ==) 15 2DR0P 3 —>

creen s 96

0 (Charedit

1 HEX

2 CODE CHSB2 (n

3 B5 C, 00 C, 94 C, 00 C,
4 94 C, 01 C, 38 C, A8 C,
5 36 C, 00 C, 36 C, 01 C,
6 88 C, D0 C, F9 C, 4C C,
7 NEXT , C;
8 DCX

9

10 s MPTRR

11 TPTR © 0 OVER C! 1+ DUP

12 GR8 £- 33 + U)

13 IF 3£ - ENDIF

14 DUP TPTR ! 93 SWAP C! Cl

15

— n)

(— >

CLICK ;
=>

Screen s 97

0 (Chared it

1

£ s MPTRL

3 TPTR 9 0 OVER C!

4 DUP 6R8 U<

5 IF

6 32 +

7 ENDIF

8 DUP TPTR !

9 93 SWAP C!

10 CLICK ;
11

12

13

14

15

(—

1-

Screen s 98

1

2

< Chared it

HEX

3 s DBMAKE

4 OFF ANTIC 58 © 300 - DUP

5 58 ! FF00 AND DUP 230 !

6 DUP 3 70 FILL

7 3 + DUP 42 SWAP C!

a 1+ DUP 58 © SWAP !

9 2+ DUP 15 2 FILL

10 15 + DUP 12 F FILL

11 12 + DUP 41 SWAP C!

12 1 + 23® © SWAP !

13 ON ANTIC ?
14 DCX

15

—>

(—)

Screen s 99

0

1

£

(Charedit

s PTCST (sc

3 PAD CSET-LOC !

4 GRAFC DUP 320 + SWAP

5 2 0 DO

6 32 0 DO

7 DUP DUP 3£0 + SWAP DO

8 I C© CSET-LOC © C!

9 1 CSET-LOC +!

1® 40 /LOOP

11 1+ LOOP

1£ DROP

13 LOOP

14 PAD SWAP ® SCR/W ;
15

^
—)

—>

Screens 100

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(Charedit

GTCST (scr# -

GRAFC PAD ROT 1 SCR/W

PAD CSET-LOC ! £ 0

DO

32 0 DO

DUP DUP 320 + SWAP DO

CSET-LOC 9 C@ I C?

1 CSET-LOC +!

40 /LOOP

'1+ LOOP
288 + LOOP DROP GRAFC DUP

DEFLOC ! DSPCHR 0 CHAR# !

GR8 DUP 0 TPTR © Cl 12 14 POS.

0 . 93 SWAP C! TPTR ! ; ==>

)

)

r>

ere'ens 101

0

1

2

(Charedit

s GETSCR (— scr#

3 BEGIN

4 18 14 POS. ." Screen #s "

5 PAD 5 EXPECT PAD 1 NUMBER

6 DROP 128 17 C! 1 752 C!

7 18 14 POS. 16 SPACES NFLG ©

8 IF

9 DUP 1 < OVER 179 > OR

10 ?1K IF OVER 89 > OR ENDIF

11 IF DROP 0 ELSE 1 ENDIF

12 ELSE DROP ®

13 ENDIF

14 UNTIL

15 DUP 13 15 POS. 3 .R s —:

*-)

(—)

Screen s 102 Screens 105

0

1

2

(Chared it) 0

1

2

(Charedit

s VFIO (— f) s CLRCHR (

3 KEY 89 « 18 14 POS. 3 DEFLOC © 8 0

4 18 SPACES i 4 DO DUP I 40 * + 0 SWAP C!

5 5 DROP 88 © 203 + 8 0

6 s SVCST (—) 6 DO

7 18 14 POS. . " Save this set?" 7 DUP I 40 * + 8®
a VFIO 8 DO

9 IF 6ETSCR PTCST ENDIF s 9 DUP I + 0 SWAP C!
10 10 LOOP DROP

11 s LDCST (—) 11 LOOP DROP

12 18 14 POS. ." Load new set?" 12 0 VERT ! 0 HORZ !
13 VFIO 13 88 © 203 + DUP C©
14 IF GETSCR GTCST ENDIF s 14 84 + SWAP DUP

15 ==} 15 CURLOC ! C! s

LOOP

—>

Screens 103 Screens 106

0

1

2

(Chared it) 0

1

2

(Charedit)

0 MVRHT (—) s CLRCST (—)

3 CHAR# © DUP 63 <) 3 18 14 POS. .," Clear this set?"

4 IF 4 KEY 89 =

5 31 = 5 IF

6 IF 289 ELSE 1 ENDIF 6 GRAFC DUP DUP 680 + SWAP

7 DEFLOC +! 7 DO

a 1 CHAR# '+! DEFLOC 8 0 I C!

9 © DSPCHR MPTRR 9 LOOP

10 12 14 POS. 10 CLRCHR 0 CHAR# ! DEFLOC !

11 CHAR# ? 11 12 14 POS. CHAR* ?

12 ELSE 12 GR8 ® TPTR © C! 93 OVER

13 DROP 13 C! TPTR !

14 ENDIF ? 14 ENDIF

15 —> 15 18 14 POS. 15 SPACES s ==>

Screens 104 Screens 107

0

1

2

(Chared it) 0

1

2

(Charedit)

m MVLFT (—) HEX

3 CHAR# © -DUP 3

4 IF 4 s CKOPT (—)

5 32 = 5 2FC C© FF 2FC C!

6 IF -289 ELSE -1 ENDIF 6 DUP IF » IF CLRCHR ENDIF

7 DEFLOC +! -1 CHAR# +! 7 DUP IE = 'IF CLRCST ENDIF

a DEFLOC © DSPCHR MPTRL 8 DUP 18 = IF LDCST ENDIF

9 12 14 POS. CHAR# ? 9 DUP 1A = IF SVCST ENDIF

10 ENDIF i 10 DUP 06 = IF MVLFT ENDIF

11 11 07 = IF MVRHT ENDIF s

12 12

13 13

14 14

15 ==> 15 DCX —>

Screens 108

® (Charedit

1

£

3

4

5

6

7

8

9

10

11

12

13

14

15

CKBTN (—)

644 C@ NOT

IF

CLICK

CURLOC © DUP C© 8 CHSB2 XOR

SWAP C! DEFLOC © VERT ©

40 * + DUP C© 7 HORZ ©

- 1+ CHSB2 XOR SWAP C!

2000 0 DO LOOP

ENDIF s

(—)

Sereens 111

0

1

2

(Charedit)

18 12 POS.

3 . " (4) Load a new set"
4 2 14 POS. ." Character 0"
5 2 15 POS. ." Load/Saves "
6 2 17 POS.

7 ." Use *" 30 SPEM1T
8 ." ' and '" 31 SPEMIT . " ' to"

9 CR

10 . " through the character set."
11 0 0 POS. ;
12

13

14

15 —>

^

Scr«

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

ens 109

(Charedit

s CKSTK

0 STICK 2DUP OR

IF

VERT © + 0 MAX 7

HORZ © + 0 MAX 7

VERT © HORZ © POSCUR

2000 0 DO LOOP

ELSE

2DR0P

ENDIF i

s CHECK

CKSTK CKBTN CKOPT ?

MIN VERT !

MIN HORZ !

Sere

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

ens 112

(Charedit

FORTH DEFINITIONS

s CHAR-EDIT (-

CHREDT (enter vocabulary)
0 GR. 1 752 C!

CLS DBMAKE

88 © 1300 ERASE

GRAFC DEFLOC !

GR8 DUP TPTR !

93 SWAP C!

STPSCR

88 © 203 + DUP CURLOC !

• 84 SWAP C!

~>

(—)

-->

Screens 110 Sere(ens 113

0

1

2

(Charedit) 0

1

2

< Charedit

m STPSCR < —) 0 HORZ !

3 .CR 4 SPACES 3 © VERT !

4 ." * * # CHARACTER-EDIT # •a- *" 4 0 CHAR# !

5 CR CR CR ." 01234567" 1CR 5

6 8 0 DO I . CR LOOP 6 DCX

7 18 4 POS. 7 BEGIN

8 .'" Optionss" 8 CHECK

9 18 6 POS. 9 1 75£ Ci 1£8

10 ." (1) Clear Character" 10 ?TERMINAL

11 18 8 POS. 11 UNTIL

12 ." (2) Clear this set" 12 0 GR. ?
13 18 I© POS. 13

14 ." (3) Save this set" 14 BASE ! FORTH

15 ==> 15

17 C!

^

r

Screen

0

1

£

3

4

5

6

7

8

9

10

11

12

13

14

15

Screen s

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Screen s

0

1

£

3

4

5

6

7

8

9

10

11

12

13

14

15

114

115

116

Screen:

0

1

£

3

4

5

6

7

8

9

10

11

12

13

14

15

117

Screens 118

0

1

2

3

4

5

6

7

8

9

10

11

1£

13

14

15

Screen s 119

0

1

2

3

4

5

6

7

8

9

10

11

1£

13

14

Screens 120

0 (Character wordss CHLOAD

1

£ BASE © DCX

3

4 s CHLOAD < addr scr# cnt

5 8 * DUP <ROT

6 1£8 /MOD SWAP 0# +

7 >R B/SCR * R> 0

8 DO

9 PAD 128 I * +

10 OVER I + 1 R/W

11 LOOP

12 DROP

13 PAD <ROT CMOVE ;
14

Screens 123

6

7

8

9

10

11

12

13

14

15

Screens 121 Screen

0 (Character words: NML/SPLCHR) 0

1 1

c 2

3 s SPLCHR (CHBAS --) 3

4 SP© 1+ C@ 4

5 SWAP DROP 756 C! •> 5

6 6

7 7

8 s NMLCHR (~) 3

9 57344 SPLCHR 5 9

10 10

11 11

1£ BASE ! 12

13 13

14 14

15 15

Screens 12c

0

1

6

7

8

9

10

11

12

13

14

Screen s

3

4

5

6

7

8

9

10

11

12

13

14

15

124

D

^

O

screen

0

1

2

3

4

5

6

7

a

9

10

11

12

13

14

15

Screen:

0

1

2

3

4

5

6

7

a

9

10

11

12

13

14

15

Screen:

0

1

£

&

7

8

9

10

11

12

13

14

15

126

127

128

Screens 129

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Screens 130

0

1

6

7

8

9

10

11

12

13

14

15

(Standard Character set)

Screen s

0

1

2

3

4

5

6

7

&

9

10

11

12

13

14

15

131

(Standard Character set)

Screens 132 Screens 135

0 0

1 1 ^
£ 2 - •>
3 3

4 4

. 5 5

6 6

7 (PM example #2 ship images) 7
8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

Screens 133 Screens 136
0 0

1 1

2 2

3 3

4 4

5 5

6 6 am*7 7 ~)
8 8

9 9

10 18

11 11

12 12

13 13

14 14

15 15

Screens 134 Screens 137

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

12 12 ^S
13 13 •—y
14 14

15 15

Screen s 138

0

1

£

3

4

5

6

7

a

9

10

11

12

13

14

15

Screens 139

0

1

2

3

4

5

6

7

a

9

10

11

12

13

14

15

Screens 140

0 (Player/Missile example 1
1 i (PLYMV)(15 KLOAD)

2 BASE © 2 BASE !

3

4 1 VARIABLE HBALL

5 1 VARIABLE VBALL

6

7 LABEL IMAGE

8 011100 C,
9 111110 C,
10 111110 C,
11 111110 C, (A BIG BALL

12 111110 C,
13 111110 C,
14 011100 C,

15 DECIMAL

Sereen s 141

0

1

£

3

4

< Player/Missile example 1

s BOP 0 53279 Cl 8 53279 C!

s MOVE-BALL

5 BEGIN

6 HBALL © VBALL © 0 PLYMV

7 0 PLYSTT C© DUP 3 AND

8 IF VBALL © MINUS VBALL

9 ENDIF

10 3 >

11 IF HBALL © MINUS HBALL

12 ENDIF

13 50 0 DO LOOP (Wait...

14 ?TERMINAL

15 UNTIL ;

BOP

BOP

—)

Screens 142

0

1

£ :

t Player/Missile example

: BOUNCE

3 CLS

4 1 PMINIT

5 PMCLR

6 1 PRIOR

7 ON PLAYERS

8 47 200 32 217 0 PLYBND

9 0 9 (BLUE) 8 PMCOL

10 IMAGE 7 100 75 0 BLDPLY

11

12 ." Press START to stop.
13 MOVE-BALL

14 OFF PLAYERS ;
15 BASE

Sere

0

1

£

3

4

5

6

7

8

9

10

11

12

13

14

15

?n; 143

Screens 144 Screens 147

0

1

£

3

4

5

6

7

8

9

10

11

12

13

14

15

Screens 145 " Screens 148
0

1

2

3

4

5

6

7.

8

9

10

11

12

13

14

15

Screens 146 Screens 149

0

1

£

3

4

5

6

7

8

9

10

11

12

13

14

15

Screen s

0

1

£

3

4

5

6

7

a

9

10

ii

12

13

14

15

Screen s

0

1

2

3

4

5

6

7

a

9

10

11

12

13

14

15

Screens

0

1

2

3

4

5

6

7

a

9

10

11

12

13

14

15

^

.")

o

Screen s 150 Screen:

0 (Player/Missile example 2) 0

1 BASE © DCX 1

£ ' (CHLOAD)(60 KLOAD) £

3 '(PLYMV)(15 KLOAD) •3

4 '(STICK)(84 KLOAD) 4

5 : FLY 5

6 BEGIN 6

7 75 0 DO LOOP (wait) .7

8 PAD (addr) 8

9 0 PLYLOC SWAP DROP 9

10 8/11 SWAP - 10

11 11 MIN 0 MAX (image*) 11

12 0 PLYSEL (pl#0) 12

13 0 STICK 0 PLYMV 13

14 ?TERMINAL 14

15 UNTIL ; ==> 15

Screens 151 Screen s

0

1

2

(Player/Missile example £) 0

1

s SHIP 2

3 2 PMINIT 3

4 1 PRIOR 4

5 PMCLR 5

6 0 9 (BLUE) 8 PMCOL 6

7 PAD 132 15 CHLOAD 7

a PAD 8 50 50 0 BLDPLY a

9 50 200 10 110 0 PLYBND 9

10 CLS 10

ii ." Move player with stick 0." ii

12 CR 12

13 ." Press START to stop... " 13

14 ON PLAYERS FLY OFF PLAYERS ; 14

15 BASE ! —> 15

Screen s

0

1

2

3

4

5

6

7

a

9

10

11

12

13

14

15

152 Screen s

0

. 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

153

154

155

Screens 156

0

1

£

3

4

5

6

7

a

9

10

11

12

13

14

15

Screens 157

0

1

£

3

4

5

6

7

a

9

10

11

12

13

14

15

Screens 158

0

1

2

3

4

5

6

7

a

9

10

11

12

13

14

15

Screens 159

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

~5

Screen s 160

0 (Utilss CARRAY ARRAY

1 BASE © HEX

2 s CARRAY (cccc, n —)
3 CREATE SMUDGE (ccccs n — a

ALLOT

fCODE CA C, Cfl C, 18 C,
A5 C, W C, 69 C, 02 C, 95 C,
00 C, 98 C, 65 C, W 1+ C,
95 C, 01 C, 4C C,
' + (CFA ©) , Cj

)

4

5

6

7

8

9

10

11

12

13

14

15

">

Sere

0

1

£

3

4

5

6

7

8

9

10

11

12

13

14

15

ARRAY (cccc, n —)
CREATE SMUDGE (ccccs n — a)

2* ALLOT

sCODE 16 C, 00 C, 36 C, 01 C,
4C C, ' CARRAY 08 + , C? ==>

ens 161

(Utilss CTABLE TABLE)

s CTABLE < cccc, —)
CREATE SMUDGE (ccccs n — a)
,• CODE
4C C, ' CARRAY 08 + , Cs.

s TABLE (cccc, —)
CREATE SMUDGE (ccccs n — a)
;CODE
4C C, ' ARRAY 0A + , C;

—>

3

crsens 162 Screen s

0 (Utilss 2CARRAY 2ARRAY) 0

1 1

£ s 2CARRAY (cccc, n n —) £

3 <BUILDS (cccc: n n — a) 3

4 SWAP DUP , * ALLOT 4

5 DOES) 5

6 DUP >R 0 * + R> + £+ ; 6

7 7

a : 2ARRAY (cccc, n n —) 8

9 <BUILDS (ccccs n n — a) 9

10 SWAP DUP , * 2* ALLOT 10

11 DOES) 11

12 DUP >R © * + 2*.R> +2+
i 12

13 13

14 14

15 sss=) 15

165

Screens 163 een s 166

(Sounds SOUND SO. FILTER!

BASE © HEX

0 VARIABLE AUDCTL

s SOUND (ch# freq dist vol
3 DUP D20F C! 232 C!

SWAP 10 * + ROT 2*

D200 + ROT OVER C! 1+ C!

AUDCTL C© D208 C! ;

: SO. SOUND ;

s FILTER! (b -

DUP D208 C! AUDCTL ! ;

Scr

0

1

£

3

4

5

6

7

8

9

10

11

12

13

14

15

(Utils: XC! X!0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

XC!

OVER

DO J

LOOP

X!

OVER

DO J

LOOP

(n0. .

1- + >R

I - C!

R> DROP

(r«0. .

1- £# +

I 2* - I

R) DROP

. nm

0

5

cnt addr —)

.nm cnt

)R 0

*

addr —)

Cautions Remember limitation

on stack size of 30 values

because of OS conflict.)

— >

Screen: 164

0 (Utilss CVECTOR VECTOR

1

2

3

4

5

6

7

a

9

10

11

12

13

14

15 BASE

)

—)

CVECTOR (cccc, cnt —)
CREATE SMUDGE (ccccs n — a)

HERE OVER ALLOT XC!

sCODE

4C C, » CARRAY 08 +

Screens 167

0 (Sounds XSND

1

£

XSND4

3 s XSND (voice#

4 2* D201 +

5 0 SWAP C! |
6

7

8 s XSND4 (

9 D200 8 0 FILL

10 0 FILTER! ;
11

12

13 '(POS.)(: POS. 54 C! 55

14

15 BASE !

—)

VECTOR

CREATE SMUDGE

HERE OVER £# ALLOT X!

;CODE
4C C, ' ARRAY 0A + ,

C;

(cccc, cnt —)
(cccc s n — a)

C;

—)

5)

Screens 168

0 (Utilss STICK

1 BASE © HEX

2 LABEL STKARY

3 0,-1,1,0,
4

5 s STICK (n —

6 278 + C@ 0F XOR
7 DUP 2/ 2/ 3 AND

8 2* STKARY + ©

9 SWAP 3 AND

10 2* STKARY + © ?
11

12 CODE STRIG (n -

13 B4 C, 00 C, B9 C, 284 ,
14 49 C, 01 C, 4C C, PUT0A ,
15 BASE !

Screens

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

169

n)

- f)

Cs

Screens 17®

0 CONTENTS OF THIS DISKs

1

PLAYER/MISSILESs

AUDIO EDITORS

CHARACTER EDITORS

CHARACTER SET WORDSs

STANDARD CHARACTER SET

8 SPACE SHIP IMAGES

9

10 PM EX.

11 PM EX.

12

13 ARRAYS

14 SOUNDS

15 STICK

#1

#2

(

(

BOUNCE)

SHIP)

FOR ALL)

FOR AUDED)

38 LOAD

60 LOAD

90 LOAD

120 LOAD

130 LIST

132 LIST

140 LOAD

150 LOAD

160 LOAD

166 LOAD

168 LOAD

Sere

0

1

2

3

4

5

6

7

3

9

10

11

12

13

14

15

ins 171

Screens

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Screen:

0

1

2

3

4

5

6

7

a

9

10

ii

12

13

14

15

172

173

^

~>

^

Screen s 174

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Screens 175

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Screens 176

0 (Error messages
1

2 Stack empty
3

4 Dictionary full

6 Wrong addressing modi
7

8 Is not unique
9

10 Value error

11

12 Disk address error

13

14 Stack full

15

Screens 177

0 Disk Error!

1

2 Dictionary too big
3

4

5

6

7

8

9

10

11

12

13

14

15

Screen s 178

0 (Error messages
1

2 Use only in Definitions
3

4 Execution only
5

6 Cond it iona1s not pa ired
7

8 Definition not finished

9

10 In protected dictionary
11

12 Use only when loading
13

14 Off current screen

15

Screen s 179

0 Declare VOCABULARY

1

£

3

A

5

6

7

a

9

10

11

12

13

14

15

i VALPAR

international:
3BCS1 E. 34™
TUCSON, ARIZONA

-7141

valFORTH
T.M.

SOFTWARE SYSTEM
for ATARI*

DISPLAY FORMATTER

^Atars is a trademarkofAtml, Inc.,a timiott ofWam®r Communications.

Softw®r® and Ooeumonf&fiort

©Copyright 1982
Valpar mimrmikmni

valFORTH
T.M.

DISPLAY FORMATTER

Version 1.1

March- 1982

The following is a description of commands used in creating video display
lists on the Atari 400/800 series microcomputers. Creating custom display
lists allows for innovative graphic layouts of games, simulations* or business
applications which utilize both hi-resolution graphics and text simultaneously.

Softwar® and Documentation
©Copyright 1982

Valpar frtt@rnaflofftaI

valFORTH
SOFTWARE SYSTEM

DISPLAY FORMATTER
Stephen Maguire

Software and Documentation

©Copyright 1982
Valpar International

Purchasers of this software and documentation package are
authorized only to make backup or archival copies of the
software, and only for personal use. Copying the accompanying
documentation is prohibited.

Copies of software for distribution may be made only as speci
fied in the accompanying documentation.

VALPAR INTERNATIONAL

Disclaimer of Warranty
on Computer Programs

All Valpar International computer programs are distributed
on an uas is81 basis without warranty of any kind. The total
risk as to the quality and performance of such programs is with
the purchaser. Should the programs prove defective following
their purchase, the purchaser and not the manufacturer, distributor*
or retailer assumes the entire cost of all necessary servicing or
repair.

Valpar International shall have no liability or responsibility
to a purchaser, customer, or any other person or entity with
respect to any liability* loss, or damage caused directly or
indirectly by computer programs sold by Valpar International.
This disclaimer includes but is not limited to any interruption
of service, loss of business or anticipatory profits or conse
quential damages resulting from the use or operation of such
computer programs*

Defective media (diskettes) will be replaced if diskette(s)
is returned to Valpar International within 30 days of date of sale
to user.

Defective media (diskettes) which is returned after the 30 day
sale date will be replaced upon the receipt by Valpar of a $12,00
Replacement Fee,

An indepth explanation of display lists was written by
Dave and Sandy Small in a series of articles found in Creative
Computing. We suggest that this be read to get the most out of
this valFORTH package.

valFORTH Display Formatter 1.1

STROLLING THROUGH THE DISPLAY FORMATTER

In Atari Basic there are many different graphic modes. Some of these are
text modes„ some are graphics modes, and some are mixed. These different
graphic modes are based upon display lists. A display list is a list of display
instructions which tell the video processor whether a particular portion of the
screen is to be high resolution graphics or normal text. Any given section of
the display can actually take on one of 18 different characteristics.

Let's take a look at the display list for a graphic 0 display: (These
values are in base 16)

BC20
24 blank scan lines

DM jump to BC40

23 graphic 0 lines

jump to BC20

BC40 start of display memory

Each opcode 70 instructs the video processor to display 8 blank scan
lines. Opcode 2 produces one standard graphic 0 text line. Opcode 42 is a
modified 2 instruction. In addition to creating a standard text line, it
also informs the video processor where the display memory is located (the
address is found in the next two bytes). At the end of the list there is a
three byte jump instruction which transfers display list interpretation to the
address specified in the next two bytes of the list. Each of the graphic
settings have a similar list. This valFORTH package allows you to design your
own lists. Let's make one now.

Look in the directory (screen 170) and load in the display formatter.
Most of the formatter words begin with DB (for display block). To initialize
the system type:

DBINIT

HEX

XXXI-1

valFORTH Display Formatter 1,1

This initializes the system and puts it into the more useful hexadecimal mode.
Graphic mode 8 is a high resolution graphic mode with a four line text window ^
at the bottom of the display, Letss make.a display with a four line text)
window at the top of the screen followed by the high resolution graphics plate.
Firsts we need 24 blank scan lines at the top:

70 DBM

70 DBM

. 70 DBM

The DBM command stands for "Display-Block Make," It takes the opcode on top of
the stack and tacks it onto the end of the display list currently being created♦

Additionallyt it enters an address into the array DBLST which points to the
first byte of memory used by that display block. There is a plural form of the
DBM command:

3 70 DBMS

This adds 3 opcode 708s to the current display list. Now letfs add the four
line text window. Recall that a normal text line has an opcode of two:

4 2 DBMS

Note that the display memory jump described earlier is automatically inserted
into the display 11st. Now we need to define the high resolution portion of
the display, A standard graphic 8 line has an opcode of $F (15 in decimal).
Let8s create 20 graphic 8 lines (20 in base 16 is 14),

14 F DBMS _ J

This list is good enough for now. To verify that it has been entered properly,
type:

DMPLST

You should get something like:

^
XXXI-2

valFORTH Display Formatter 1.1

BLK ODDR BYTE

0 0100 78

1 0100 70

2 3100 7®

3 0100 2

4 0128 2

5 0150 2

6 0178 £

7 0100 F

8 oica F

9 O1F0 F

ft 0218 F

8 0240 F

C 0268 F

D 0290 F

E 02B8 F

F A2E0 F

1% 0308 F

U 0330 F

12 0358 F

13 0380 F

14 0308 F

15 A3D0 F

16 03F8 F

17 0420 F

18 0448 F

19 0470 F

10 0498 F

MODS

J «i@0

Note the automatic insertion of the display memory jump in block three.
Display memory cannot cross a 4K memory boundary without a display memory jump.
As each display block is added» a check is made to detect any 4K memory cross
ings caused by the display block. If the block does crossf a display memory
jump is automatically inserted.into the list to account for it.

Now that we have a display list,
to activate a list. For now type:

let's enable it. There are several ways

MIXED CLS

This MIXED command enables the new display list and also re-directs'output
to the display memory specified by the list. This allows for interactive dis
play list creation. There should be a recognizably different display. Hold
down the RETURN key and watch how the "ok18 message is displayed as the cursor

XXXI-3

valFORTH Display Formatter 1.1

moves down the screen. You should see ,8okllss on the text lines* but in the
high resolution lines* it shoud look quite different. You can type in a high
resolution mode because the Atari operating system does not know that the
display list has been changed. To return to a normal display, the GR. command
is used:

0 GR."

Dump the display list again using the DMPLST command, Let8s put some text
lines in at block B. To do this type:

B DBPTR

10 2 DBMS

The DBPTR command positions the display list pointer to the specified
block. That block then becomes the end of the list. After that, we add 16
(10 hex) graphic 0 lines. Dump the list again and verify that this is indeed
what was accomplished. To view this new display, type:

MIXED CLS

Hold down the RETURN key again. Notice what happens as the cursor passes
through the high resolution section and then back into the second text section.
Type DMPLST again while in this mode and notice that everything works the same,
the data is simply displayed differently. To get out, type fl0 GR.fl*

Besides adding display blocks onto the end of a display list5 the display
formatter allows display blocks to be inserted and deleted as well. Block two *j
has an opcode 70 which produces 8 blank scan lines on the video screen. By
deleting this block from the list, the entire display will shift upwards by 8
lines. This is accomplished using the DBDEL command:

•2 DBDEL

Dump the list and verify that the block has indeed been deleted. Enable
the list using "MIXED CLSSI, Note that the first text line appears much higher
than usual on the video screen. While still in this display, execute:

4 6 DBDELS

This will delete the four display blocks starting at block six. In this
case9 the four high resolution display lines are deleted. Type "MIXED CLS58
and watch the screen shrink slightly as the display blocks are extracted.

Display blocks can be inserted using the DBIN command. When a DBIN
command is executed, the specified opcode is inserted into the specified block.
The opcode previously in that block and all opcodes following are pushed back
by one block. As an example, we will insert opcode 70 (8 blank scan lines)
at block five. This will do it:

70 5 DBIN

XXXI-4

^

^

valFORTH Display Formatter 1.1

"MIXED CLSM will activate the new list. Press the RETURN key a few times
and notice how the output routines seem to ignore the blank scan lines. The
DBINS command is a plural form of the DBIN command. Let's insert a different
opcode other than 2 or $F. Opcode 6 is a mode which displays colored characters
which are much larger than normal. This will insert three opcode 6's at block 9:

3 6 9 DBINS

Activate this new list in the normal way and experiment with it. The
following section describes all of the available opcodes. Experiment with these
as you read about them and you should have no problem understanding any of them.

This brief explanation of display list formatting should show the power
available to the programmer who wants to get that unique display. There are
many more commands available for use. These are explained thoroughly in the
glossary at the end of the next section,

XXXI-5

valFORTH Display Formatter 1.1

DISPLAY LIST INSTRUCTIONS

There are four basic display list instructions. Those that produce blank
scan lines, the display list jump, the jump on vertical blank, and the display
block instructions. This is a description of these four basic instructions.

Blank Scan Lines

Byte form: I X X X 0 0 0 0

n = 0 to 7

This opcode produces n+1 blank scan lines of color BAK.
memory is used by this instruction.

No video

If the I bit is set, a display list interrupt (DLI) will occur upon
interpretation by Antic (the video processor).

The 8 legal values are:

$00
$10
$20
$30
$40
$50
$60
$70

0

16

32

48

64

80

96

112

Display List Jump

Byte form:

1

2

3

4

5

6

7

8

blank

blank

blank

blank

blank

blank

blank

blank

scan line (128 with I bit set)
scan lines (144'
scan lines (160)
scan lines (176'
scan lines (192)
scan lines (208)
scan lines (224)
scan lines (240)

I 0 0 0II ° 0 0 1

This command instructs Antic to search for the next display list
instruction specified by the address contained in the next two bytes of
the display list. The low byte of the address is found lower in memory.
This command is used primarily to continue a display list across a IK
memory boundary (Antic will not handle this properly). This is the only
instruction not supported by the display formatter since its occurrence
is rare. It is explained here for completeness sake and its use is
absolutely forbidden. Future releases may have this implemented.

If the I bit is setf a display list interrupt will occur upon
interpretation by Antic.

Legal form:

$01 addr-low addr~hi Transfer display list
interpretati on to addr,

XXXI-6

^

~>

^

valFORTH Display Formatter 1.1

Jump On Vertical Blank

Byte form: I 1 X X 0 0 0 1

This three byte opcode instructs Antic to transfer display list
interpretation to the address specified-by the following two bytes (low
byte of address first) and to pause until vertical blank occurs. Since
display list processing halts, any remaining portion of the video display
takes on the color of BAK. This command is not-to be entered by the user.
The display formatter automatically adds this to the end of the display
list whenever it is moved or activated.

If the I bit is

pretation by Antic.
set, a display list interrupt will occur upon inter-

Legal form:

$41 addr-low addr~hi Transfer display list
interpretation to addr. (65)

Display Block Opcodes

Byte form: I J V H X X X x

n - 2 to $F (15)

There are 14 display modes. Six are character modes, eight are
graphic modes. Each of these modes varies greatly and will be discussed
individually. But first, the four status bits I, J, V, and H, will be
discussed as they function similarly for all display modes.

If the I bit is set,
interpretation by Antic.

a display list interrupt will occur upon

If set, the J bit instructs Antic to perform a display memory jump.
Antic expects the next two'bytes in the display list to point to the new
display memory location. The first display block instruction should
always have this bit set, Also* Antic cannot properly retrieve data
from display memory across 4K boundaries. Thus, if the display memory
must cross a 4K boundary, a display memory jump must be used. Note that
the display formatter automatically takes care of these two problems for
the user.

If set, the V bit informs Antic that the current display block is
to be vertically scrolled upward according to the value in VSCROL (address
$D405). Note that vertical scrolling is accomplished only if two or more
consecutive display blocks have this bit set.

XXXI-7

valFORTH Display Formatter 1.1

If set, the H bit informs Antic that the current display block is
to be horizontally scrolled right according to the value in HSCROL
(address $D404). Note that for horizontally scrolled display blocks,
extra bytes of memory are needed. The exact number of bytes varies for
different screen (playfield) widths. Use the following calculation:

extra = X / n

where: •X = the number of characters/display block
n = 4 for a narrow playfield
= 5 for a standard playfield

There are no extra bytes for the wide playfield setting.

For example, a 40 character/line display block in the standard
width would use a total of 40 + 40/5 or 48 characters. Note that only
one of these extra bytes is actually used for the display.

XXXI-8

n

^

">

valFORTH Display Formatter 1.1

The Character Modes

There are 6 character modes (opcodes 2 thru 7). All character modes
work in the same way, i.e., the values in display memory are indices to
a large "n" by 8-byte array. In some of these modes* the highest one or
two bits are used to specify a color with only the remaining lower bits
used for indexing. The following table gives infonnation about each of
the modes:

Antic mode 2 3 4 5 6 7

Basic mode 0 — — — 1 2

color * 1.5 1.5 5 5 5 5

Chars/line
narrow wid

32 32 32 32 16 16

Chars/line
normal wid

40 40 40 40 20 20

Chars/line
wide screen

48 48 48 48 24 24

Scan lines/
pixel

8 10 8 16 8 16

Bits/pixel 1 1 2 2 1 1

Color clocks

per pixel .5 .5

j

1 1 1 1

Colors:

mode 2:

mode 3:

mode 4:

mode 5:

mode 6:

mode 7:

Takes the color of PF2 with the lum of PF1

(Artifacting/bleed very noticeable)
Same as above

Two bits/pixel in character definitions
00 - BAK 01 - PFO 10 - PF1

11 - PF2 if bit 7 of index - 0, else PF3
Same as 4 above

Most significant two bits of index
0 - PFO ' 1 - PF1 etc.

Same as 6 above

XXXI-9

valFORTH Display Formatter LI

The Graphic Modes

There are 8 graphic modes. Unlike character modes, the values in
display memory are not indices into an array of character definitions,
but rather are the definitions themselves. Depending on the graphic mode*
these values give different results* The following table gives various
information about each mode.

Antic mode 8 9 A B C D E F*

Basic mode 3 4 5 6 — 7 — 8

colors s 4 2 4 2 2 4 4 1.5

bytes/line
narrow wid

8 8 16 16 16 32 32 32

bytes/line
normal wid

10 10 20 20 20 40 40 40

bytes/line
wide screen

12 12 24 24 24 .48 48 48

Pixels per
normal wid

40 80 80 160 160 160 160 320

Scan lines/pixel 8 4 4 2 1 2 1 1

Bits/pixel 2 1 2 1 1 2 2 1

Color clocks

per pixel
4 2 2 1 1 1 1 .5

*Mode F values differ when in GTIA modes

Colors;

PF1

mode 8: Two bits/pixel, 4 pixels/byte
00 - BAK 01 - PFO 10 -

mode 9: One bit/pixel, 8 pixels/byte
0 - BAK 1 - PFO

mode A : Same as mode 8 above

mode B : Same as mode 9 above

mode C: Same as mode 9 above

mode D: Same as mode 8 above

mode E: Same as mode 8 above
mode F : Take the color of PF2 and lum of PF1

(if not in a GTIA mode)

XXXI-10

11 = PF2

^

^

^

valFORTH Display Formatter 1.1

GLOSSARY

(DBINIT) (dmem dlist —)

The (DBINIT) routine initializes the display formatter. It expects
two addresses on the stack. The address on top of the stack is used as
the target address for the display list. The address found second on the
stack is the target address for display memory. The display list is
actually created in a c-array named DSPLST. Note that while building the
list, no check is made to ensure that the display list does not cross a IK
memory boundary.

DBINIT (—)

Like the (DBINIT) command above, this initializes the display formatter.
But unlike (DBINIT), this expects no arguments. Instead, these values are
calculated automatically. The display memory address is top of memory
minus 1F00 hex. This is enough for a full graphics 8 screen. The display
list address is 256 bytes below the display memory address. Note that this
is very memory wasteful, and should only be used while still learning the
system. After that, (DBINIT) should be used.

DBPTR (block# —)

This command instructs the display formatter to create the next
display block in the specified i8block#3! of the current display list.
To begin creating a new display list, use:

0.DBPTR

DBM (antic-mode ---)

The DBM command adds "antic-mode" to the end of the current display
list. For example, to create a video display with a single line at the top
of the screen, the following would be executed:

0 DBPTR (new list)
2 DBM (A graphic 0 line)

(Note: Antic mode 2 is a BASIC graphics 0 line.)

DBMS (fHimes antic-mode —)

The DBMS command performs a multiple DBM. For example, to create a
full graphics 0 screen, the following two commands must be performed:

0 DBPTR (new list)
24 2 DBMS (24 graphic 0 lines)

This would create a full graphics 8 screen:

0 DBPTR
192 15 DBMS (Antic 15 = graphic 8)

(192 graphic 8 lines fill one video screen)

XXXI-11

valFORTH Display Formatter 1.1

DBMS (cont'd)

Mixed lists are also possible:

0 DBPTR

160 15 DBMS

4 2 DBMS

This would create a screen of 160 graphic 8 lines with four text lines at
the bottom.

DBIN (antic-mode block# —)

Oftentimes, it is desirable to slightly change the existing display
list to obtain special effects midway through a running program. The DBIN
command allows insertion of new display blocks within the current display
list. This command inserts "antic-mode" into the block specified by
"block#". Whatever was in the block "block#" and following is pushed
back one block. For example:

Display list

block #0 2

1 2

2 8

with the above display list, a

15 1 DBIN

would give the following display list.

Display list

block # 0

15

8

The DBIN allows the user to create new display lists without the need to
duplicate already existing display list sections.

XXXI-12

^

~>

")

valFORTH Display Formatter 1.1

DBINS (#times antic-mode block# — -)

This command repeats "antic-mode block# DBIN" the specified number
of times.

DBDEL (block* —)

The DBDEL command serves as the logical complement to the DBIN
command. Thus, after inserting a temporary display block, the DBDEL
command may be used to delete that display block once it is no longer
needed:

Display list

1 DBDEL would give:

block # 0 2

1 15

2 2

3 8

Displ ay list

block # 0 2

1 2

2 8

Note: Deleting non-existing display blocks gives unexpected results.

DBDELS (#times block# —)

This command performs "block# DBDEL" the specified number of times.
This serves as the logical complement to the DBINS command.

XXXI-13

valFORTH Display Formatter 1.1

DBDELL (—)

This form of the DBDEL command deletes the last display block created
using the DBM command. For example:

Display list

DBDELL would give:

block # 0 2

1 15

2 2

3 8

Display list

block # 0 2

1 15

2 2

The main use for the DBDELL command is for "backing up81 and re-entering
a display block when an error has been made while creating a display list
directly at the keyboard. The DBDELL command can be used successively for
deleting a section of display blocks at the end of the current display list-
There is no plural command for DBDELL command as its use is rather limited.

?ANTM0D (block# — antic-mode)

Occasionally, it is desirable to know what antic-mode is being used
for a particular display block (such as for a text output routine — text
should not be output on a hi-resolution line, for example). This command
returns the antic-mode of the specified block.

DBMOD (modifier block# —)

When creating display lists, it is possible to give extra meaning to
a particular block or section of blocks in the list. This is accomplished
by using one or more of the three available antic-modifiers: vertical
scroll modifier (VRTMOD), horizontal scroll modifier (HRZMOD), and the
display-list interrupt (INTMOD). The following are examples of each:

VRTMOD 0 DBMOD
HRZMOD 3 DBMOD
INTMOD 5 DBMOD

XXXI-14

~)

~>

~>

valFORTH Display Formatter 1.1

DBMOD (cont'd)

There are several methods in which to put more than one modifier on a
given display block. For example, each of the following would give the
same final result:

VRTMOD 20 DBMOD

HRZMOD 20 DBMOD

or

VRTMOD HRZMOD + 20 DBMOD

To attach all three modifiers, the best method is:

VRTMOD HRZMOD INTMOD + + 20 DBMOD

It should also be noted that it is possible to create modified display
blocks, thus reducing the need for the DBMOD command:

HRZMOD 2 + DBM

This would create one graphic 0 line with a horizontal modifier.
It is also easy to obtain 16 lines of hi-resolution graphics with both
horizontal and vertical scroll modifiers:

16 VRTMOD HRZMOD 15 + + DBMS

CAUTION: VRTMOD and HRZMOD can only be used on antic-modes 2 through 15
($2-$F).

(Note: There is one additional modifier, JMPMOD; however its use is
absolutely forbidden! This has been defined as it will be implemented
in the next release.)

DBMODL (modifier —)

This command modifies the last display-block in the display list.

7DBM0DS (block# — modifiers)

This returns the modifiers on the specified display block. For
example:

VRTMOD 2 + 0 DBM
0 7DBM0DS

would give VRTMOD. Also:

VRTMOD HRZMOD 2 + + 0 DBM

0 7DBM0DS

would give VRTMOD + HRZMOD. To test for VRTMOD, the following method must
be used:

0 7DBM0DS

VRTMOD AND

The last line leaves only the vertical modifier, if present, or leaves 0
indicating no vertical modifier.

XXXI-15

valFORTH Display Formatter 1.1

DBREM (block# —)

The DBREM comoand removes all modifiers from the specified display /
block, Care should be taken when stripping modifiers* as stripping a
horizontal modifier (if present) will change the size of the video memory.

DBREMS (#times block# —)

This performs !8block# DBREM" the specified number of times.

DBREML ('—)

This removes the modifiers from the last display block in the current
display list.

?DBVAL • (block# — info)

The ?DBVAL command returns all information about the display block
specified* i.e., the antic mode and any modifiers- This information is
returned as one value.

DBWID (width —)

The DBWID command is used to set the desired playfield width so that
the address array DBLST gives the proper values- Legal settings are:
1 - narrow, 2 - normal, and 3 - wide.

USRDSP (—) ^

Once a display list has been created, USRDSP activates the new list.

MIXED (—)

The MIXED command performs a USRDSP then instructs the Atari operating
system to re-direct all output to the video display memory specified by the
newly created display list.

DMPLST (•—)

The DMPLST command instructs the display list assembler to give a
complete, informative listing of the display list last created.

DBADR (block# — address)

The DBADR command is one of the most useful commands to the programmer.
Given a display block number, it returns the address of the first byte of
that display block. This is extremely useful for determining where output
text or graphic displays should be located.

DMCLR (—)

The DMCLR command clears the display memory pointed to by the display
list currently being created. It clears to the top of memory.

XXXI-16

^

valFORTH Display Formatter 1.1

In addition, there are various variables available to the programmer:

DSPEND Points to the end of the current display list.
It is an offset from 0 DSPLST*

DSPBLK Contains the number of the next display block to
be created.

DMLOC Points to the beginning of display memory.

LSTLOC Contains the address of where the display list
is to reside in memory.

DBLST Is an array of addresses used by DBADR.

DSPLST Is a byte array containing the display list currently being
created. DSPEND above points to the end of the list in
this array.

XXXI-17

r

r

XXXII. DISPLAY FORMATTER SUPPLIED SOURCE LISTING

Seresen s 30

0 (Graph Syss tabl BS

1 ' (TRANSIENT TRANSIENT)()

£ BASE 9 DECIMAL

3

4

5

' « CTABLE)(45 KLOAD)

LABEL BLKNML

6 0 C, 0 C, 40 C5 40 C, 40 c,
7 4® C, 20 C, 20 c, 10 C, 10 c,
a 20 C, 20 C, £0 C, 40 c, 40 c,
9 40 C,
10

11 CTABLE HSOFS

12 50 C, 4 C,
13

14 TABLE BLKOFS

15 50 , -5 , 50

5 C, 50 C,

Screen s 31

0

1

2

(Graph Syss variables

CTABLE BYTBLK 16 ALLOT

3

4

5

BLKNML 0 BYTBLK 16 CMOVE

255 CARRAY DSPLST

6 255 ARRAY DBLST

7 5 VARIABLE HS#/

a 0 VARIABLE DSPBLK

9 0 VARIABLE PGECRS

10 0 VARIABLE DSPEND

n 0 VARIABLE NWLST

12 6 VARIABLE SDTMP

13 0 VARIABLE DBCNT

14 0 VARIABLE DBVRT

15

ere>en s Sd

0 (Graph Syss const ant s

1 HEX

2 © VARIABLE DMLOC

3

4

5

0 VARIABLE LSTLOC

10 CONSTANT HRZMOD

6 £0 CONSTANT VRTMOD

7 40 CONSTANT JMPMOD

8

9

10

80 CONSTANT INTMOD

DECIMAL

11

1£ 11 CARRAY JMPDAT

13 10 CARRAY JMPSTT

14

15 0 JMPDAT 11 ERASE

—>

Sere•en s 33

0

1

£

(Graph Syss CDBINIT3 DBINIT)

3 s (DBINIT) (DM LIST ~)

4 LSTLOC ! DUP

5 DMLOC ! 0 DBLST

6 0 DSPEND ! 0 PGECRS

7 0 DSPBLK ! 1 NWLST

S 0 JMPDAT 11 ERASE ?
9

10 g DBINIT (—)

11 106 C@ £56 * 7936 -

12 DUP 256 -

13 (DBINIT) ;
14

15 DBINIT —>

Screen : 34

0 (Graph Syss
1 DECIMAL

£

HINYB EODB

3 ;; HINYB (nmmm — n)

4

5

6 i

61448 AND 4096 / 16 + 15 AND :

i EODB i n — a)

7 31 AND DUP 15 AND (Find end)

a BYTBLK C@ SWAP (of disp)
9 15 > (block)

10 IF (Horz. scroll)

11 DUP HS#/ 9 / +

le ENDIF

13 DSPBLK @ (Update the)
14 DBLST 9 (addr list)

15 + 1- 5 ==>

Screen s 35

0

1

£

3

4

5

6

7

8

9

10

11

12

13

14

15

(Graph Syss DBPTR

DBPTR

DMLOC 9 0 DBLST ! .

0 PGECRS ! 0 NULST !

DUP DSPBLK I DUP DSPEND I

0 JMPDAT C@ -DUP

IF 1+ 1 DO

I JMPDAT C9 OVER <

IF

£ DSPEND +!

ELSE

11-0 JMPDAT C! LEAVE

ENDIF

LOOP

ENDIF DROP -->

(blk# —)

DBPTR

Screen s 36

0 (

1

2

Graph Syss JMPINS

DSPEND 9 DSPBLK 9 =

3 IF

4 1 NWLST !

5 ELSE

6 DSPBLK 9 DBLST C-

7 1- HINYB PGECRS !

8 ENDIF :

9

10 s JMPINS

11 DUP JMPMOD OR

12 DSPEND 9 SWAP OVER

13 DSPLST C! 1+ NWLST

14 IF

15 0 NWLST !

in—)

Screens 37

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(Graph Syss JMPINS

DMLOC 9 DUP DUP 40 +

HINYB SWAP HINYB <>

IF

HINYB 1+ 4096 *

ENDIF

ELSE

PGECRS 9 4096 *

ENDIF

DUP ROT DSPLST !

3 DSPEND +!

DSPBLK i? 0 JMPDAT C© 1+

DUP 0 JMPDAT C!

JMPDAT C! s

~ >

ere•ens 39

0

1

2

(Graph Syss DBM

s DBM (n —

3 DUP 15 AND

4 IF (antic instr. ?

5 191 AND (strip jump
6 DBCRT

7 ELSE (scan lines

8 DSPEND 9

9 DSPLST C!

10 1 DSPEND + !

11 DSPBLK 9 DUP DBLST 9
12 SWAP 1+ DBLST !

13 1 DSPBLK + !

14 ENDIF ;
15 ——>

Screeni 40

0

1

£

(Graph Syss LSTSV

s LSTSV

3

4 DSPEND 9

5 DSPLST 65 OVER C!

6 SWAP DBPTR

7

8 DSPEND 9 DSPLST

9 DUP SDTMP 9 + ROT

10 >R OVER R> -

11 ABS 1+ (CMOVE

12

13 DSPEND 9 DSPLST

14 SDTMP 9 + s

15

)

(blk# — a)

(pt to blk)

(leave save)

(address)

DUE)

Screen s 38 Screen s 41

0 (

1

2 s

Graph Syss DBCRT) 0 <

1

£ s

Graph Syss LSTRST)

DBCRT (n —) LSTRST (a —)

3 DUP EODB DUP 3 BEGIN

4 HINYB PGECRS 9 4 DUP CS DUP 65 <> (eolst?)

5 OVER PGECRS i <> 5 WHILE

6 IF 6 DUP 15 AND 0#

7 DROP JMPINS 7 OVER 64 AND 0# AND

8 DSPBLK 9 DBLST ! EODB 8 IF (jump?)
9 ELSE 9 191 AND DBM 3 +

10 SWAP DSPEND 9 10 ELSE (normal)

11 DSPLST C! 11 DBM 1 +

12 1 DSPEND +! 12 ENDIF

13 ENDIF 13 REPEAT

14 1+ DSPBLK 1 OVER +:i 14 2DR0P s

15 9 DBLST ! s ==> 15 -->

~)

~)

~)

O

Screen s 4£

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(Graph Syss DBIN DBDEL DBMOD)

s DBIN C n n —)

LSTSV SWAP DBM LSTRST ?

s DBDEL

DUP 1+ LSTSV SWAP

DBPTR LSTRST ?

s DBMOD

DUP 1+ LSTSV

SWAP DBPTR SWAP

DSPEND @ DSPLST C© OR

DBM LSTRST s

(n —)

(r, n —)

Screen s 43

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(DBREM DBDELL DBMODL DBREML)

s DBREM (n —)

DUP 1+ LSTSV

SWAP DBPTR

DSPEND 9 DSPLST C@

15 AND DBM LSTRST ?

s DBDELL

DSPBLK 9 1- DBPTR s

s DBMODL

DSPBLK 9 1- DBMOD s

s DBREML

DSPBLK 9 1- DBREM ;

(—)

(—)

< —)

—>

Screen s 45

0 (Graph Syss 7ANTMQD 7DBMODS)

1

2 ! ?ANTMOD

3 ?DBVAL DUP 15 AND 0=

4 IF 127 ELSE 15 ENDIF

5 AND ;
6

7 t 7DBMODS

8 7DBVAL DUP 15 AND 0=

9 IF

10 DROP 0

11 ELSE

12 240 AND

13 ENDIF ;
14

15

(n —)

(n —)

—)

Screen s 46

© (Graph Syss
1

E s DBMS

3 SWAP 0

4 DO

5 DUP DBM

6 LOOP

7 DROP s

8

9 a

Q DBDELS

10 SWAP 0

11 DO

12 DUP DBDEL

13 LOOP

14 DROP ;

15

DBMS DBDELS

(# n —

(# n —)

creeir«8 44 Screen s 47

0 (Graph Syss 7DBVAL) 0 (Graph Syss DBREMS)

1 1

£ s 7DBVAL En—) 2 s DBREMS (# n —)

3 DSPBLK C@ 0 JMPDAT C© 3 SWAP ®

4 ROT DBPTR 4 DO

5 DSPEND 9 DSPLST C© 5 DUP DBREM 1+

6 <ROT © JMPDAT C! 6 LOOP

7 DBPTR § 7 DROP s

a 8

9 9

10 10

11 11

12 12

13 13

14 14

15 ==} 15 —>

Screen s 48 Screens 51

0 (

1

2 5

Graph Syss DBINS) 0 (

1

2 s

Graph Syss DMPLST

DBINS < # n n —) DMPLST

3 ROT DUP DBCNT 1 3 CR DSPBLK © -DUP

4 6 + SDTMP 9 SWAP SDTMP ! 4 IF

5 (ROT DUP LSTSV 5 CR .•» BLK ADDR"

6 SWAP DBPTR SWAP 6 BYTE MODS"

7 BEGIN 7 CR . " ___.«. II

8 DBCNT 9 (count zero?) 8 88 _._
m

_.__._ H

9 WHILE 9 0 DO

10 DUP DBM (keep creating) 10 CR I 3 . R

11 -1 DBCNT +! (dec. counter) 11 I DBLST © 9 U.R

12 REPEAT 12 I 7ANTMOD 8 U. R

13 DROP LSTRST (unsave list) 13 I 7DBM0DS -DUP

14 SDTMP ! s 14 IF

15 ==> 15 3 SPACES

> n

Screen s 49

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(Graph Syss SCRWID LSTMV)

s SCRWID (width —)

559 C© 252 AND

OR 559 C! s

LSTMV

LSTLOC © DSPEND ©

DSPLST 65

OVER C! 1+ !

0 DSPLST LSTLOC ©

DSPEND © CMOVE ;

(—)

—>

Screen s 50

0 (Graph Syss USRDSP MIXED

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

USRDSP

LSTMV

559 C© 3 AND

0 SCRWID

LSTLOC 9 560

SCRWID s

MIXED

DMLOC 9 88 !

USRDSP ?

(—

(—)

(—)

-->

Screens 52

0 (Graph Syss DMPLST)
1

2 DUP 128 AND

3 IF ." I" ENDIF

4 DUP 3£ AND

5 IF ." V" ENDIF

6 DUP 16 AND

7 IF ." H" ENDIF

8 64 AND

9 IF ." J " I DBLST © U.

10 ENDIF

11 ENDIF 7EXIT

12 LOOP

13 ELSE

14 ." No display list"
15 ENDIF CR s «•>

Sere

0

1

£

3

4

5

•6

7

a

9

10

il

12

13

14

15

en s 53

(Graph Syss DMCH6 DMCLR DBADR)

s DMCLR

DMLOC ©

106 © 256 *

OVER -

ERASE %

s DBADR

DBLST © j

(—)

(blk# —

—>

•-)

n

Screen s 54

0 (

1

£ s

VAL-FORTH GRAPHIC SYSTEM 1.1

DBWID (width —

3 0 LSTSV SWAP BLKNML

4 t © BYTBLK 3 LITERAL

5 16 CMOVE

6 BLKOFS 9 I 0 BYTBLK 16

7 OVER + 3 LITERAL LITERAL

a DO

9 I C© DUP 3 PICK / + I C!

10 1 /LOOP

11 HSOFS C© HS#/ !

12 LSTRST s

13

14 ' (PERMANENT PERMANENT)(

15 BASE !

Sere

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

ms

Screen s

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

55

56

Screen s

0

1

2

3

4

5

6

7

8

9

1@

11

12

13

14

15

Sere

0

1

£

3

4

5

6

7

8

9

10

11

12

13

14

15

?ns

Screen s

0

1

2

3

4

5

6

7

8

9

1®

11

12

13

14

15

57

58

59

ere»ens 60

0 (Transientss setup
1 BASE © DCX

£

3 HERE

4

5

6 741 © 4000 - DP !

7 (SUGGESTED PLACEMEN

8

9

10 HERE CONSTANT TAREA

11 0 VARIABLE TP

12 1 VARIABLE TPFLAG

13 VARIABLE OLDDP

14

15

eens 63Scr

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

OF TAREA)

Screens 61 Screen s

0 (Xsientss TRANSIENT PERMANENT) 0

1 1

£ s TRANSIENT (—) 2

3 TPFLAG © NOT 3

4 IF HERE OLDDP ! TP © DP ! 4

5 1 TPFLAG ! 5

6 ENDIF s 6

7 7

a s PERMANENT (—) 8

9 TPFLAG © 9

10 IF HERE TP ! OLDDP © DP ! 10

11 0 TPFLAG ! 11

12 ENDIF ; 12

13 13

14 14

15 —> 15

Screen s 62

© (Transientss DISPOSE)

1 : DISPOSE PERMANENT

£ CR . " Disposing..." VOC-LINK
3 BEGIN DUP 0 53279 Cl

4 BEGIN © DUP TAREA U(

5 UNTIL DUP ROT ! DUP 0=

6 UNTIL DROP VOC-LINK ©

7 BEGIN DUP 4 -

8 BEGIN DUP 0 53279 C!

9 BEGIN PFA LFA 9 DUP TAREA U<

10 UNTIL

11 DUP ROT PFA LFA ! DUP 0=

12 UNTIL DROP 9 DUP 0=

13 UNTIL DROP CCOMPILE3 FORTH

14 DEFINITIONS ." Done" CR ;
15 PERMANENT BASE !

Screen s

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

64

65

^

^

~)

©

Screens 66 thru 89 are blank

e

Screen s 90

0 (Utilss CARRAY

1 BASE © HEX

ARRAY)

CARRAY (cccc, n —)
CREATE SMUDGE (ccccs n — a

ALLOT

sCODE CA C, Cfl C, 18 C,
AS C, W C, 69 C, 02 C, 95 C,
00 C, 98 C, 65 C, W 1+ C,
95 C, 01 C, 4C C,
* + (CFA ©) , C;

(cccc, n —

)

ns 93

Utilss XC!

XC!

OVER

DO J

LOOP

X!

OVER

DO J

LOOP

C n®..

1- + >R

I - C!

R> DROP

(n0..

1- 2# +

12*-!

R> DROP

.nm cnt addr —)

@

!

.nm cnt

>R 0

5

addr —)

2

3

4

5

6

7

8

9

10

11

12

13

14

15

ARRAY

CREATE SMUDGE (ccccs n

2* ALLOT

5CODE 16 C, 00 C, 36 C, 01 C,
4C C, « CARRAY 08 + , Cf ==

)

a)

>

Scrs

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Cautions Remember limitation

on stack size of 30 values

because of OS conflict.)

-->

Screein: 91 Screen s 94

0 (Utilss CTABLE TABLE) 0

1

2

(Utilss CVECTOR VECTOR)

1

2 s CTABLE (cccc, —) s CVECTOR (cccc, cnt —)

3 CREATE SMUDGE (ccccs n — a) 3 CREATE SMUDGE (ccccs n — a)

4 ;CODE 4 HERE OVER ALLOT XC!

5 4C C, ' CARRAY 08 + , C? 5 sCODE

6 6 4C C, ? CARRAY 08 + , c?
7 s TABLE (cccc, —) 7

8 CREATE SMUDGE (ccccs n — a) 8 s VECTOR (cccc, cnt —)

9 ;CODE 9 CREATE SMUDGE (ccccs n — a)

10 4C C, ' ARRAY 0A + , Cf 1® HERE OVER 2* ALLOT X!

11 11 sCODE

12 12 4C C, ' ARRAY 0A + , C;

13 13'

14 14

15 —> 15 BASE !

Screen s 92 Screen

0

1

£

(Utilss 2CARRAY £ARRAY) 0

1

£s 2CARRAY (cccc, n n —)

3 (BUILDS (ccccs n n — a) 3

4 SWAP DUP , # ALLOT 4

5 DOES) 5

6 DUP >R © * + R> + 2+ s 6

7 7

8 s £ARRAY (cccc, n n —) 8

9 (BUILDS (ccccs n n — a) 9

10 SWAP DUP , * 2* ALLOT 10

11 DOES) 11

12 DUP >R @ * + 2*. R> +2+ I 12

13 13

14 14

15 ===> 15

95

r>

~)

~>

t)

©
Screens 96.thru 167 are blank

«

Screen s

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

168 Sere

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

?ns 171

Screens 169 Screen s

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

a 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

Screens 170 Screen s

0 CONTENTS OF THIS DISKs 0

1 1

£ DISPLAY FORMATTERS 30 LOAD £

3 TRANSIENTS? 60 LOAD 3

4 ARRAYS & THEIR COUSINSs 90 LOAD 4

5 5

6 6

.7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

172

173

r>

^

">

Screen s 174

0

I

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Screens 175

0

1

2

3

4

5

6

7

8

9

10

11

•12

13

14

15

Screens 176

0 (Error messages
1

2 Stack empty
3 '

4 Dictionary full
5

6 Wrong addressing mode
7

8 Is not unique
9

10 Value error

11

12 Disk address error

13

14 Stack full

15

Screens 177

8 Disk Error!

1

.2 Dictionary too big
3

4

5

6

7

8

9

10

11

12

13

14

15

Screens 178

0 < Error messaqes
1

£ Use only in Definitions
3

4 Execution only
5

6 Conditionals not paired
7

8 Definition not finished

9

10 In protected dictionary
11

12 Use only when loading
13

14 Off current screen

15

Screen s 179

8 Declare VOCABULARY

1

£

3

4

5

6

7

8

9

10

11

12

13

14

15

r

r

^Atariisa

VALPAR

INTERNATIONAL1

TUCSON, ARIZONA 8S713
-7141

valFORTH
T.M.

SOFTWARE SYSTEM
for ATARI*

TUiTLI ii vtMIIAPIIUML
mm mmmmm

floating pom? itotiT§Ne§

of Atari, Inc., a division of Warner Communications.

Software and Documentation!
©Copyright 1982

Valpar International

valFORTH
SOFTWARE SYSTEM

TURTU i voieRARHIC*.
JlMD AB¥A«eiD

FLOATING POINT -ROUTINIS

DRAWLN ROUTINES

ARMADILLO GRAPHICS

QUAN STRUCTURES

Stephen Maguire

Evan Rosen, William Volk

Evan Rosen

Software and Documentation

©Copyright 1982
Valpar International

Purchasers of this software and documentation package are
authorized only to make backup or archival copies of the
software, and only for personal use. Copying the accompany
ing documentation is prohibited.

Copies of software for distribution may be made only as
specified in the accompanying documentation.

VALPAR INTERNATIONAL

Disclaimer of Warranty
on Computer Programs

All Valpar International computer programs are distributed
on an "as is88 basis without warranty of any kind. The total
risk as to the quality and performance of such programs is with
the purchaser. Should the.programs prove defective following
their purchase* the purchaser and not the manufacturer, distributor
or retailer assumes the entire cost of all necessary servicing or
repair.

Valpar International shall have no liability or responsibility
to a purchaser, customer* or any other person or entity with
respect to any liability, loss, or damage caused directly or
indirectly by computer programs sold by Valpar International.
This disclaimer includes but is not limited to. any interruption
of service, loss of business or anticipatory profits or conse
quential damages resulting from the use or operation of such
computer programs.

Defective media (diskettes) will be replaced if diskette(s)
is returned to Valpar International within 30 days of date of sale
to user.

Defective media (diskettes) which is returned after the 30 day
sale date will be replaced upon the receipt by Valpar of a $12.00
Replacement Fee,

valGRAPHICS 1.2 AND QTRIG USER'S MANUAL

Table of Contents

Page
XLI. valGRAPHICS

a) Overview 2
b) Strolling Through valGraphics

(Walking the Armadillo) 5
c) Strolling Through valGraphics, II

(Windows, Lines, and Labeling) 14

XLII. valGRAPHICS GLOSSARIES

a) General Functions ..'..' 1
b) Windows and Coordinate,Systems 7
c) Options' 10
d) Screen Dump 14
e) Interfacing to Custom Display lists 15
f) A Note on QUAN Structures 16

XLIII. QUICK TRIG

XLIV. valGRAPHICS SUPPLIED SOURCE LISTING

f^

Version L2
July 1982

T.M.

Many different approaches to creating "computer graphics11 are possible* and,
indeed, many have been implemented* One of the most fruitful approaches* parti
cularly for two-dimensional graphics work, is a system usually called "turtle
graphics*81 The valGraphics package is a turtle-like system patterned after the
ATARI PILOT turtle graphics renditions though with many significant extensions.

XLI-l

Software and Documentation

©Copyright 1882
Valpar international

Overview

Turtle geometry was originally developed at MIT by Dr. Seymour y
Papert and the LOGO group there* Since that time* a variety of
different computer-based applications have been said to support
"turtle graphicsf" though in general they differ in various ways
from the initial LOGO formulation. The formulation adopted for this
package follows the ATARI PILOT turtle graphics nomenclature where
possible* In general, commands in this package are much smarter than
their PILOT counterparts, but have also been made friendly so that in
their default modes they are functionally similar to PILOT conmands.
Because this package differs from "true" turtle graphics in many ways,
it is called "armadillo graphics."

Some minor changes have been made in the names of a few ATARI
PILOT commands because of collisions with existing valFORTH names.
Important variations are listed here:

PILOT valGraphics

CLEAR WIPE (CLEAR exists)
FILL PHIL (FILL exists)
FILLTO PHILTO (for consistency)
QUIT (not needed and exists)
PEN ERASE 0 PEN (ERASE exists)
LOCATE LOOK (LOCATE exists)

It should be mentioned that for this package* virtually the entire ;
set of ATARI operating system graphics functions have been replaced by
much faster (approximately 6 times) and much smarter graphic routines.
Highlights of these improvements are:

* The PHIL and PHILTO functions allow filling to the left and/or
right, filling across areas already filled, filling until a
specific color is hit, filling until a specific color is not hit
(i.e., re-filling), filling until hitting a set boundary regardless
of what lies in the way* filling by either replacement or exclusive
QR'ing, and filling into or out of corners without artifacting.

* The DRAW and DRAWTO functions allow drawing by either replacement
or exclusive 0Rfing5 drawing until hitting a specified color*
drawing until a specific color is. not hit. Additionally* lines
are more symmetries arid optional starting point plot is supported
(the Atari routines never plot the first point'of a line).

* All line drawing and fill routines allow plotting in wide and narrow
screen width settings as, well as norma! ones* allowing true full
screen graphics and memory conservative graphics, for the advanced
programmer.

~>

XLI-2

* Graphic mode 7+ (s7 and a'half") is fully supported and is activated
like any other graphic mode by using the GR. command and standard
options. This mode is the four-color high-resolution graphic mode
found in most of the better video games available for the Atari
computers. (Antic mode 14.)

* Display windowing and clipping is full supported* Options include
"machine specific" coordinates for speed and "scaled" coordinates
for portability.

* TURNTWD (turn toward) and 2LNX (two line intersection) commands are
available allowing simplified perspective drawing.

Although the Atari 400/800 computers have extensive graphic capabilities
the need to keep the ROM operating system under 10K apparently forced Atari
to omit the highest resolution color graphic mode (graphic mode 7+) and allowed
only inefficient draw and fill routines to be implemented. Since this severely
limited the usefulness of the computer for plotting* both of these problems have
been corrected.

A New Graphic Mode

Many of the better video games for the Atari 400/800 computers use
a color graphic mode not supported In BASIC. By redefining the GR.
command, it was possible to implement this previously unavailable mode.

This new graphic mode, which in this package is called graphic mode 12,
is similar to graphic mode seven* The difference is that a pixel (a
single dot) in graphic 12 is half as tall as the same pixel in graphic
mode 7. This mode is activated in the same manner as other graphic
modes:

12 GR.

All options (i.e., split/full screen etcJ available for other
modes will work with this new mode. In the split screen graphics
12 mode, there are 160 horizontal by 160 vertical pixel locations.
In the full screen mode, there are 160 horizontal by 192 vertical
locations. Note that to use this mode the valGraphics package must
be loaded and the new draw routines must be used (the operating system
routines fail in this mode).

Draw and Fill Routines

Because the line and fill routines in this package represent
significant enhancement to the original operating system routines,
an explanation of the why's and how*s of this implementation is
offered in the following.

XLI-3

It was first decided that the line-drawing routines must be speeded
up so as to at least be in the class of routines of other 8 bit graphic ^
machines. Because of the differing bit structures in the various graphics "
modes, these routines take up about 1000 bytes of memory. This was deemed
a reasonable tradeoff. Since a complete rewrite had thus been elected,
the opportunity was taken to expand the versatility of the routines*
trading a small portion of the speed increase already gained. Several
capabilities were deemed desirable and were implemented:

* As mentioned above, the draw routines work in graphics mode 12.

* Assuming that display memory has been properly laid out, the draw
routines work in wide and narrow screen widths as well as the normal
ones.

* The draw and fill functions* at user option, XOR rather than replace
pixels in display memory so that new images can be written over back
ground images. (Images are then erased by rewriting, restoring the
background image.)

* The draw and fill functions can detect a variety of conditions so as
to allow concepts like "draw until" and "draw until not" as well as
"fill until" and "fill until not."

* The fill function allows the edge color and the surface color to be
different, at user option, with the default setting that they are
the same. , ^

* The fill function allows filling to the left, right, or both
simultaneously, at user option.

* Fills are able to start from and pass through corners without
artifacting, at user option. (Implemented for vertical draw only.)

* Simple initialization of draw functions for custom display lists
is provided.

These features were implemented and will be described shortly.

^

XLI-4

STROLLING THROUGH valGRAPHICS

Walking the Armadillo

To get started, insert your valGraphics disk and load in the armadillo
package and all optional graphics packages (ll+isii) (including the demos).
It would even be a good idea to SAVE a copy of this system in case you
crash later on. (Insert a formatted disk and type SAVE.) The load
addresses may be found on screen 170 of the disk. Note that you do not
need, and probably wonft want, to first load the graphics package provided
on your valFORTH 1.1 disk. Note also that as these packages load, some
load comments may be reported as "xxxx Is not unique" and can be ignored.
This message simply states that a word has just been defined with the
same name as an already existing word.

When plotting in BASIC, location (0,0) is in the upper lefthand
corner of the video display. All horizontal and vertical positions to the
right and down are referenced with positive offsets from the (0,0) point.
Armadillo graphics uses a somewhat different method to specify a location.

In armadillo graphics, the point (0,0) is located in the center of
the display* Horizontal locations to right are referenced with positive
offsets from this point, while locations to the left are referenced using
negative offsets. Likewise, locations higher on the screen from the origin
are referenced with positive vertical offsets while those lower on the
screen are referenced using negative ones. Since this setup follows the
standard cartesian coordinate system, function plotting is greatly simpli
fied.

270°
(-90°)

0°
(360°)
+ Y

- Y

180°
(-180°)

+ X 90°
(-270°)

Let's take a look at the basic armadillo graphic commands* Type:

8 GR. ON ASPECT

XLI-5

This will put the system into graphic mode 8 with the armadillo positioned
in the center of the display facing upward (0 degrees). The "dimensions" of
the display are 320 pixels wide and 160 pixels high. The boundaries are set s*y
from -159 to 159 left-to-right, and 79 to -79 top-to-bottom. (The lowest)
line of pixels and the furthest right are excluded for code symmetry and
shortness.) The command "ON ASPECT" will be explained later, but basically
it ensures that squares will look like squares and not like rectangles (as
in BASIC). First let's turn the armadillo to the right. To change its
direction, we use the TURN command:

90 TURN

This command turns the armadillo clockwise by .90 degrees from its current
direction. To draw a line (and move) the armadillo, the DRAW command can
be used. Try this:

30 DRAW 90 TURN 50 DRAW

A short line should have been drawn toward the right — 30 steps in the
direction the armadillo was facing. The 90 TURN command was then used
to aim the armadillo downward, and 50 steps in that direction were taken.
The DRAW command moves the armadillo the specified number of steps in the
direction that it is facing. Note that a negative step count tells the
armadillo to draw in the direction opposite that in which it faces. It
is also possible to move the armadillo to a specified point on the screen
regardless of which direction it is facing. The DRAWTO command is used
for this:

0 -60 DRAWTO 0 TURNTO ^

Although the armadillo was facing down, it moved directly to the
point (0,-60). Note that although it moved diagonally, it still is
facing directly downward (to 180 degrees). The TURNTO command is used
to face the armadillo in the specified direction regardless of where
it is currently facing. In this case, the armadillo is turned to face
0 degrees.

In addition to drawing lines as it moves, the armadillo can fill
in areas of the display. The PHIL command is used for this purpose
and functions very much like the DRAW command. (FILL is already
defined and if used mistakenly for PHIL, the system will probably
crash.) Try this:

20 PHIL

This commands the armadillo to take 20 steps in its current direction
filling the surface area to its right as it goes (the area to the left
can be filled also — more on that later). Similar to the DRAWTO command,
there is also a PHILTO command which works just like PHIL except that the
armadillo moves to a specified point regardless of the direction it is
currently facing. To PHIL to the origin (0,0), use:

0 0 PHILTO

The PHILTO command should have filled straight up to the point (0,0).

XLI-6

So far, we have used the TURN, TURNTO, DRAW, DRAWTO, PHIL, and PHILTO
commands. These are the basic "drawing" words, used constantly, when work
ing with armadillo graphics. You will encounter times when you need to
move the armadillo without drawing a line between its starting point and
its destination point. There are four similar conmands which allow this.
The GO, GOTO, GO., and GOTO. All reposition the armadillo without drawing
a line. The GO and GOTO commands function like DRAW and DRAWTO respectively;
however, the armadillo is placed at the position where the last dot of the
plotted line would have been and no line is drawn. GO. and GOTO, function
like GO and GOTO; however, a single point is plotted at the destination
point. Try this:

-30 0 GOTO. 180 TURNTO
10 PHIL 10 GO 10 PHIL 10 GO 10 PHIL
0 -60 DRAWTO

After entering the above, type FRAME
well, your display should look like:

to frame this picture. If all went

XLI-7

Let us.now explore the new graphic 12 mode* In this mode* there
are four colors numbered zero to three. When the armadillo is moved*
there must be some way to specify which color to DRAW with. The PEN
command is used for this purpose. Enter the graphic 12 mode by typing:

12 GR. ON ASPECT

The GR.-command automatically sets the draw color to one (usually
red)* LetBs draw some colored lines now:

10 DRAW (draw in color 1)
2 PEN 10 DRAW (draw in color 2)
3 PEN 10 DRAW (draw in color 3)

You should now have a vertical red, green, and blue line. Note that
color 0 is black (actually background) and is used primarily for erasing
lines. Besides setting the draw color, the PEN command also sets the
PHIL color.

-50 0 GOTO 45 TURN

2 PEN 10 PHIL

After positioning the armadillo in a good position for filling, the draw
and fill color is set to 2 (usually green) and 10 steps are taken. By
using PHPEN command, it is possible to set the PHIL color to something
other than the PEN color. PHPEN stands for "phi!-pen" and is used in
the same manner as the PEN command:

3 PHPEN 32 PHIL

Note how the edge line remains the color set by the last PEN command,
while the PHIL command uses the color set by the last PEN or PHPEN
(whichever came last) command. The PHIL color is always set by the PEN
command for convenience. Experiment with this a bit.

To clean the current display, the WIPE command is used. Usually
after wiping the display, the armadillo is repositioned to the center of
the screen using either the CENTER or CENTERO command. The CENTER command
simply does a "0 0 GOTO" while the CENTERO command does a "CENTER 0
TURNTO".

WIPE CENTERO

Either right or left filling can be performed, as well as both
simultaneously. The two commands RPHIL and LPHIL take an ON/OFF value
and instruct the next PHIL or PHILTO command to take appropriate action.
The default setting is "ON RPHIL" and "OFF LPHIL". The command DINIT will
return all settings to their default values. This is especially valuable
when learning, as it is easy to get fouled up. Type in the following set
of commands and observe what happens:

50 50 PHILTO
CENTER OFF RPHIL ON LPHIL
-50 50 PHILTO
CENTER ON RPHIL 1 PEN
40 PHIL

XLI-8

O

^

~>

This demonstration first shows right filling, then left filling,
and then simultaneous right/left filling. Note that although there was
nothing on the screen to halt the right/left fills, they still stopped
upon hitting the edge of the display. In fact, by using windows (which
will be described later), fill boundaries can be set anywhere on the
screen and fills will never occur outside of those boundaries. This is
invaluable when trying to restrict drawing and filling to a select
portion of the display*

Another unique feature of the fill routines is that they allow
filling over any pseudo-background color (default is 0). The PHBAK
command is.used to specify this background color. Like the PEN and PHPEN
commands, PHBAK accepts a color specification on the stack. WIPE uses
the color specified by the last PHBAK command, and the fill routines
recognize this as background to be filled over. Try this:

3 PHBAK WIPE

CENTERO 0 PEN 1 PHPEN

50 50 PHILTO

For the time being, we will leave the background color blue and
continue on. Next we are going to define a few words which will draw
simple shapes. Bear in mind that when defining shape words, TURNTO,
DRAWTO, and PHILTO should be avoided as they are absolute in nature.
Typically, figures should be drawn relative to the armadillo^ direction.
Likewise, the armadillo should generally be returned to its original
position and heading once the "canned" shape has been drawn. (For the
curious, the words DXl and DYl return the x-y coordinates of the armadilloss
current location. The word DAZM returns the directional angle of the
armadillo*) We shall now define a word which will draw a square on the
screen*

(#steps/side ---); SQUARE
DUPDRAW 90 TURN

DUPDRAW 90 TURN

DUPDRAW 90 TURN

DRAW 90 TURN

WIPE CENTERO 2 PEN

20 SQUARE
45 TURN 20 SQUARE

There are several points to be mentioned here* First, because
combinations of DUP with DRAW, GO, and GO. occur often, the words DUPDRAW,
DUPGO, and DUPGO. have been defined to conserve memory*

Also notice that the squares drawn really have sides of equal length
,(in BASIC, the vertical legs would be much shorter)* The armadillo package
performs "aspect ratio" calculations which ensures that "equal" lines are
drawn the same ...length regardless of their orientation to a fixed axis»
These routines were enabled at the beginning of this stroll with the
"ON ASPECT" command* Because these calculations do take time (approxi
mately 3 milliseconds per draw), they can be turned off using the command:

OFF ASPECT

XLI-9

Now, notice how in the last example* the second square was rotated
45 degrees from the first square* We can write simple words using this
effect that look pretty snappy on the screen:

(#steps/side —•)
(20 squares for fan)

: FAN

20 0

DO

18 TURN

DUP SQUARE
LOOP

DROP ;

WIPE CENTER 30 FAN

(360 degrees/20 - 18)

This word draws 20 squares on the screen each offset from each other
by 18 degrees. Try changing PEN colors and give different step sizes to
FAN and watch the results. Each of the boxes drawn by FAN is the same
size. We can write another simple word which will slightly increase the
size of each box drawn and obtain a different effect:

: WHIRL

(#boxes) 0
DO

1 3 / SQUARE
5 TURN

LOOP ;
WIPE CENTER 250 WHIRL

This word draws the specified number of boxes, each one rotated from
the last by 5 degrees* After three boxes are drawn, the box size is
increased. This is how the swirl effect is obtained. A slight variation
of this is to change the PEN color before each square is drawn, but this
is left to the reader*

Up to now, we have drawn lines from one point to another regardless
of what the line replaces* This is standard for line drawing routines*
In the valGraphics package, however, "draw until" is supported, In other
words, lines can be drawn that will stop on the first occurrence of another
line (actually, until the color specified by PHBAK or DRBAK, whichever
came last). When the draw-until switch DRUNT is ON, all DRAW, DRAWTO, PHIL,
and PHILTO commands will stop when the base line hits another line on the
display. Heress an example:

(#boxes —)

(increase size)

ON DRUNT

40 SQUARE
WIPE CENTERO

Don't worry if only the two vertical sides of the square were drawn, this
is normal. Since the draw routines in this package plot both the end
point and the starting point, the end point of the first side stopped
the line draw of the second side. In most cases, this is the desired -
function for DRAW, but while drawing-until (ON DRUNT), first point plotting
is not desired. For this reason, it can be easily turned off using the
DR1ST switch:

OFF DR1ST WIPE

40 SQUARE

XLI-10

^

~>

^

With DRUNT still on, try the following example:

WIPE 30 QCIRCLE
40 SQUARE

The QCIRCLE command draws a quick-and-dirty circle about the
armadillo, with the value on top of stack taken as the approximate
radius. Notice how the 40-step square turned out. Because the draw-
until mode is on, each side is drawn until another line is encountered.
Note, however, that even though the line was not drawn to the destina
tion point, the armadillo was still positioned there. Because interest
ing results can be obtained by using this feature, the RELOC command
must be used explicitly to reposition the armadillo to the last plotted
point of the line. The following two definitions might come in handy:

: DRWUNTIL (#steps —)
DILLO

ON DRUNT

DRAW DFL6

IF RELOC ENDIF

OFF DRUNT ;

: DRW2UNTIL (x y —) '
DILLO

ON DRUNT

DRAWTO DFLG

IF RELOC ENDIF

OFF DRUNT :

(DFLG is a flag set true only if the last DRAW or DRAWTO crossed
the current window.)

These two commands will automatically reposition the armadillo at
the end of the drawn line after each draw. One last point about draw-
until — occasionally it is desirable to know when a draw-unt.il line was
stopped by the draw-until function, rather than by reaching an end point
or window boundary. The 7DRSTP word will return a one (1) if the last
line was stopped, otherwise it will return zero. Try drawing a few lines
and verifying this. ?DRSTP is in the DILLO vocabulary. (See the glossary.)

Up until now, when we filled areas or drew-until, both the fills
and draws would stop when encountering a non-pseudo background color (set
by PHBAK or DRBAK). Often, it is desirable to refill an area (i.e.,
fill until background is hit) or draw-until hitting the pseudo background
color. There are two switches which can be turned ON or OFF as desired.
The PHUNOT (fill until not) switch, when ON, fills until the color set
by the last PHBAK command is not hit. This is the defaulat condition
(i.e., fill until background is not hit). When OFF, the fill routines
continue to fill until the pseudo background color is hit. Likewise, the
DRUNOT (draw until not) switch, when ON, draws until the color set by the
last PHBAK or DRBAK (whichever came last) command is hit. Let's take a
look at this:

DINIT (Reset draw/fill switches)
2 PEN 3 PHPEN

WIPE CENTERO 50 50 PHILTO

1 PHPEN 180 TURNTO

OFF PHUNOT (fill while not background)
OFF RPHIL ON LPHIL 60 PHIL

XLI-11

As you may recall, the DINIT command initializes all eleven switch
settings (five of which have yet to be introduced). Next a normal right ^
fill (filling over background) is performed. The PHUNOT switch is then '
set for filling while not background and a left fill is performed.
Notice that no filling occurred when the base fill-line extended out of
the previously filled area.

DRUNOT works in the same manner. Execute the last example a second
time, but turn both PHUNOT and DRUNOT off where previously just PHUNOT
was turned off. Also turn DRUNT on. This time, no line should extend
past the previously filled area. (Note that the base line of a fill
responds to all the draw switches).

To finish off this first part of the stroll, the final five draw
switches will be explained. Briefly, they are PH-DR which allows the
base line of a fill to be drawn or not, DRXOR and PHXOR which allow
lines and fills to be XOR'd into place, PHCRNR which enables/disables
rudimentary corner check tests for filling, and PHUNT which allows
filling to the edge regardless of what lies in the way.

The PH+DR switch is available because there are times when it is not
desirable to actually draw the base line of a fill. This is the case when
PAINTing (i.e., "shape filling," which is not supported but may be imple
mented). The default value for PH+DR is ON,. When PH+DR is OFF , the
pixels where the base line should be drawn are left untouched.

The DRXOR and PHXOR switches allow lines and fills to be ^
XOR'd into place. This has the useful property that by simply redrawing
or refilling the exact same line or shape the object will erase itself.
For a good example of this, we can use graphic mode 8:

8 GR. DINIT 250 WHIRL

1 PHBAK ON DRXOR WIPE

Recall that the WIPE command uses the value set by the PHBAK command-
in this case, one. WIPE is defined to use a multiple DRAW and therefore
responds to most (but not all) of the draw switches. Because the WIPE is
performed with the DRXOR mode on, the display is inverted. WIPE the dis
play a second time to re-invert it. To erase the display, DRXOR must
be turned off. Try this:

0 PHBAK OFF DRXOR WIPE ON DRXOR
1 PEN CENTERO 40 FAN
40 FAN (one more time)

It is important to remember that lines drawn with pen zero have no'
effect in the DRXOR mode. Likewise, first point plot should generally be
turned off when DRXOR is on otherwise endpoints will be lost. Now to
demonstrate PHXOR and PHUNT try these examples:

DINIT WIPE (normal situation)
CENTERO 100 WHIRL 50 50 PHILTO *\

XLI-12

c

Now with PHUNT off:

CENTERO OFF PHUNT 50 50 PHILTO

The last fill command should have filled clear to the edge of the display*
ignoring everything in its path. Using this with PHXOR* interesting results
can be obtained:

WIPE CENTERO 50 FAN

ON PHXOR 50 50 PHILTO

Now* try:

CENTERO 50 50 PHILTO

By using windows (described later), the fill and draw commands can be
restricted to selected areas of the display. In combination with windows*
PHXOR can produce astounding visual effects (especially in GTIA modes).

The last remaining switch to be described is the PHCRNR switch*
PHCRNR allows rudimentary corner checking for vertical fills. Because
its use is specialized, PHCRNR is normally turned off. The following
example will show its function:

DINIT CENTERO WIPE

50 GO 50 0 DRAWTO 0 0 DRAWTO 50 PHIL

Notice the artifact at the top corner* Now* turn PHCRNR on and perform
the same example (less the DINIT command). This time*, no artifact should
have appeared* It is important to remember that these comer tests will
not work with many diagonal fills, and completely fail when refilling an
area. Also note that when first point plot is disabled* even vertical
filling fails.

All of the basic armadillo commands have been explained and are
summarized in the glossary and on the valGraphic Handy Reference Card.
Although many commands have been discussed, there are many more left
•to talk about. These include the perspective drawing commands for
three dimensional displays, and the complete set of window commands
which will be described next*

(NOTE: In all of the above examples* WIPE has been used to
clear the display, In many cases, the memory FILL
command can be used instead: 88 @ n 0 FILL where
n is the size of display memory in bytes* This method
is much faster but cannot be used with windows,)

XLI-13

STROLLING THROUGH valGRAPHICS, PART II:

Windows, Lines and Labeling v J

Windows

Up until now we've been working in the base window that is set up when using
the GR. command. Let's compose some other windows. Type:

12 GR.
FRAME

10 QUBE
-50 -10 30 -10 WINDOW
FRAME

DOT

We entered graphics 12, framed the base window, made a window whose left, right,
top, and bottom edges were at -50, -10, 30, and -10 respectively, framed it, and
then put a dot at the armadillo and found that it was.at the center of the new
window. Now type

25 QUBE

and note that the cube is clipped within the boundaries of the new window, not
the old one. This could be very useful, say, in showing what was visible through
a "real" window in a house that you had drawn, without going to a lot of extra
trouble to restrict the image to the house's window. Now type

WIPE

CENTERO

25 QUBE

Nothing happens. This is because CENTERO centered the armadillo in the base
window. We need to use a different word to re-center in the new window. Type

WCTRO 25 QUBE

That's more like it. WCTRO stands for "Window CenTeR 0 turnto," and there is
also just a WCTR, for "Window CenTeR." Let's try some of the other tricks
from before:

3 PHBAK

WIPE

WCTR

20 QUBE
FRAME

ON DRXOR

WIPE

Get the idea? When we did ON DRXOR, the draw routines, which are used by WIPE,
started doing an XOR instead of a replace, with the same effect as we've seen
before, but this time restricted to a smaller window. Type

~>

XLI-14

e

DINIT

WIPE

DOT

to get things back to normal. Note that DINIT returns to the base window and
so WIPE wipes the entire screen. The window in which we were just working is
forgotten. (We'll discuss ways to remember it a little later.) DOT shows that
the armadillo is back at the center. Now type

ON ASPECT

-50 -10 30 -10 WINDOW

FRAME

and you see that this "same" 40 by 40 window as before now looks much more
nearly square. This illustrates that ASPECT works on windows as well as lines.
With ASPECT on, what you give up in order to get better shapes is some informa
tion about what coordinates the top and bottom of the screen actually are, but
for "hands on" use this is not much of a loss. Let's make two more of this
type of window:

2 PEN
0 30 20 -30 WINDOW FRAME

DOT

OK, and then

-30 30 90 -90 WINDOW

Notice that this window is larger than the base window. Now type

DOT

FRAME

and notice the trash in the text window. If you choose to make a window
larger than the base window, the system will not protect you; it assumes that
you know what you're doing.

Type CLS once or twice to clear the screen. Then type

12 GR.

10 50 -10 -60 RELWND

FRAME

2 PEN

40 QUBE

Interesting. Now a 40 QUBE used to be much bigger; but because we typed RELWND
instead of WINDOW, objects are drawn relative to the new window, as if it were
the base window. Type

3 PHBAK

WIPE

FRAME

10 50 -10 -60 RELWND

FRAME

40 QUBE

XLI-15

Get the idea? Relative windows are useful for all sorts of tricks. Often, it
would be helpful to be able to return to a window, and relative windows are the
hardest to reconstruct. Try typing, on one line,

THISWND LIVING-ROOM

(Defining words should always be followed by the name of the new word on the
same line.)

By typing LIVING-ROOM later on we can return to this window, as a relative window,
with no further work. To demonstrate, type

0 PHBAK
WIPE

BASWND

ON DRXOR
1 PHBAK
WIPE

-20 0 20 0 WINDOW WIPE
THISWND MY-ROOM

LIVING-ROOM

WIPE

50 QUBE
MY-ROOM

50 QUBE

Normal windows, created by WINDOW, of course can also be named more directly:

: window-name number number number number WINDOW ;

and you've got it. f")

Well, what else? Type

40 GR.

What have we here? 40 is 32 + 8 so we've entered 8 GR. without pre-erasing.
(This is one of the standard GR. options, you'll recall.) Since 12 GR. and
8 GR. occupy exactly the same display memory, what we see is the 12 GR. image
data interpreted as 8 GR. Four color 8 GR. This effect has been written up
in various places, and here it is. You can come back and play with this sometime.
Right now, type

DINIT

WIPE
DOT (you may not be able to see it on your screen

without adjustment.)
0-30 GOTO 60 DRAW
30 0 GOTO 270 TURNTO 60 DRAW
(Now it's more visible)
87 -31 GOTO.
(Move away)
0 0 TURNTWD ("turn-toward")
100 DRAW

XLI-16

:*>

~>

c

You'll notice that the line doesn't hit 0,0 exactly. This is because the
armadillo's direction is only represented to the nearest degree. Still, this
is good enough for most purposes..

Finally, let's draw the a rectangular solid in two-point perspective.
(The procedure in this example is not necessarily the best one, but it
illustrates several capabilities. You might want to have the debugging
package loaded from the valFORTH 1.1 disk, and have the stack turned on.
That way you can follow the action on the stack also.) First we set up a
horizon and two vanishing points:

WIPE

-200 60 GOTO 90 TURNTO 500 DRAW

-100 60 NAMEPT VP1 (name the point on stack)
100 60 NAMEPT VP2

Then we "construct" the solid

CENTER VP1 TURNTWD 40 DRAW

THISPT PT1 (name the present point)
CENTER VP2 TURNTWD 30 DRAW

THISPT PT2

CENTERO 20 DRAW

THISPT PT3
VP1 TURNTWD MAKLN (leave a "line" on the stack)
PT1 GOTO 0 TURNTO MAKLN (leave a second line)
2LNX (find their intersection)
NAMEPT PT4 (and name the point)
PT4 DRAWTO PT3 DRAWTO

VP2 TURNTWD MAKLN (do it again)
PT2 GOTO 0 TURNTO MAKLN (second line)
2LNX (intersection)
2DUP GOTO (make a copy then go there)
PT3 DRAWTO PT2 GOTO 2DUP DRAWTO (put in 2 more lines)
VP1 TURNTWD MAKLN PT4 GOTO VP2 TURNTWD MAKLN 2LNX
DRAWTO DRAWTO (finished)
0 GR. VLIST (see the new words: point names.)
40 GR. (Still there.)

In addition to MAKLN there is also THISLN which name the line the armadillo
lies on, and NAMELN which will name a line on the stack. Given two points on
the stack, 2PT-LN will change the four values into three, suitable for use
with NAMELN. Practice, and some study of the glossary, will help. The user
should realize that points and lines can't be named very easily within a
program, but only while the program is loading. Within a program, use the
stack or array structures for saving points and lines.

This stroll is not meant to exhaust the possibilities of this package, but
merely to indicate them. A clever programmer, for instance, would have little
trouble in figuring out how to interface this package to a joystick to make a
very versatile sketchpad.

Hmmmmm?

XLI-17

vpJ ^^^^HS-fflfr^

\:";'-. ••••"-• ::^^":':^

O"

{Ititenti^al Ii lef£ &1 jmS||

ff*y;

^

:XEP18:'

ililllli&li^^

valGRAPHICS GLOSSARIES

Turtle graphics, and so also valGRAPHICS, uses a coordinate system different
from that used by the Atari OS. In valGRAPHICS, the center of the graphics
display is the point 0,0. "x" values are positive to the right and negative to
the left, while "y" values are positive toward the top of the display and
negative toward the bottom. The maximum values of x and y may vary between
display modes, depending on various user options that are selected. In this
regard, see examples in the "Strolling Through valGRAPHICS" sections of this
package, and also the words MCOOR and SCOOR in the "Windows" section below.
In the glossary that follows, all mention of coordinates will :apply to valGRAPHICS
coordinates rather than to Atari OS coordinates.

The DRAW, DRAWTO, PHIL, and PHILTO commands support a number of options
with a fair degree of complexity and power when used fully. These commands and
options are discussed as a group at the end of the glossary and summarized with
a chart which also appears on the handy reference card. The functions discussed
are necessarily complex; however, the command DINIT ("d-init") is provided so
that the user may return the system to a "standard-option" status during
experimentation and practice, or during actual program execution.

The term "pixel" stands for "picture element" and refers to the smallest
"point" which may be drawn in a given graphics mode.

As usual, "color" specification numbers refer to color registers. The
actual colors in the color registers may be changed by various means, including
loading the COLOR COMMANDS package from the valFORTH 1.1 disk and using the
SETCOLOR or SE, command.

On GTIA-equipped machines in 10 GR. there are nine colors available,
because the four player/missile color registers are also used. Since these
registers sit just below the playfield color registers in memory, they may be
set by using negative "playfield" numbers when using SE. . For instance, -3
PINK 6 SE. will set player/missile 1 (= -3 + 4) to PINK 6.

On GTIA-equipped machines in 9 GR. the "color" set by the various color
commands below, e.g. PEN, PHPEN, PHBAK, etc., is interpreted explicitly as
luminance between 0 and 15. The hue is that of the background color register.

On GTIA-equipped machines in 11 GR. the "color" set by the various color
commands below is interpreted explicitly as a hue between 0 and 15. The lum
is that of the background color register.

The term "armadillo" rather than "turtle" will be used in this package.

DILLO (short for armadillo) is a vocabulary that branches from FORTH.
All of the system words in this package have been put in the DILLO vocabulary
to keep them out of the way during VLIST and other tasks. Some little-used
words are also in DILLO, though advanced users may want to get at them. To
enter the DILLO vocabulary simply type DILLO and these words will now be
recognized by the system. Note that since the word : generally puts the
system back into the FORTH vocabulary, DILLO may have to be used within a
colon definition. See the source code for numerous examples of this,, Words
in the DILLO vocabulary are so specified in the glossary below. (The word
DILLO is immediate.)

For clarity, some definitions may be repeated. Within this glossary,
however, the same name indicates the same word.

LXII-1

valGRAPHICS Glossary
Part I of III

General Functions:

GR, (n --)

Appears to function as always* but is now much more, powerful:

* For n = 12, or 12 with higher bits set for the usual options* the mode
known popularly as 7+ will be activated. This mode is set by Antic instruction
14 and its characteristics are listed on the handy reference card which
accompanies this package*

* For n = 3 to 12, (possibly with higher bit options), the appropriate graphics
mode will be set up* and all armadillo parameters will be initialized,. Note*
of course* that if your machine does not have a GTIA chip, then modes 9* 10,
and 11 will not operate as they should,

* For n = 0 to 2, (plus higher bit options), the system will respond as usual.

* GR* initializes a number of system and user quantities. Data about pixel
and display-memory dimensions are sent to appropriate addresses, A pen color
register of 1 is set by 1 PEN, and the background color register for fill
commands is set to 0 by 0 PHBAK. OFF ASPECT is executed.

PEN (n .—)

This command is used to change the color that the armadillo draws with*
PEN sets a new color register, n, to be used by the DRAW, DRAWTO, PHIL, and
PHILTO commands,

PHPEN (n ~)

This command is used to change the color that the armadillo fills with,
PHPEN sets a new color register, n, to be used by the PHIL and PHILTO commands*
Note that PEN also sets a new color register for PHIL and PHILTO, so the value
used by PHIL and PHILTO will be determined by whichever command, PEN OR PHPEN,
was done last.

DRCLR (-- b)

Returns the present color used by the armadillo for drawing* DRCLR is
in the DILLO vocabulary.

PHCLR (— b)

Returns the present color used for filling, PHCLR is in the DILLO
vocabulary,

GO (n —)

GO moves the armadillo n units in the direction in which it is facing.
No lines are drawn or points plotted.

DUPGO (n ~~ n)

Same as GO, but doesnst destroy stack argument*

XLII-2

~>

~>

GO. (n —)

GO. moves the armadillo n units in the direction in which it is facing
and then pokes the pixel at its new location with the value set by the last
PEN command.

DUPGO. (n — n)

Same as GO., but doesn't destroy stack argument.

DOT .(--).

DOT puts a dot of the present armadillo color, set by PEN, at the present
armadillo position.

GOTO (x y —)

GOTO positions the armadillo at x,y. No lines are drawn or points plotted.

GOTO. (x y ~ }

GOTO, positions the armadillo at x,y and pokes the pixel at the new
position according to the color register selected by the last PEN command.

CENTER '(--)•

Positions the armadillo at the point 0,0, The direction the armadillo
is facing is unchanged*

CENTERO (—)

Positions the armadillo at the point 0,0 and turns it to face 0, i.e.,
straight up.

RELOC (—)

Positions the armadillo at the last point drawn by the system routines.
This is a special purpose command and is used in conjunction with clipping
in windows, and with the "draw-until" option, described elsewhere. RELOC is
in the DILLO vocabulary.

ASPECT (ON or OFF —)

ON ASPECT will cause vertical components of subsequent graphics commands
to be scaled to account for the fact that pixels are not square. Thus, circles
will be rounder, squares will be squarer, and so on. Of course, shapes that
previously fit on the screen may not fit any longer, as a result of the
vertical expansion. OFF ASPECT will turn the compensation off for subsequent
commands. OFF is the default mode, but this may be altered by changing "OFF
ASPECT" to "ON ASPECT" at the end of the source code for GR.

LOOK (x y '-- b }

This command returns the value of the pixel at location x,y. LOOK does
not move the armadillo. For example, to find the color of the pixel under
the armadillo, use the armadillo's coordinates: DXl DYl LOOK.

XLII-3

DXl (— n)

Returns the x coordinate of the armadillo.

DYl (- n)

Returns the y coordinate of the armadillo.

TURN (n -)

Changes the direction that the armadillo is facing by n degrees clockwise.
Hence, if n is negative, the armadillo will turn counter-clockwise.

TURNTO (n -)

Turns the armadillo to a heading of n degrees from vertical. Hence,
0 TURNTO points the armadillo toward the top of the display, and 90 TURNTO
points the armadillo toward the right edge of the display, and -90 TURNTO or 270
TURNTO both point the armadillo toward the left edge of the display.

TURNTWD (x y —)

Turns the armadillo so that it faces toward the point x,y. "Turn-toward."

DAZM (- n)

Returns the direction, in degrees (0-359), in which the armadillo is
facing. Stands for "dillo azimuth."

DINIT (-)

DINIT stands for "armaDillo INITialize." Use it to return all options
to their default values and to center the armadillo in the display. Useful
during practice and experimentation.

DRAW (n —)

Move the armadillo n units in the direction in which it is heading. Draw
that portion of the line of travel of the armadillo, including the first point,
that falls within the current window, using the current PEN value.

DRAWTO (x y — }

Move the armadillo to x y and draw that portion of the line of travel that
falls within the current window, using the current PEN color register.

PHIL (n —)

Move the armadillo n spaces in the direction it is heading, and as in DRAW,
color that portion of the path of travel with the PEN value. Also perform a
fill to the right during the time that the armadillo is in the current window.

PHILTO (x y —)

Move the armadillo to the point x y. Then proceed as in PHIL*

XLII-4

^

n

^

Windows and Coordinate Systems

The following discussion is largely technical. Even so, it may be skimmed
by the casual user, who can also get a "hands-on8I feel for the operation of
windows and coordinate systems by following the examples in the HStrolling
Through valGRAPHICS81 section of this package. The proliferation of quantities
•in this package is necessitated by allowing it to handle both "absolute" and
"relative18 windows at the same time. Because of the complex changes of coordi
nate system that this entails, a variety of different data are kept on system
configuration. This process is transparent to the casual user but may be
used with great power by the experienced programmer.

This package uses cartesian (rectangular) coordinate systems (CS's)
throughout* For highest speed in graphics work, the graphics coordinate system
should be in the same "scale" as the hardware. That is, moving one unit
horizontally or vertically in the graphics CS should move the graphics cursor
'(in this case called the armadillo), one pixel. Doing this avoids additional,
usually relatively slow, multiplication and division operations to make the
graphics CS "fit15 the hardware CS„ However, sometimes the speed sacrifice is
worthwhile in achieving a desired effect. Therefore, both types of CS are
supported in this package. The default CS is of the first type, and it may also
be called into play explicitly by the command "MCOQR" which stands for "machine
coordinates," This mode is used,for high-speed at some sacrifice of flexibility.
The optional mode is called by "SCOOR" which stands for "scaled coordinates*"
Before executing SCOOR, the user may want to set up coordinate boundaries by
using SET-SCALE, defined below. Moving between these two types of CS may also
be handled automatically by the window routines discussed next* Because of
automatic initialization routines in GR., the user may employ both machine and
scaled CSss without ever calling them up explicitly. This happens through the
commands WINDOW, which puts the system into the machine CS before interpreting
its 4 stack arguments; and RELWND, which puts- the system into scaled coordinates
before interpreting its 4 stack arguments* (Clearly, RELWND must force the
system into scaled coordinates, since it will be creating a window with the
same numerical coordinates as the one RELWND works from, though the windows
will generally be different sizes.) For some help in familiarization with these
procedures, please refer to the examples in the "Strolling..." section.

A "window," for the purposes of this package, is a rectangular portion of
the graphics display area, Windows are implemented to allow "clipping" as
well as some additional scaling and distortion features* Clipping allows the
armadillo to travel inside and outside the currently active window, while allow
ing drawing and filling only while the armadillo is within the boundaries of the
window.

The current window1s "physical" boundaries are kept in the system quans
WNDLFT, WNDRGT, WNDTOP, and WNDBOT. (For an explanation-of the QUAN structure,
see the section on this topic.) The user does not generally access these
quantities directly, but sometimes may want to do so for special effects.
WNDLFT and WNDRGT.are, respectively, the number of pixels from the left edge of
the display to the left edge of the window, and the number of pixels from the
left edge of the display to the right edge of the window. Similarly, WNDTOP
and WNDBOT are referenced from the top of the display. Again, the user doesn't
have to use these quantities; they are, however, the "bedrock" of the windowing
process. These quans are in the DILLO vocabulary.

XLII-5

When a graphics-type GR., command is executed (3-12, see GR. above) a window,
called the "base window," is set up which takes up the entire graphics display
area. (The "physical" edges of the base window are stored in the system quans
WNDL, WNDR, WNDT, and WNDB, which have meanings similar to WNDLFT, etc., above,
and are likewise in the DILLO vocabulary.) The user may generally return to
the base window at any time before leaving the graphics mode by executing BASWND.
When the base window is made current by the user explicitly or by GR., the
armadillo is placed at the point 0,0, i.e., the center of the window, and
turned to 0 degrees, or straight up. The default "numerical" values of the
window-boundaries are set so that they correspond to pixel counts vertically and
horizontally. For instance, in 7 GR* the numerical boundaries would be +-79
horizontally (since there are 160 pixels across the display in that mode), and
+-39 vertically (since the mode is 80 pixels high.) These values are stored in
the system quans WNDW, WNDE, WNDN, and WNDS, which stand for "window-west,18 etc.
These values may be altered by means described below (SET-SCALE), although the
change will slow down the draw routines because of the extra transformation
required when not working in the "natural" coordinates of the system.

After initializing to a graphics mode with GR., the user may use the various
commands in this package to create graphics displays in the base window.. However,
additional flexibility is available to the user by defining new windows, as-
follows.

The command WINDOW is used to define temporarily a rectangular area of the
display as the current window. This definition will last until the next window
defining command e.g., WINDOW, BASWND, GR», DINIT, etc. WINDOW defines the
window in the coordinate system of the base window. Indeed, WINDOW does
BASWND before proceeding. (The base window is set up automatically by GR., or
by DEFBAS when using a customized display list*) WINDOW expects four arguments /j
on the stack, namely the left, right, top and botton edges of the new window, w
expressed in the coordinate system of the base window. (RELWND ("rel-wind"),
defines a window relative to the current window, not the base window; its
description otherwise parallels that of WINDOW.) When WINDOW is executed, a new
window is made current, and all applicable internal quans are altered as
appropriate. The armadillo is centered in the new window and turned to 0 degrees.
The numerical boundaries of the new window will be, as stated before, WNDW, WNDE,
WNDN, and WNDS*

(Advanced users: NOTE that, when in a GR, mode, decimal 88 @ will leave the
address of the byte in the upper-left-hand corner of the display. Internal
calculations are based on this location. In general, if the user wishes to
redirect the graphics routines in this package to a display memory area in a
non-GR. display mode, he or she need do two things: Store the appropriate value
into memory location decimal 88, and then execute DEFBAS, described below, to
establish a base window. Note, however, that if your display memory makes a
discontinuous jump, as can occur for instance when crossing a 4K boundary, the
graphics routines will not function properly.)

Additionally, the window-naming word, THISWND, is provided for ease
simplicity in returning to a specific window.

Reference on clipping algorithms:
A Practical Introduction to Computer Programs, Ian 0. Angel!.

XLII-6

^

^

valGRAPHICS GLOSSARY

Part II of III
Windows and Coordinate Systems

WINDOW (left right top bottom ~~)

Sets a new window whose boundaries, expressed in the coordinate system of
the base window (not the current window), are taken from the stack in the order
indicated. The armadillo is centered in the new window and turned to a zero
angle. Machine coordinates are activated. (See MCOOR).

RELWND (left right top bottom —)

Makes current a window whose edges are as indicated on stack in the
coordinate system of the current window (not the base window). Scaled coordi
nates are activated. (See SCOOR).

WIPE (-)

Colors the entire current window according to the color register selected
by the last PHBAK command. Note that since WIPE uses the system routine DRAWLN
it will be affected by DRXOR. Hence if ON DRXOR has been executed last then WIPE
will XOR all pixels in the entire current window with the value set by PHBAK,
rather than replacing them with that value. This is useful for interesting and
often eerie effects*

FRAME (—)

Draws a line around the current window according to the color register
selected by the last PEN command,

BASWND (~)

Makes the base window (usually the full window first put up by a GR. command)
current, centers the armadillo and turns it to 0 degrees.

THISWND xxx, (—)
xxx: (—)

Creates a word, xxx, which when executed makes current the window which
was current at the time xxx was defined. Also centers the armadillo and turns
it to 0 degrees, and restores XFORM to its state at the time xxx was defined.
Located in the "Window Naming11 package*

DEFBAS (left right top bottom —)

Advanced users* Used to set up a base window when not using GR.. The
values indicated are the number of pixels from the left edge of the display
(for left and right) and from the top edge of the display (for top and bottom).
Before using this command, the value at decimal 88 should be set to point to the
byte that represents the upper-left-hand corner of the display area to be used
for graphics. DEFBAS is in the DILLO vocabulary.

XLII-7

SET-SCALE (horiz vert —)

Used to redefine the horizontal and vertical numerical boundaries of ,*•%
windows. After executing SET-SCALE, the SCOOR (stands for "scaled coordinates") /
command will set windows to range horizontally between +-horiz and vertically
between +-vert. Note that the point 0,0 will remain the center point of
windows. Since the command RELWND does SCOOR, relative windows will reflect
use of SET-SCALE. SET-SCALE is in the DILLO vocabulary.

MCOOR (-)

Sets the horizontal and vertical numerical boundaries of windows to
correspond to the number of pixels in each direction in the base window. "MCOOR"
stands for "machine coordinates." It is not generally accessed directly by the
user, wi.th one exception: After having done a RELWND and returning to the base
window by BASWND, an increase in speed may be had by executing MCOOR, if the
user was using the default scale set automatically by GR. This is a fine
point, but worth noting. MCOOR is in the DILLO vocabulary.

SCOOR (—)

Sets the horizontal and vertical numerical boundaries of windows to
correspond to the default values set by GR. or by values set by SET-SCALE.
"SCOOR" stands for "scaled coordinates." It is not generally accessed directly
by the user. SCOOR is in the DILLO vocabulary.

:WCTR (—) • *~)
Centers the armadillo in the current window.

:WCTR0 (—)

Centers the armadillo in the current window and turns it to 0 degrees.

~>

XLII-8

Line-naming and line manipulation; point-naming

These packages support labeling various graphics "entities" for convenience in
recalling them subsequently, for a variety of purposes.

Lines are stored internally as three-number quantities which are the
(non-unique) A, B, and C parameters in standard algebraic line notation.
(See the section on The Straight Line in Mathematical Handbook for Scientists
and Engineers, 2nd Edition, by Korn and Korn. Point/slope representation is
insufficient; point/azimuth representation would work but was not used because
of some doubts concerning execution speed.) Labeling of lines is done princi
pally for subsequent geometric-construction-type operations, like finding the
intersection of two lines, or the point where the armadillo would intersect
a given line.

NAMEPT xxx, (x y —)
xxx: (-- x y)

Creates a word xxx. When xxx is executed, it returns x and y to the stack.

THISPT xxx, ()
xxx: (-- x y)

Creates a word xxx. When xxx is executed, it returns to the stack the x
and y coordinates of the armadillo in the coordinate system of the window current
at the time xxx was created.

2PT-LN (xl yl x2 y2 -- a b c)

Takes the coordinates of two points on the stack and leaves A, B, and C
coefficients of the line connecting two points. "Two-point-line."

MAKLN (— a b c)

Pushes to stack the A, B, C representation of the imaginary line on which
the armadillo is sitting and along which it faces. Useful in finding where the
armadillo would intersect a line along its current path. ("Make-line.")

NAMELN xxx, (a b c —
xxx: (— a b c

Creates the word xxx. When xxx is executed, it returns the values a b c
to the stack.

THISLN xxx, (—)
xxx: (— a b c)

Creates the word xxx. When xxx is executed, it returns the A B and C
values of the line that the armadillo was sitting on and facing along when xxx
was created. ("This-line.")

2LNX (al bl cl a2 b2 c2 — x y)

Given two lines on the stack in a b c form, 2LNX returns the point of
intersection of the two lines. If the lines are parallel or if their point of
intersection is very distant and would cause coordinate overflow, 2LNX will
leave -1, -1. ("Two-line-intersection" or "Two-line-X.")

XLII-9

Options

valGRAPHICS GLOSSARY

Part III of III

The basic commands, followed by the commands that operate the "switches" on
options, are described below.

DRAW (n —)

Standard option: Move the armadillo n units in the direction in
which it is heading. Draw that portion of the line of travel of the
armadillo, including the first point, that falls within the current
window, using the current PEN value.

ON DRXOR: XOR pixels with the PEN color instead of overwriting
them with the PEN color.

ON DRUNT: Stop on hitting a pixel of the value selected with the
last DRBAK or PHBAK command, whichever was last.

OFF DRUNOT: DRUNOT makes a difference only when ON DRUNT has been
executed. When DRUNOT is off and DRUNT is on, lines halt upon hitting
a pixel of the last color set by DRBAK or PHBAK, whichever was executed
last. When DRUNOT is on, which is the default case, and DRUNT is on
also, lines will halt upon hitting a pixel not of the last color set by
DRBAK or PHBAK, whichever was executed last. ^.

OFF DR1ST: Don't draw the first point in a line. Useful when
drawing connected lines after ON DRUNT so that the last point of a line
won't be interpreted as the stop condition of the next line. See
"Strolling..." for an example.

DRAWTO (x y —)

Standard option: Move the armadillo to x y and draw that portion
of the line of travel that falls within the current window, using the
current PEN color register.

ON DRXOR: XOR pixels with the PEN color instead of overwriting them
with the PEN value.

ON DRUNT: Stop on encountering a pixel of the color selected with
the last DRBAK or PHBAK command, whichever was last.

OFF DRUNOT: DRUNOT makes a difference only when ON DRUNT has been
executed. When DRUNOT is off and DRUNT is on, Tines halt upon hitting
a pixel of the last color set by DRBAK or PHBAK, whichever was executed
last. When DRUNOT is on, which is the default case, and DRUNT is on
also, lines will halt upon hitting a pixel not of the last color set
by DRBAK or PHBAK, whichever was executed last.

XLII-10

DRAWTO (cont8d)

OFF DR1ST: Donst draw the first point in a line. Useful when
drawing connected lines after ON DRUNT so that the last point of a
line wonft be interpreted as the stop condition of the next line* See
"Strolling..." for an example.

?DRSTP (— f)

?DRSTP is a quan whose value is adjusted after each DRAW and DRAWTO.
If 7DRSTP is true (non-zero) then the last DRAW or DRAWTO was terminated
because ON DRUNT had been executed and the line-drawing routine encountered
a pixel whose value was that selected by the last DRBAK or PHBAK command,
whichever was last* 7DRSTP is useful in conjunction with RELOC.

RELOC (--)

Relocates the armadillo to the location of the last pixel drawn by
the last DRAW or DRAWTO comnand. If no points were drawn by the last
DRAW or DRAWTO command, (e.g., if the line fell entirely outside the
current window) then the armadillo is not moved. RELOC is useful in
conjunction with ON DRUNT* See example in "Strolling..." RELOC is in
the DILLO vocabulary,

DRAWLN (column row —)

A system routine, not intended for general use. This high-speed rou
tine replaces the DRAWTO routine in valFORTH 1.1, which used the same OS
routine as the BASIC DRAWTO command, DRAWLN is in the DILLO vocabulary.

PHIL (n —)

Standard option: Move the armadillo n spaces in the direction it
is heading, and

As in DRAW* color that portion of the path of travel with the PEN
value, Also perform a fill to the right during the time that the arma
dillo is in the current window. The color of the fill is set either by
the PEN value or the PHPEN value* whichever was declared last. The fill
will always terminate on reaching the edge of the current window if it
has not been terminated prior to. this event. The fill will also termi
nate on reaching a pixel that is not background color. In the standard
option, the command ON PHUNT ("phi! until") has been executed so that
the fill will stop on the pixel of color register set by PHBAK, and
0 PHBAK has been executed so that the actual background register, 0*
will also be used as the phil "background" register, ON RPHIL and OFF
LPHIL have been executed so that the fill will be toward the right only.
ON PH+DR has also been executed so that the line of travel of the arma
dillo is drawn in addition to the fill operation.

XLII-11

PHIL (cont'd)

Example Options:

1 PHBAK: The fill will now stop on reaching a pixel of color
register 1 (in this example), or the edge of the window.

ON PHUNOT 2 PHBAK: The state of PHUNOT only matters if ON PHUNT
has been executed. The effect of PHUNOT ("fill until not") is that the
fill will now stop on reaching a pixel NOT of color register 2 (in this
example), or on reaching the edge of the window.

OFF PHUNT: Turning off fill-until means that now the fill will ONLY
stop on reaching the edge of the window.

OFF PH+DR: Turning off PH+DR means that now the routines will not
draw the line the armadillo is moving along, and will just fill as
indicated. . *

ON LPHIL: Now the routines will also fill to the left.

OFF RPHIL: Now the routines will not fill to the right.

ON PHXOR: Now the routines will XOR the pixels with the PEN or
PHPEN value, whichever was last declared, rather than replacing them
with it.

PHILTO (xy—) ^
Move the armadillo to the point x y. Then proceed as in PHIL.

XLII-12

~5

^

C

Options:
(All words below take a flag stack argument, and leave none.)

Switch Default ON

RPHIL on Enables right fill
with PHIL, PHILTO

LPHIL off Enables left fill
with PHIL, PHILTO.

DRXOR off DRAW, DRAWTO will
xor pixels with
line color.

PHXOR off PHIL, PHILTO will
xor pixels with
fill color.

DRUNT off Enable draw-until
functions.

PHUNT off Fill to edge of
window or to dest.

pixel.
DRUNOT on With DRUNT on,

DRAW, DRAWTO draw
until hit color set

by DRBAK, PHBAK.
PHUNOT on With PHUNT on,

PHIL, PHILTO fill
until hitting color
set by PHBAK.

PH+DR on PHIL, PHILTO draw
line as filling.

DR1ST on First point of
lines is drawn.

PHCRNR off PHIL, PHILTO perform
corner checking,
armadillo must be

moving vertically.

OFF

Disables right fill
with PHIL, PHILTO.
Disables left fill
with PHIL, PHILTO.
DRAW, DRAWTO will
replace pxls with
line color.

PHIL, PHILTO will
replace pxls with
fill color.

Disable draw-until
functions.
Fill until encounter

ing halt pixel cond
set by PHBAK, PHUNOT.
With DRUNT on,
DRAW, DRAWTO draw
until hit not color
set by DRBAK, PHBAK.
With PHUNT on,
PHIL, PHILTO fill
until hitting not
color set by PHBAK.
PHIL, PHILTO don't
draw line as filling.
First point of lines
is not drawn.

No corner checking.

DINIT sets all switches to their default values.

XLII-13

Screen Dump

This graphics 8 screen-to-Epson/Graftrax dump routine was contributed by William
Volks who also collaborated on other parts of this package.

To dump graphics 8 screens (split or full), load this code and execute with
GRDUMP. Some samples are shown below*

Scr

0

4

5

6

7

8
O

10

11

13

14

(Dillos GRDUMP

; DMPCOL DILLO < col —
-1 WNDB DO

DUP 88 S +

I BYT/LN * + C®

EMIT

-1 +LOOP

DROP $

Scr #

) 0 (Dillos BOX-KITE

1

) 2 * BOX-KITE

3 8 6R.

4 50 0

5 DO

6 I TCIRCLE

7 LOOP

8 -60 60 GOTO 5 QUBE

9 ON DRXOR I PHBAK WIPE

) 10

11

12

13

14

DINIT js GRPLT DILLO
88 M

»

27 EMIT 75 EMIT WNDB

WNDT - 1+ EMIT 0 EMIT

< —

Scr

0

1

#

< Dillos GRDUMP)

4

5

6

7

8

9

10

11

1'^

1 3

14

15

GRDUMP DILLO

(turn off screen, on printer)

PFLAG 3 2 PFLAS !

< set line/inch = 9 on Epson)

27 EMIT 65 EMIT 8 EMIT

< dump the screen)
CR BYT/LN 0

DO

GRPLT I DMPCOL CR

LOOP

27 EMIT 65 EMIT 12 EMIT

CR CR PFLAG ! ;

XLII-14-

~>

^

^^^

Interfacing to Custom Display Lists

The advanced user wishing to interface valGraphics to a custom (non-G.R„)
display list should recognize that any area of display memory in which valGraphics
will be required to draw must be continuous. Thus, for example, if a 4K memory
boundary is crossed^ necessitating a jump instruction in the display list* the
user must ensure that display memory itself crosses the 4K boundary smoothly.

The location 88 decimal was used by the Atari OS to point to the byte in
display memory corresponding to the upper left corner of the display* and has
been adopted for the same purpose in this package. The first thing to do* then*
is point 88 to the address in display memory that valGraphics should treat as
the upper left corner of its drawing area.

The second step is to set up a base window* much as the GR. provided in
this package does. Use the word DEFBAS to do this* as described in the glossary.
Note that this word expects its arguments as numbers of pixels., and that "left18
and "top" will usually be 0,

Finally* you need to tell the system what graphics mode yousre drawing in*
The word UGR* (for fluser GR/8) is provided for this purpose. Give it a number
from'3 through 12* and it will set up quans like PX/BYT and so on. UGR, recog
nizes if you have set up for wide or narrow screen widths9 also* and acts accord
ingly.

Do BASWND and the armadillo is centered* pointed up* and ready.

XLII-15

A note on QUAN structures

~>
The "quan" is a new FORTH data structure** developed at Valpar, and being intro
duced in this package, Quans were devised to cut down on wasted memory and
runtime encountered when using the "variable"- data structure. Quans work as
follows: (Advanced users may want to follow along in the source code for these
structures also,)

Defining a quan:

QUAN-BINGO

Note that quans do not take initial values* This form was chosen to allow for
simpler upgrading to target-compiled code later on.

Giving a quan a value:

1234 TO BINGO

Note that since TO is immediate* "TO BINGO11 compiles to only 2 bytes instead
of the 4 bytes that would be required if BINGO were a variable (i.e.* BINGO !).

Getting a value back from a quan:

BINGO

Simply saying the name of the quan will leave its value on the stack* in this j
case 1234, In this way* quans act like constants. BINGO above also compiles to
only 2 bytes instead of the 4 required to fetch if it were a variable (i.e.*
BINGO @).

Getting the address of the data in the quan:

AT BINGO

This will leave the address of the first byte of data in BINGO on the
stack, or compile the address as a literal if encountered during compilation.
(AT is immediate.) This is useful for a variety of purposes in general
programming and in interfacing to machine language routines*

Advanced users:

-The FORTH 83 Standard -appears to lean toward "non-state-smart" words* which
is proper for target-compiled applications. We expect to support both "state-
smart11 and Hnon~statessmart" versions of various words* as appropriate for
different users*

Note that while

15 AT BINGO +! and 15 BINGO + TO BINGO

accomplish the same task and take the same amount of memory* the first version ^
is faster by one primitive nest.

XLII-16

The most significant internal feature of quan is that it has 3 cfass instead of
just the one common to most FORTH words. This initial 4 byte disadvantage is
overcome at the second use of a quan* and so poses essentially no problem.
CQUAN* 2QUAN* 3QUAN, etc* have also been implemented* and the user may have
some fun puzzling these out before they are published elsewhere. Note that a
2quan takes 2 arguments from the stack when used with TO* and leaves 2 when
used alone. When used with AT* a 2quan still leaves the address of the first
byte of its "parameter field*" as does QUAN. Also* when defining CQUAN it is
probably a good idea to still allot 2 bytes for data* so that +! can be used
without fear of negative stack arguments. Another new defining structure is
called "FLAG." Flags have only two cfass* dropping the one that supports the
"AT" function. Flags keep only one byte of data* a flag* hence they are 3
bytes shorter than quans. Flags would not be used in this package enough to
justify the additional code* but may be worthwhile in other applications.

Higher speed and cleaner array structures may also be implemented using
the quan strategy* and may be included in a future release of our utilities-
editor package* (This would be made available to current u/e owners at a
price~difference~plus~handling charge.)

The word VECT has also been introduced in this package. It has two cfa's, and
replaces the rather cumbersome variable-based vectoring procedure*

1 SOMEWORD CFA SOMEVARIABLE 1 and
SOMEVARIABLE @ EXECUTE

with the cleaner* faster* and memory-shorter

1 SOMEWORD CFA TO SOMEVECT and

SOMEVECT

XLII-17

O

(intentionally 1eft blank)

n

o

XLII-18

QUICK TRIG

Since floating point trigonometric operations on the Atari machines are
rather slow and provide accuracy unnecessary for many applications* this package
provides integer versions of.sine* cosine* and arctangent functions that run
much faster than their floating point cousins.

QSIN and QCOS expect scaled radian arguments in the range +-31416* (+-pi),
with 10000 representing one radian.

Similarly* QATN returns scaled radian arguments in range +-15708.(+-pi/2).
QATN accepts arguments in the full single number range* again interpreting 10000
as 1. This at first glance seems to be a significant limitation on QATNss input
range but is circumvented by the existence of the more useful QATN2. QATN.2 is
a four-quadrant arctangent function. It accepts two stack arguments* which
may be thought of as "delta-x" and "delta-y," and uses these arguments to
construct a value to be used by QATN, QATN2 then performs sign corrections as
necessary and returns- a value in the range +-31416. QATN2 is what is actually
used in graphics work* and is used in the word TURNTWD ("turn toward") elsewhere
in this package.

For user convenience* the words ->QRD and ~>QDG are used to convert from
scaled-degree arguments to scaled radian arguments and back again.

16K/ (d .- n.)

This is a special-purpose high-speed routine that may find other uses.
It divides a double number by 16384 and leaves a single number result.
Used to speed quick-trig functions.

QSIN (scaled-radians — scaled-sine)

Takes a scaled-radian argument (range +-31416) and leaves the scaled
sine in the range +-1QQ00*

QCOS (scaled-radians — scaled-cosine)

Takes a scaled-radian argument (range +-31416) and leaves the scaled
cosine in the range +-10000.

QATN (scaled-argument — scaled-radians)

Takes a scaled-argument (range 0 to 10000) and leaves the scaled
arctangent in the range *~15708 (+-pi/2-, scaled).

QATN2 ("delta-x" "delta-y" — scaled-radians)

Assuming that the lsx" axis points toward zero radians (zero degrees)
on one end and pi radians (180 degrees) on the other* QATN2 leaves the
angle (range +-31416) between a line from the origin to the point
(delta-x* delta-y).

XLIII-1

Counterclockwise angles are positive.

+31300 approx
31416

-31300 approx

+15708

scaled radians

X

delta»x* delta-y -15708
scaled radians

x axis
0 radians

In the illustration above* arctan2 of (delta-x* delta-y) would be
approximately -2.1 radians* or -21000 as computed by QATN2.

->QRD ' (scaled-degrees —.scaled-radians)

Takes a scaled-degree argument (range +-18000) and converts it
to a scaled-radian argument (range .+- 31416).

«~>QDG (scaled radians — scaled-degrees)

Takes a scaled-radian argument (range +-31416) and converts it
to a scaled-degree argument, (range +-18000).

XLIII-2

^

^

o

r

FLOATING POINT EXTENSIONS* INCLUDING TRIG FUNCTIONS

This section contains extensions to the Floating Point package provided
with valFORTH 1.1. Source Code is on the valGraphics disk* The pages have been
numbered so that it may be separated from the rest of the Turtle Graphics package
and integrated into the original Floating Point package for ease of reference.
Note that the trigonometric functions expect their arguments in radianss as is
normal in floating point. Conversion words DG~>RD and RD~>DG have been provided
for convenience* however,

GLOSSARY

PI, PI/2* PI/3* PI/4* and PI/6 . (— fp)

leave their normal floating point values on the stack.

EXP1 (-- fp)

leaves the value of the constant V1 on the stack. Though this name
is slightly obscure* it was selected to avoid name collisions.

FPO and FP1 (— fp)

have been defined as FP 0 and FP 1, respectively* to reduce memory
requirements*

RD/DG and DG/RD (— fp)

are constants equal to the number of radians in a degree and the
number of degrees in a radian* respectively,

FTOP and FBOT (— fp)

are* approximately* the largest and smallest non-zero absolute
values that the machine can represent.

FMINUS (fpl ~ fp2)

Leaves the negative of fpl as fp2.

2FDUP (fpl fp2 ~ fpl fp2 fpl fp2)

Duplicates the two fp values on the top of stack,

F+! (fpl addr —)

Add fpl to the fp value at address addr* and leaves result;
at addr,

FMAX (fpl fp2 — fp3)

Leaves the maximum of fpl and fp2 as fp3.

IV-13

FMIN (fpl fp2 — fp3)

Leaves the minimum of fpl and fp2 as fp3.

F0< { fpl -- flag)

Leaves a true flag if fpl is negative; otherwise, leaves a
false flag.

FABS (fpl — fp2)

Leaves the absolute value of fpl as fp2.

2FDR0P { fpl fp2 --)

Discards the two floating point numbers on top of stack.

F, (fpl -)

Compiles the floating point number on top of stack into the
dictionary.

F>R { fpl -)

Sends fpl to the return stack.

FR> (-- fpl)

Retrieves the top 6 bytes of the return stack as fpl.

FR • (- fpl)

Copies the top 6 bytes of the return stack as fpl.

F.S (-)

Does a non-destructive printout of the stack assuming all
fp numbers.

FPICK (fpn...fpl n — fpn..fplfpn)

Copies the nth fp number to top of stack. Note that 1 FPICK
is the same as FDUP and 2 FPICK is the same as FOVER.

FROLL (fpn fpn-l..fpl n — fpn-l..fpl fpn)

Pulls the nth fp number out of the stack and moves it to top of
stack. Note that 2 FROLL is the same as FSWAP and 3 FROLL would be
the same as FROT.

-FIX (fpl — n)

Converts a fp number to a single number. Accepts positive or r^
negative fp. For large fp numbers, represents to most positive . '
or most negative n, as appropriate.

IV-14

r>

~>

-FLOAT (n — fpl)

Converts a single number to a fp number. Accepts positive or
negative values for n.

F*0V (fpl fp2 -- fp3)

Multiplies fpl and fp2 to produce fp3* If fp3 would overflow or
underflow* leaves +- greatest fp number or fp 0 as required,

F/OV (fpl fp2 -- fp3)

Divides fpl by fp2 to produce fp3. If fp3 would overflow or underflow,
leaves +- greatest fp number or fp 0 as required.

1/FP (fpl ~ fp2)

Leaves the inverse of fpl as fp2* using F/OV.

->RD (degrees — radians)

Converts the argument iSdegreesJI into radians. "To radians,i{

~>D6 (radians — degrees)

Converts the argument l5radiansJS into degrees. 9lTo degrees,11

SIN (fpl -- fp2)

Leaves the sine of fpl as fp2.

COS (fpl — fp2)

Leaves the cosine of fpl as fp2*

TAN (fpl - fp2)

Leaves the tangent of fpl as fp2«

(NOTE: SIN* COS* and TAN expansions fail for fpl above
approximately 2E5 (200*000) radians or 1E7 (10*000*000) degrees*)

ATN (fpl ~~ fp2) ' •

Leaves the arctangent of fpl as fp2.

ATN2 (fpx fpy — fpl)

Leaves the four-quadrant arctangent of fpx and fpy as fpl.
Assuming that the "x" axis points toward zero radians (zero degrees)
on one end and pi radians (180 degrees) on the other* ATN2 leaves.
the angle* in radians* between a line from the origin to the point
(fpx* fpy).-

IV-15

Counterclockwise angles are positive.

4-3,1300 approx
3.1426 radians
-3,1300 approx

fpx* fpy

+1.5708
radians

y axis

-1.5708

radians

x axis

0.radians

In the illustration above* ATN2 of (fpx* fpy) would be approximately
-2-1 radians,

Reference:

Software Manual for the Elementary Functions by William J, Cody* Jr,
and William Waite.

IV-16

^

^

^

XLIV valGRAPHICS SUPPLIED SOURCE LISTING

Screens 1

0

i

£

3

4

(Dillos Drawline roui;ine)

HEX DILLO DEFINITIONS

LABEL INCMOD (sys)
5 E6 C, C4 c, E6 C, C3 C5 D© C, •
6 02 Cs E6 c, C2 c, 05 C9 C2 C,
7 F8 cs 02 c, 24 cs C4 C9 30 C,
8 22 c, 85 cs C6 c, 05 Cs C3 C,
9 85 C, C7 cs 84 c, C5 c, 09 C,
10 1® c, 85 c, Cl c, 06 C9 C7 C,
11 26 c, C6 c9 26 c, C5 C, 38 C,
12 05 c, C5 cf E5 c, C4 C5 90 C,
13 04 c, 85 c, C5 c5 E6 c, C7 C,
14 C6 c, Cl c, D@ cs EB c, 60 C,
15 ==>

Screens

0

1

2

3

4

5

6

7

8

9

I©

11

IS

13

14

15

C Dillos Drawline routine)

LABEL PHTST (sys)
E6 C, Cl C, Bl C, C8 C, 3D C,
MTBL2 , 8D C9 DRURK 4 + , AD
C, AT PHUDAT , 3D C, MTBL2 ,
CD C9 DRWRK 4 + 5 D0 C, 07 C,
2C C, 'DRySTT 6 + , 3® C, @9 C,
10 C, 05 C, 2C C, DRWSTT 6 + ,
1® Cs ®2 C, C6 C, Cl C, 60 C,

~>

Screens £ Screen: 5

0

1

2

(Dillos Draw1i ne routine) 0

1

2

< Dillos Drawl in© routine)

84 C, C6 C, 84 C, C7 C, 05 C, LABEL (DOPHL) < sys)
3 C3 C, 85 C, C5 C9 E6 C, C7 C, 3 A5 C9 5B C, 48 C$ A5 C, 5C C,
4 38 C, A5 C, C5 C, E5 C, C4 C, 4 48 C, A5 C, C8 C, 48 C, A5 C,
5 85 C, C5 C, C5 C, C4 c, B0 C, 5 C9 Cs 48 C, 80 C, 48 C9 84 C,
6 F3 Cg 60 C, 6 Ci C, 2® C, PHTST , 20 C,
7 7 BUMPX , 2C C, DRWSTT 4 + ,
8 8 3© C, 36 C, 2C C, DRUSTT 7 + ,
9 LABEL BUMPY I sys) 9 10 C, 31 Cf 05 C, C8 C, 48 C5
10 18 C, AD C, DRWRK j 65 C, 10 A5 C, C9 C, 48 C, 2C C, DRWRK
11 C8 C, 85 C, C8 C, AD c, DRWRK 11 3 + , 1® C, ®8 C, 20 C$
12 1+ , 65 C, C9 C9 85 c5 C9 C, 12 BUMPY , EE C, DRMRK 3 + ,
13 E6 C, 5A Cs 2C C, DRWRK 1+ , 13 F0 C, 0F C, 38 C, A5 C, C8 C,
14 10 C, 04 C, C6 C, 5A c, CS c,. 14 ED C, DRURK , 85 C, C8 C,
15 50 C, 60 C, ==> 15 ssss)

Screen s 3 Screen s 6

0

i

£

(Dillos Drawline routine) 0

1

£

(Di3Lids Drawline routine)

LABEL BUMPX < sys) 05 C, C9 C, ED C9 DRWRK 1+ ,
3 ' 2C c, DRWRK 2-1- , 30 C, 16 c, 3 85 C, C9 C§ £® C9 PHTST ,
4 E8 C9 8A C, CD C9 OT PX/BYT , 4 68 C5 85 C, C9 Cs 68 C, 85 C,
5 90 c, 08 Cs 02 C, 00 c, E6 c, 5 C8 c, 05 Cs Ci C, C9 C, 02 C,
& ce c9 D© Cs 02 C, E6 C9 eg c, 6 F0 c, 46 Cs 38 C, 05 Ct 5B C,
7 E6 c, 5B C5 D0 C, 82 c, E6 c, 7 ED C, OT WNDLFT , 05 C, 5C C,
8 5C C, 60 C, Cfi C, 10 c, 0C c, 8 ED c, AT WNDLFT 1+ , 30 C,
9 AE c, AT PX/BYT , CO C, 05 c9 9 39 C9 38 C, OD C, OT WNDRGT ,

c
1® CS Cs D0 C, @2 C, C6 c, C9 c, 10 E5 c, 5B C, OD C9 AT WNDRBT 1+

11 C6 c9 C8 C, 05 C, 5B c, D© cf ii E5 C, 5C C, 30 C, 2C C,
12 02 Cs C6 Cs 5C C, C6 c, 5B c, 12 2C c\ DRWSTT 4 + , 30 C,
13 60 c, 13 09 C, 84 C, Cl C, 2® Cs PHTST
14 14 05 C, Cl C, D0 Cs IE C,
15 ==> 15 —>

) ^
Screen: 7 Sereens 1®

0 (

1

£

Dillo: Drawline routine) ©

i

2

C Dillos Drawline routine)

Bl C, C8 C, 2C C, DRWSTT 5 + , C8 C, 05 C, 59 C? 65 C, C3 C,
3 30 C, 03 C, 3D Cs MTBL1 * 3 85 c, C9 C, OD C, OT PX/BYT ,
4 85 C, Cl C, OD C9 OT PHDAT 9 4 85 c, C4 C, 05 Cs 5B C, 85 C,
5 3D C, MTBL2 , 45 Cs Cl c, 5 C3 c, HO L#| fclLj L#^ 85 C, C2 Cf
6 91 C, C8 C, 84 C, Cl C, 20 c, 6 2® cs INCMOD 8 + , 18 C, 05 C,
7 BUMPX , 4C C, HERE 44 - i 7 C7 c, 65 C, C8 C9 85 C, C8 C,
8 68 C, 00 C, 68 C, 85 C, C9 c, 8 05 c, C9 C, 69 Cs 00 C, 85 C,
9 68 C, 85 C, C8 C, 68 C, 85 C, 9 C9 c, 06 C, C5 C, 6© C,
10 5C C, 68 C, 85 Cs 5B C, 60 cs 10

ii il

12 IS

13 13

14 14

15 =ss> 15 ==>

Screen s 8 Screen§11

®

1

2

(Dillos Drawline routine) 0

1

2

< Dillos Drawline routine

LABEL CPHIL) < sys) LABEL DTST < sys
3 2C C, DRWRK 5 + , 10 C, 28 C9 3 E6 C, Cl C, AD C9 OT DRUDOT ,
4 OD C, DRWRK 2+ , 48 C, 2C C9 4 3D C„ MTBL2 , 8D C, DRWRK.4 +
5 DRWSTT 1+ , 10 C, 06 C5 8C C9 5 , Bl C, C8 C, 3D C, MTBL2 ,
6 DRWRK 2+ , 2® C9 (DOPHL) 6 CD C9 DRWRK 4 + , D0 C, ®7 C,
7 2C C, DRWSTT 2+ , i® C, 08 c\ 7 2C C9 DRWSTT B + DUP s 30 C,
8 09 C, FF C, 8D Cs DRWRK 2+ 8 07 C9 10 Cs ®6 C9 2C C, »

9 20 C, CDOPHL) , 68 C, 8D c, 9 3® C9 01 C, 6© C9 C6 C, Cl C,
10 DRWRK 2+ , 60 C, 1® AD C9 DRWRK F + f F© C, 42 C,
11 11 EE C9 OT 7DRSTP , C8 C, 8C C,
12 12 DRWRK E + 9 88 Cs OD C, DRWRK

13 13 S+ s 48 C, 20 C, BUMPX >

14 14 Bl Cs C8 C, 3D C9 MTBL2
»

15 ==> 15 —>

Screen s 9

0

1

2

(Dillos Drawline routine)

LABEL PIXEL (sys)
3 B5 C, 0® C, 85 c9 50 C9 85 C,
4 C4 C, B5 Cs 02 c9 85 C, 5B C,
5 B5 Cs ®3 c3 85 c9 5C C, 84 C,
6 C2 C, 84 c9 C3 c, 02 C, ©8 C,
7 05 C, C4 C9 29 C9 @1 c9 F® C,
8 ©E C, 18 c, OD C9 AT BYT/LN s
9 65 Cs C3 C, 85 C9 C3 C9 09 C,
10 ©0 C9 65 cs C2 C9 85 C, C2 C,
11 46 Cs C2 c, 66 c, C3 C, 66 -C,
12 C4 Cs CO c9 D® C9 E3 c, 18 C,
13 05 C„ 58 c9 65 C, C4 c, 85 C,
14

15 --)

ScriE

®

1

2

3

4

5

6

7

8

9

1®

11

12

13

14

15

ens 12

(Dillos Drawline routine)

8D C9 DRWRK 4 + DUP , OD C,
AT DRUDOT , 3D C, MTBL2 ,
CD C, , D® C9 ®7 C9 2C- C,
DRWSTT B + DUP , 3© Cf ®D C,
1® C9 ®5 C9 2C C9 , 1® C, ®6
C, CE C9 DRWRK E + , CE C,
OT 7DRSTP , 68 Cs 48 C9
49 C9 FF C, 8D C,
DRWRK 2* DUP f 2© C, BUMPX ,
68 C, 8D C$, 6® C,

?)

~>

Screens 13 Screen% 16

©

1

2

(Dillos Drawline iroutine) ® <

1

2

Dillos Drawline routine >

CODE DRAWLN DILLO C x y ~) C4 C9 B® C, ©5 C, CD C, DUP
3 86 C, Dl C, 8C C, DRWRK 1+ , 3 C + DUP , 9® C, ®9 C, ED C,
4 8C C9 DRWRK 2+ , AD C, 4 , E6 C9 C3 C, D® C, ®2 C, E6 C,
5 OT BYT/LN , 8D C9 DRWRK DUP , 5 C2 Co 85 C5 C4 C, 09 C, FF C,
6 38 C9 B5 C9 ©2 C9 E5 C9 5B C, 6 8D C9 DUP 5 + , £C C, DUP D +
7 8D C, DUP 6 + , B5 C, ®3 C, 7 , 30 C9 36 C9 2C Cs DRWSTT 9 + ,
8 E5 C, 5C C, 8D C, DUP 7 + , 8 1® C9 ©E C„ 84 C, Ci C, 20 C,
9 10 C, 12 C9 CE C, DUP 2+ , 9 DTST , 05 C9 Cl G, F© C, ©5 C,
10 38 C, 98 C9 ED C9 DUP 6 + , 1® EE C9 OT ?DRSTP , D0 Cf 76 C,
11 8D C9 DUP 6 + , 98 C, ED C9 ii 2C C9 DRWSTT , 10 C, ©8 C,

12 DUP 7 + , 8D C, DUP 7 + , OD 12 2® C9 (PHIL) , 2C C, DRWSTT
13 C, DUP 6 + , ®D C, DUP 7 + , 13 3 + 9 30 C, 16 C, Bl C, C8 C,
14 8D C9 DUP F + , 38 C, B5 C, 14 2C C9 DRWSTT 8 + , 30 C, ®3 C,
15 —> 15 mm}

Screen s 14

0

i

2

< Dillos Drawline rout ine

0® C, E5 C, 5A C, 8D C9 DUP
3 8 + , 98 Cs E9 C, 0® C, 8D C,
4 DUP 9 + i 10 C, 10 Cs 38 C9
5 98 C, ED C9 dup. a + , 8D C,
6 DUP 8 + , 98 C, ED C, DUP 9 +
7 DUP , 8D C, , CE C9 DUP 1+ f
8 38 C9 98 C, ED C, DUP , 8D C,
9 DUP , 05 C9 50 C, 85 C, C4 C,
10 2® C, PIXEL E + , 8C C, DUP
11 A + , 84 C9 C2 C, OD C, DUP
12 8 + f 85 C, C3 C, OD C, DUP
13 6 + , 85 C5 C4 C, C5 C, C3 C,
14 B® C, 05 C, OD C» DUP 7 + ,
15 ==

Screen s 17

i

2

Dillos Drawline routine)

3D C, MTBLi , 85 C, Ci C,
3 OD C9 OT DRDOT , 3D Cs MTBL2 ,
4 45 C, Cl C, 91 C9 C8 C, AD C,
5 DUP 0 + , D® C9 ®6 Cs 20 C9
6 BUMPY , 4C C, HERE 8 + , 2® C,
7 BUMPX , 8C C9 DUP 5 + , OD C,
8 AT ?DRSTP , D® C, 3D C, 05 C9
9 C3 C, D® C9 ®2 C, C6 C9 C2 C,
1® C6 C, C3 C, 05 C9 C2 C, ®5 C,
11 C3 C9 D® C, 06 C, OD C, DUP
12 0 + , D8 C, 06 C9 2® C9 BUMPX
13 , 4C C, HERE 5 + , 2® C, BUMPY ,
14 8C C9 DUP D + , CE C, B + ,
15 —>

Screen g 15 Screens 18

©

1

2

< Dillos Drawline routine) ®

1

2

< Dillos Drawline routine

F® C, 11 C9 CE C9 DUP 0 + , F® C9 ®3 C9 4C Cs HERE 90 - ,
3 05 C9 C4 C, 85 C, C3 C5 OD C, 3 09 C, FF C, 4D C5 DRWRK t+ ,
4 DUP 7 + , 85 C, C2 C, AD C, 4 8D C9 DRWRK 1+ , 2® C9 BUMPY
5 DUP 8 + 9 85 C, C4 C, 20 Cs 5 09 Cs FF C9 4D C9 DRWRK 2+ ,
6 INCMOD , 05 C, C4 C9 05 C, 6 8D C9 DRWRK 2+ , 2® C, BUMPX
7 C4 Cs 8D C9 DUP B + , 8D C, 7 06 C9 Dl C, 4C C9
a DUP C + ,) 84 C, W C, 09 C, 8 OSSEMBLER POPTWO »'

9 FF C, 8D C9 DUP 3 + , 8C C, 9

1® OT ?DRSTP , 8C C9 DUP D + ,' 10 Cf
ii 2C C, DRWSTT A + , 10 C, ®3 C, ii

12 CE C, DUP D + , 05 C, C6 C, 12

13 85 C9 C2 C, 05 C9 C7 C, 85 Cs 13 DCX

14 C3 C, 18 C, 05 C9 C5 C, 65 C9 14

15 (WOS 46) —> 15 ssss

Screens 19 Screen s

® C Dill©* PLOT) @

1 1

2 s PLOT DILLO < xa ya •— > 2

3 C DRWSTT 9 + 3L >R 3

4 R 9 ® R ! >R 4

5 2DUP 9® C« 91 ! DROWLN 5

6 R> R> ! i 6

7 7

a 8

9 9

1® 1®

11 11 '

12 12

13 13

14 14

15 --> 15

Sere

0

i

2

3

4

5

6

7

8

9

1®

11

12

13

14

15

ens 2®

(Dillos CLOCK}

HEX

CODE (LOOK) C xa ya — px# pxl
86 Cs XSOVE C, 2® C9 PIXEL ,
Bl C, N 6 + C9 3D C, MTBL2 ,
48 C, 80 C9 A6 C, XSAVE C5
95 Cf ®2 C9 A9 C9
95 C? ®3 C, 68 C9
4C C, NEXT , Cf

DCX

0® C,
95 C, 0® C,

Screens 21

®

1

2

3

4

5

6

7

8

9

1©

11

12

13

14

15

(Dillos LOOK)

FORTH DEFINITIONS

s LOOK DILLO < x y — pen)
91 9 9® Ce 2SWAP XF/L

<LOOK) SWAP 8 PX/BYT / >R R *

8 - R> + SHIFT

<ROT 9® C! 91 ?

Screen:

©

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Screen s

®

1

2

3

4

5

6

7

8

9

1®

ii

12

13

14

15

22

^

23

O

24

~>

Screens 25 Screens 28
© ®

1 • 1

2 2
3 3

4 4

5 5

6 6

7 7

8 8

9 9

1® • 1®

11 11

12 12

13 13

14 14

15 15

Screens 26 Screens 29

© 0

1 1

2 2

3 3

4 4

5 5

6 &

7 7

8 8 ,
9 9

1® 1®

11 ii

12 12

13 13

14 14

15 15

Screen s 27

®

1

2

3

4

5

&

7

S

9

1®

11

12

13

14

15

Screen s 3©

® < Otrig s 16K/)

1 HEX

2 CODE 16K/

3 36 C, ®3 C9
4 36 c9 0® C9 36 C, 01 C,
5 36 Cs ®3 C, 36 C, ®® c,
6 36 C, 01 C9 B5 C9 ®® cs 95 C,
7 ®2 c, B5 C, ©1 C, 95 c,
8 ®3 c, 4C C, POP , Ci
9

1® DCX

11

12

13

14

15

Screens 31

®

1

2

3

4

5

6

7

8.

9

1®

11

12

13

14

15

(Qtrigs CQS/C3)

CQS/C) (rad -- n)

DUP 67® >

IF DUP 966 >

IF 16384 i®00® */

DUP DUP 4 / M* 16K/

11 (TR4) OVER M* 16K/

-2®8 (TR3) + OVER M* 16K/

2184 (TR2) + OVER M* 16K/

-i®923 C TR1) * M* 16K/

OVER M* 16K/ +

1@©0® M* 16K/ 1+

ELSE 1-

ENDIF

ENDIF j —>

Screen s 32

0 (Qtrigs
1

QSIN QCOS

2

3

4

5

6

7

8

9

1®

11

12

13

14

15

QSIN (rad —

DUP ®< >R OBS DUP 15708 >

IF 31416 SWOP - ENDIF

(QS/C) R>

IF MINUS ENDIF §

QCOS

157®8 SWOP OBS

DUP >R

IF SWOP

ENDIF - (QS/C)

IF MINUS ENDIF

< rad —

DUP 15708)

R>

»

n)

n)

Screens 33

0 (Qtrigs -)QRD ->QDG)
1

2 s ->QRD (scaled degrees —)
3 (scaled radians)

4 31416 18®0© */ ;
5

6 s -)QDG (scaled radians •—)
7 (scaled degrees)
8 IS®®© 31416 #/ §
9

10

11 M (QATN) |S)()
12

13

14

15 — >

Screen s 34

® < Qtrigs COATND

(n — rad)

1

2 s (QATN)

3 ® >R

4 DUP 2679 >

5 IF DUP 17321

6 SWOP 17321

7 R> 1+ >R

8 ENDIF

9 DUP DUP 1®®0® */ DUP DUP

1® -5©9 1000® */ -47®8 +

11 SWOP 2/ 76@3 +

12 */ 2/ OVER

13 1000® */ +

14 R)

15 IF 5236 + ENDIF :

1000® */ 1000® ~

+ 1000® SWAP */

Scr«=

®

1

2

3

4

5

6

7

8

9

1®

11

12

13

14

15

ten s 35

'(Qtrigs QOTN

QOTN (n

DUP 0< >R OBS (QATN) R>

IF MINUS ENDIF 5

Screen s 36

(Qtrigs Q0TN2

)

n)

—>

©

i

2

3

4

5

.6
7

8

9

I©

11

12

13

14

15

Q0TN2 (x y
SWOP 2DUP ®< >R ®< >R

OBS SWOP OBS SWOP

2DUP > DUP)R

IF SWOP ENDIF

1000® SWOP */ (QOTN) R>

IF 15708 SWOP -

ENDIF I*

IF 31416

IF SWOP

ELSE I

IF MINUS ENDIF

ENDIF R> DROP R) DROP ;

— rad)

I ©=

ENDIF -

^

^

~)

Screen s

®

1

2

3

4

5

6

7

a

9

i®

ii

12

13

14

15

Scrs

0

1

2

3

4

5

6

7

8

9

1®

11

12

13

14

15

Serf

©

1

2

3

4

5

6

7

8

9

i®

ii

12

13

14

15

»ns

*ns

37

38

39

Screen s 4©

® (Dillos DILLO C0RM0DILL03

1

2 FORTH DEFINITIONS •

3

4 '(QUON)(57 KLOAD)

5.

6 VOCOBULORY DILLO IMMEDIOTE

7 (ORMODILLO)

8

9

1®

11

12

13

14

15

Screen s 41

• 0

1

2

(Di]Ilog quans

QUON DOZM

3

4

5

6

7

QUON DXl QUON DYl

DILLO DEFINITIONS

QUON WNDLFT QUON WNDRGT

8 QUON WNDTOP QUON WNDBOT

9 QUON WNDL QUON WNDR

1® QUON WNDT QUON WNDB

11 QUON WNDW QUON WNDE

12 QUAN WND'N QUON WNDS

13 QUON DX2 QUON DY2

14 QUON ?DOWN QUON DFLG

15 QUAN ?MCOOR QUON ?XFM

Screens 42

®

1

2

3

4

5

6

7

8

9

1®

11

12

13

14

15

(Dillo s quans etc.

QUON

QUON

QUON

QUON

QUON

QUON

QUON

QUAN

VECT

VECT

LABEL

X1D

Y1D

X2D

Y2D

ixi

IYl

1X2

IYS

XF/L VECT (XF/L

COSP

DRWRK 16 OLLOT

LOBEL DRWSTT 16 OLLOT'

DRWSTT 16 EROSE

==>

—>

Screen s 43

®

1

2

(Dillos quans etc

QUON DRCLR

3 QUON PHCLR

4 QUON DRUCLR

5 QUAN PHUCLR

6 QUON DRDAT

7 QUON PHDAT

8 QUON DRUDAT

9 QUON PHUDAT

1® QUAN BYT/LN

11 QUON PX/BYT

12 LABEL MTBLi 8 ALLOT

13 LABEL MTBL2 8 ALLOT

14

15

Screen s 46

0 (Dillos SWAP- 3L)

1

2 CODE SWOP-

3 38 C9 B5 C, ®® C, F5 C, ®2 C,
4 48 C, B5 C, ©1 C, F5 C, ®3 C,
5 4C (V BINARY , Cf
6

7 DCX

8

9 § 3L (n —)

1® CCOMP1LE3 3

CCOMPILE3 LITERAL ; IMMEDIOTE11

12

13

14

15

(DRAWLN s)

1 LOAD

Screen: 44

© (Dillos quans etc®
1i

2 QUAN ?DRSTP © TO ?DRSTP

3 QUAN COSFOC I©®© TO COSFOC

4 QUAN HSCL 100© TO HSCL

5 QUAN VSCL I©®© TO VSCL

6 QUAN HOBS QUON VABS

7 QUAN HUSR 1®®0 TO HUSR

8 QUAN VUSR 1®0® TO VUSR

9

1®

11

12

13

14

15

Screens 47

8 (Dillos phil/draw options)
1

2 s RPHIL DILLO (f —)

3 MINUS C DRWSTT 1+ 3L C! ;
4

5 g LPHIL DILLO (f —)

6

7

8 s PH+DR DILLO (f —)

9 NOT MINUS L DRWSTT 3 + 3L C! ;
10

11 s PHUNT DILLO (f — >

12 NOT MINUS C DRWSTT 4 + 3L C! ;
13

14 s PHXOR,DILLO (f —)

Screen s 45 Sen

® (Dillos SHIFT) ®

1 1

2 FORTH DEFINITIONS 2

3 3

4 HEX 4

5 CODE SHIFT 5

6 B4 C9 0® C, 10 C, 00 c3 56 C, 6

7 ©3 C, 76 C, ®2 C, C8 c9 D® c, 7

8 F9 C9 4C C9 HERE C + 9 F® c, 8

9 ©8 C, 16 C, ®2 C, 36 cs ®3 c9 9

10 88 C9 4C C, HERE 8 - 9 10

ii 4C C9 POP 5 Ci ii

12 12

13 13

14 14

15 --> 15

MINUS t DRWSTT 2+ 3L C! 5

sen s 48

(Dillos phil/draw' options)

HEX

s PHUNOT DILLO (f —)

NOT MINUS C DRWSTT 6 + 3L C! ;

s PHCRNR DILLO (f --)

MINUS C DRWSTT 7 + 3L C! 5

g DRXOR DILLO (f —)

MINUS C DRWSTT 8 +]L C! |

s DRUNT DILLO (f —)

MINUS I DRWSTT 9 + 3L C! §

~)

~)

~)

Screen s 49 Screen s 52

® (Dillos DR1ST DRUNOT)
4

®

1

2

(Dillos ODJCLR MSKTBL)

1

2 s DR1ST DILLO (f —) s ODJCLR < —)

3 NOT MINUS C DRWSTT 0 + 3L C! % 3 OT DRDOT DRCLR (ODJC)

4 4 OT PHDOT PHCLR (ODJC)

5 s DRUNOT DILLO < f — > 5 OT DRUDOT DRUCLR (ODJC)

6 NOT MINUS C DRWSTT B + 3L C! ; 6 OT PHUDOT PHUCLR (ODJC) ;
7 7

8 8 HEX

9 9 LOBEL MSKTBL

1® 1® 7F Cs BF C, DF C, EF C,
11 ii F7 C9 FB C, FD C, FE C,
12 12 3F C, CF C, F3 C, FC C,
13 13 ®F C9 F® C,
14 DCX 14 DCX

15 —> 15 ssss)

Screen s 5© Screen s 53

® (Dillos DTBL

1

2 DILLO DEFINITIONS

) 0

1

2

(Dillos reserved)

3 3

4 ? (TOBLE ==>) () 4

5 HEX 5

6 § DTBL • 6

7 CREOTE SMUDGE 7

8 fCODE 16 C, 0® C, 36 C, Cl C9 8

9 CA C, CO C, 18 C9 05 C9 9

1® W C9 69 Cs ®2 C, 95 C5 0® C, 1®

11 98 C, 65 C9 W 1+ C, 95 C, 11

12 ©1 C, 4C C, ' + , Ci 12

13 DCX 13

14 14

15 ==> 15 ~~~>

Screens 51

@

1

2

3

4

5

6

7

8

9

1®

11

12

13

14

15

(Dillos C0DJC3)

s (ODJC) (adr val —)

8 PX/BYT 8 MIN ® MOX / SWOP

8 3 PICK - SHIFT 255 OND DUP

8 4 PICK

DO

3 PICK MINUS SHIFT

SWOP O+S

3 PICK

+LOOP

DROP SWOP DROP SWOP C! ;

-->

Screen s 54

® (Dillos

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

reserved

Screen g 55

© (Dillos

1

2

3

4

5

6

7

a

9

1©

11

12

13

14

15

Screen s 56

reserved

©

1

2

3

4

5

6

7

a

9

1®

ii

12

13

14

15

(Dillos reserved

Screen s 57

©

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(Dillos reserved

~>

—>

Screen s 58

© (Dillos

1

2

3

4

5

6

7

8

9

1®

11

12

13

14

15

»rved

Sen

®

1

2

3

4

5

6

7

8

9

10

ii

12

13

14

15

ens 59

(Dillos reserved

Screen § 6®

® (Dillos POSIT SCRWID

1

2 FORTH DEFINITIONS

3

4 s POSIT (xabs yabs
5 9® C! 91 ! ?
6

7

8 '(SCRWID)(

9 s SCRWID

1® 559 C@ 252 OND OR 559 C! ;
ii (width

12

13

14

15

» ^

~5

—>

—)

-!~>

Screen s 61

® (Turtles TRGTBL

1 DILLO IDEFINITIONS

2 '(TABLE TABLE TRGTBL

3 (DTBL TRGTBL) ® ,

4 571 ,, 1143 ,, 1714 ., 2285 ,
5 2855 ,, 3425 ., 3993 ., 456® ,
6 5125 ., 5689 ,, 6252 ,, 6812 ,
7 7370 ,, 7927 ,, 848® ,, 9®31 ,
8 958® ., 10125 ,, 10667 ., 11286 ,
9 11742 ,, 12274 ., 128®3 ., 13327 s

'10 13847 ,, 14364 ., 14875 ., 15383 9
il 15885 ., 16383 ., 16876 ., 17363 ,
12 17846 ., 18323 ,, 18794 ., 19259 ,
13 19719 ., 2®173 ,, 2®62® ,, 21062 s
14
1F.

21497 ,, 21925 ., 22347 ., 22761 9
—>

Sere

®

1

2

3

4

5

6

7

8

9

1®

ii

12

13

14

15

Screen s 62 Scr

© < Turtles TRGTBL
1

) 0

i

p 2

I

2 23169 ., 2357© ., 23964 ., 2435® ,
3 24729 ,, 2510® ,, 25464 ,, 2582® ., 3
4 26168 ., 265®9 ,, 26841 ., 27165 ,t *
5 27480 «, 27787 ,, 28®86 ., 28377 ., 5
6 28658 ., 28931 ., 29195 ., 2945® ,, 6
7 29696 ., 29934 ., 3©162 ., 38381 ,i 7
8 3059® ,, 3@79® ,, 30981 ,, 31163 ., 8
9 31335 ,, 31497 ., 3165® ,, 31793 ,. 9

1® 31927 ., 3285® , 32164 ,, 32269 ., 10
11 32363 ,, 32448 ., 32522 ., 32587 ,, ii
12 32642 ., 32687 , 32722 ,, 32747 ,, 12
13 32762 ,, 32767 , 13

14 14

15 SSS=> 15

ns 64

Dillos

+-SIN

DOZM 18®

IF MINUS

+-S1N„C0S #S/C

(Inl — n)

ENDIF ;

+-C0S (Inl — n)

DOZM 9® > DOZM 278 < OND

IF MINUS ENDIF ?

#S/C

DAZM DUP

IF 18® -

DUP 90)

IF 18® SWOP-

18® >

ENDIF

(— index)

ENDIF ,

»en s 65

(Dillos COSOSP #SIN *COS)

s COSOSP (delY — fixed)

COSFOC I®®® #/ i

s #SIN (r. — n#"sin")

#S/C TRGTBL 0 +-SIN

32767 */ ;

s *COS (n — n*"cos" >

#S/C 9® SWOP- TRGTBL 0 +-COS

32767 #/ COSP 5

__>

-)

Screen s 63 Screen s 66

0 (

i

2 g

Dillos OZMODJ) 0

1

2

(Dillos ASPECT

OZMADJ < —) FORTH DEFINITIONS

3 DAZM OBS 36®)= 3

4 IF DOZM 36® MOD TO DOZM ENDIF 4 s OSPECT DILLO (ON/OFF -

5 DOZM ®< 5 IF C 5 COSOSP CFO 3L

6 IF 36® OT DAZM +! ENDIF ; 6 ELSE I ' NOOP CFO 3L

7 7 ENDIF

e 8 TO COSP |
9 9

r
1®

ii

12

13

14

1®

ii

12

13

14

OFF OSPECT

15 __> 15

Screen s 67

© (Dillos EXX3 EYY3

DILLO DEFINITIONS

DXF DXL)

1

2

3

4

5

6

7

a

9

1®

11

12

13

14 s DXL (XnD YnD — xabs yabs)
15)R HOBS + R> VOBS SWOP- § —>

Scrs

0

I

2

3

4

5

6

7

8

9

1®

11

12

13

14

15

Sen

®

1

2

3

4

5

6

7

8

9

10

ii

12

13

14

15

s

(XX) (XnD — xabs)

HSCL + WNDRGT WNDLFT -

HSCL 2* NOOP */ WNDLFT + ;

(YY) (YnD — yabs)
VSCL SWOP- WNDBOT WNDTOP -

VSCL 2* NOOP */ WNDTOP + ;

s DXF (XnD YnD — xabs yabs)
(YY) SWAP (XX) SWAP ;

en s 68

(Dillos <CXX3 UYY3 <DXF <DXL)

s <(XX) (xabs — YnD)

WNDLFT - HSCL 2* 1+

WNDRGT WNDLFT - */ HSCL - ,

s <(YY) (yabs — XnD)
WNDTOP - VSCL 2# 1+

WNDTOP WNDBOT - */ VSCL + ;

s <DXF (xabs yabs ~ X# Y#)
((YY) SWOP <<XX> SWOP s

g <DXL (xabs yabs — X# Y#)
>R HOBS - R> VOBS SWAP- ;

•en § 69

(Dillos XFORM

FORTH DEFINITIONS

g XFORM DILLO

IF C ' DXF CFO 3L

I » <BXF CFO 3L 1

ELSE I s DXL CFO JL

I ? (DXL CFO 3L @

ENDIF

TO ?XFM TO

OFF XFORM

(f

<XF/L TO XF/L i

—->

Scri

0

i

2

3

4

5

6

7

8

9

li

11

12

13

14

15

•ens 7® -^
(Dillos ?HZONE ?VZONE DLINE) J

DILLO DEFINITIONS

s 7HZONE (coor — f)

DUP WNDW <

IF DROP -i ELSE WNDE > ENDIF ;

g ?V!ONE (coor ~ f)

DUP WNDS <

IF DROP -I ELSE WNDN) ENDIF ;

DLINE

KID Y1D XF/L POSIT

X2D Y2D XF/L DRAWLN ;

(—)

Screens 71

® (Dillos

I

HWSTP VWSTP ICLIP)

2

3

4

5

6

7

8

9

10

11

12

13

14

15

HWSTP @> (f — n n)

IF WNDE ELSE WNDW ENDIF DUP ;

VWSTP ®> (f —• n n)

IF WNDN ELSE WNDS ENDIF DUP ? ~)

ICLIP

DXi TO X1D DYl TO Y1D

DX2 TO X2D DY2 TO Y2D

DXi ?HZONE TO IXI

DX2 7HZONE TO 1X2

?VZONE TODYi

DY2 ?VZONE TO

IY1

IY2 !

(—)

—)

Screens 72

® < Dillos CLIP)

1

2 s CLIP (—)

3 i ICLIP IXi IY1 1X2 IY2
4 OR OR OR DUP NOT TO DFLG

5 IXI 1X2 <> IXi ®= OR

6 IY1 IY2 <> IY1 0s OR AND OND

7 IF 1X1

8 IF DYi DY2 - 1X1 HWSTP TO XID

9 DX2 - DXi DX2 - */

1© DY2 + DUP 7VZONE

11 IF 2DR0P 0

12 ELBE TO YID ® TO 1Y1

13 1 TO DFLG

14 ENDIF

15 ENDIF -•>

^

Screerts 73

® (

1

2

Dillos CLIP)

IY1

3 IF DXl DX2 - IYI VWSTP TO Y1D

4 DY2 - DYi DY2 - */

5 DX2 + DUP 7HZ0NE

6 IF 2DR0P ®

7 ELSE TO X1D I TO DFLG

a ENDIF

9 ENDIF DFLG OR

i®

ii 1X2 OVER OND

12 IF DY2 DYl - 1X2 HWSTP TO X2D

13 DXI - DX2 DXl - */

14 DYi + DUP 7VZONE

15 —>

Screen s 76

0 (Dillos

1

s GO DILLO (n —)

7DOWN SWOP 0 TO 7DOWN MOVE

TO 7DOWN ;

GOCT03 DUPGO DROW)

2

3

4

5

6

7

B

9

10

11

12 s DRAW DILLO

s GOTO DILLO

TO DYl TO DXI i

s DUPGO

DUP GO i

(x y —)

(n — n)

(n —)

13

14

15

7DOWN SWOP i TO -7DOWN MOVE

TO ?DOWN g.

Screen s 74 Sen

0 (Dillos CLIP) ®

1 IF DROP i

2 ELSE TO Y2D ® TO IY2 2

3 1 TO DFLG 3

4 ENDIF 4

5 ENDIF 5

6 IY2 OND 6

7 IF DX2 DXI - 1Y2 VWSTP TO Y2D 7

8 DYi - DY2 DYl - */ 8

9 DXi + DUP 7HZONE 9

i® IF DROP 10

11 ELSE TO X2D 1 TO DFLG II

12 ENDIF 12

13 ENDIF 13

14 ELSE DROP 14

15 ENDIF ? =•> 15

>en s 77

(Dillos DUPDROW DROWTO PHPEN)

Screen s 75

® (Dillos

1

2

3

4

5

6

7

8

9

1® FORTH DEFINITIONS

11 s TURN DILLO

12 AT DOZM +! OZMODJ

13

14 s TURNTO DILLO

15 TO DOZM OZMODJ §•

DLN/UPD MOVE TURNET03)

DLN/UPD (—)

DFLG IF DLINE ENDIF

DY2 TO DYl DX2 TO DXi 5

MOVE (n — >

DUP *SIN DXl + TO DX2

*CQS DYl + TO DY2 0 TO DFLG

7DOWN IF CLIP ENDIF DLN/UPD g.

(azim —)

azim —•)

—>

s DUPDROW

DUP DROW i
(n — n)

s DROWTO DILLO (x y —)
TO DY2 TO DX2 CLIP DLN/UPD ;

s PHPEN DILLO

TO PHCLR ODJCLR 5
(b —)

Screen s 78

0

1

2

(Dillos GOCT03. DUPGO.

: GOTO. DILLO (X

3 2DUP 2DUP GOTO

4 TO DY2 TO DX2 CLIP DFLG

5 IF C DRWSTT 9 + 3L >R R

6 @ R ! >R DROWTO R> R

7 ELSE 2DR0P

8 ENDIF §
9

I® s 60„ DILLO (

11 60 DXi DYl GOTO, j
12

13 s DUPGOo (

14 DUP 60= g

15

--)

DOT)

y ~)

9

n —.)

n

Screen s 79

® (Dillos

Scr

0

i

2

3

4

5

6

7

8

9

1®

11

12

13

14

S5

e©n§ 82

<Dillos WEDG WRLfBT- BASNUM) ^

s WEDG (Irtb—) '

DILLO TO WNDBOT TO WNDTOP

TO WWDRBT TO WNDLFT j

1

2

3

4

5

6

7

a

9

i@

li

12

13

14

15

s

DOT PEN DRBAK PHBAK

DOT

0 GOc

PEN DILLO

DUP TO DRCLR PHPEN

DRBOK DILLO

TO DRUCLR ODJCLR

(~

•< b

(color —

s PHBAK DILLO (color -—

DUP TO PHUCLR DRBAK ;

creeins B® Scr

® (Dillos CENTERMJ PHILCT03) 0

i i

2 s CENTER (~) 2

3 ® ® GOTO 'i 3

4 4

5 g CENTER® C —) 5

6 CENTER ® TO DOZM g 6

7 7

8 s PHIL DILLO (n —) 8

9 DRWSTT C@ -I DRWSTT C! 9

1® SWOP DRAW DRWSTT C! $ 1®

11 11

12 s PHILTO DILLO (x y —) 12

13 DRWSTT C@ -1 DRWSTT C! 13

14 <ROT DROWTO DRWSTT C! g 14

15 ssss) 15

Screens 81

® < Dillos

1

2

3
4

5

6

7

a

9

1®

11

12

13

14

15

WABS WNDREL WNUM

DILLO DEFINITIONS

g WABS C 1 r t b — L R T

DILLO ROT SWAP XF/L SSWOP

XF/L 2SW0P ROT SWOP §

B

WNDREL (Irtb — LRTB

DILLO ROT (XF/L 2SWAP

(XF/L 2SW0P ROT SWOP s

WNUM C 1 r t b —

DILLO TO WNDS TO WNDN

TO WNDE TO WNDW ;

Scrs

®

1

2

3

4

5

6

7

8

9

1®

11

12

13

14

15

s WRL-

WNDR WNDL - 2/ g

s WBT-

WNDB WNDT - 2/ g

s BOSNUM

WRL- DUP MINUS SWOP

WBT- DUP MINUS WNUM §•

(— n)

(— n)

en g S3

(Dillos SCLSTP RELOC)

g SCLSTP (—)

WRL- TO HSCL WBT- TO VSCL ;

g RELOC .(~)^
91 @ 9® C© <XF/L GOTO ;

ens 84

(Dillos M9SCOOR SET-SCOLE

s MCOOR DILLO

SCLSTP i TO 7MCOOR

OFF XFORM § MCOOR

(—

s SCOOR DILLO (—)

HUSR TO HSCL VUSR TO VSCL

HUSR DUP MINUS SWOP

VUSR DUP MINUS WNUM

® TO 7MCOOR ON XFORM s

s SET-SCALE (hscl vscl —)

DILLO TO VUSR TO HUSR 5

^

Screen s S5

0 (DillosCQQR DSCOLE WNDOSP WCTR

1

2 s COOR DILLO (—

3 7MCOOR

4 IF MCOOR ELSE SCOOR ENDIF %
5

6 s DSCOLE (--

7 WRL- WBT- SET-SCOLE j
8

9 s WNDOSP (—

1© CASP SWOP CASP SWOP §
II

12 FORTH DEFINITIONS

13 s WCTR DILLO C —

14 WNDE WNDW - 2/ WNDW + WNDN

15 WNDS - 2/ WNDS + GOTO ;

Sen

®

1

2

3

4

5

6

7

8

9

1®

Ii

12

13

14

15

Scrs

®

i

2

3

4

5

6

7

8

9

1®

II

12

13

14

15

ens 86

(Dillos WCTR® BASWND

s WCTR®

WCTR ® TURNTO \

WINDOW

(—

BASWND DILLO (—

WNDL TO WNDLFT WNDR TO WNDRGT

WNDT TO WNDTOP WNDB TO WNDBOT

BOSNUM CENTER® s

WINDOW < 1ft rqt top bot —
DILLO WNDOSP MCOOR 20VER 20VER

BOSWND WOBS WEDG WNUM WCTR® ;

RELWND (1ft rgt top bot —
DILLO WNDOSP SCOOR MOBS

WEDG CENTER® ;

»ns 87

Dilloi RELWND FRAME

FRAME DILLO

I DRWSTT 8 + 3L .

DUP 0 OVER ® SWOP ! SWOP

WNDLFT WNDTOP POSIT

WNDRGT WNDTOP DROWLN

WNDRGT WNDBOT DROWLN

WNDLFT WNDBOT DROWLN

WNDLFT WNDTOP DROWLN ! s

< —

—>

Screen s 88

0

1

2

i Dillos DINIT WIPE)

3 DINIT DILLO < —)

3 DRWSTT 16 ERASE

4 OW IRPHIL

5 MCOOR BASWWD 0 PHBAK 1 PEN ;
6 DINIT

7

8 8 WIPE DILLO (org dest --)
9 C DRWSTT 9+3L>RR®®R !

10 >R PHCLR DRCLR PHUCLR PEN

ii WNDBOT 1+ WNDTOP

12 DO WNDLFT I POSIT

13 WNDRGT I DROWLN

14 LOOP PEN PHPEN R> R> ! s

15 sss)

Sen

8

I

2

3

4

5

6

7

8

9

10

ii

12

13

14

15

•en s 89

(Dillos OSPSTP)

DILLO DEFINITIONS

t OSPSTP (tbladr --)

DUP C0 SWOP 1+ C@ * 32 SWOP

/ 833 * TO COSFOC ;

Screen s 9@

®

I

2

(Dillos DEFBOS EDGES)

s DEFBAS (L R T B —)

3 TO WNDB TO WNDT

4 TO WNDR TO WNDL

5 WRL- TO HOBS WBT- TO VOBS

6 SCLSTP ;
7

8 s EDGES < scn/pxl pxl/ln —)

9 1- (WNDR) >R

I® 7®3 C0 4 m (?»plit)
11 IF 16® ELSE 192 ENDIF

12 SWOP /I- < WNDB)

13 ® R> ® 4 ROLL DEFBAS

14 BOSWND §
15 ==>

Sereens 91 Sere•en § 94

0 (Dillos PXLTBL) i < Dillos DIMSTP UGR.)

1 LOBEL PXLTBL 1

2 (sen/pa:1 pxl/ln/10 pxl/byt) 2 PX/iYT DUP 2 -

3 8 C9 4 Cg i c9 C ®) 3 IF DROP 12

4 8 C9 ' 2 C9 i c9 (1) 4 ELSE 4 -

5 16 C9 2 C9 i c9 < 2) 5 IF 8 ELSE 0 ENDIF

6 8 C9 4 C9 4 c9 < 3) 6 ENDIF

7 4 C9 8 C9 8 c9 (4) 7 MSKTBL * MTBLi 8 CMOVE
a 4 C, a c9 4 c9 C 5) a a 0

9 2 C9 16 C9 8 c9 c 6) 9 DO

i® 2 C9 16 C9 4 C5 < 7) 10 MTBLi I + C@

11 I C9 32 C9 8 c9 (S) ii 255 XOR MTBL2 I + C!

12 1 C9 8 C9 2 c9 (9) 12 LOOP §
13 i C9 8 C9 2 c9 < 1®) 13

14 1 c9 8 C9 2 c9 c 11) 14 8 USR» (stripped-GR-# —)

15 1 C9 16 C9 4 c9 --> 15 DIMSTP 2DR0P MCOOR | =>

Screen s 92 Screen s 95

@

1

2

(Dillosi 7PLUS) ®

i

2

(Dillos BR*)

CODE 7PLUS HEX (•—) FORTH DEFINITIONS

3 09 Cg ®7 C9 85 C, 57 C, OD C, 3

4 3® C9 @2 Cs 85 c9 N C9 OD c, 4 g GR„ DILLO (b "—)

5 31 C9 ®2 C9 S5 C9 N 1+ C9 IHERE 5 C set up display^ 7+ 7)
6 Bl C9 N C9 29 c9 FC C5 6 DUP 15 OND SWOP OVER

7 C9 C, 4® C, F® c9 7 12 =

a 14 C9 Bl C9 N c9 8 IF 2- 2- GR= 7PLUS '

.9 85 C, N 2+ C9 29 cs 9 ELSE GR*

1® ®F C9 CS C9 ®F c9 D® C9 ®6 C9 10 ENDIF

ii C6 C9 N 2+ C9 05 C9 N 2+ C.9 ii (set up drawln § window dat<a)
12 91 C9 N Cs C8 cs 4C C9 9 12 DIMSTP EDGES

13 4C C9 NEXT , C| DCX 13 (. initialization)

14 14 ® PHBAK 1 PEN MCOOR DSCOLE

15 SS^ 15 OFF OSPECT §• FORTH

Screen% 93 Screen s 96

®

I

2

(Dillos! DIMSTP) 0

1

2g DIMSTP (stripped-SR--# •—)

3 (sen/pml pxl/ln) 3

4 3 » PXLTBL + DUP OSPSTP 4

5 DUP C0 C scn/pxl) SWOP 5

6 DUP 2+ C© TO PX/BYT 6

7 1+ Cf 1® «* C pxi/lns norma1) 7

8 559 i OMOCTL) Ci> 8

9 3 OND DUP 2 <> 9

1® IF I •» IF 4 ELSE 6 ENDIF 5 */ 1®

11 ELSE DROP ii

12 ENDIF i pxl/ln, actual) 12

13 DUP PX/BYT / TO BYT/LN 13

14 14

15 —> 15

r>

n

o

Screens '97 Screeng i®8
. ® 0 C turntwds TURNTWD)

1 1
g • 2 M Q0TW2)< 17 KLOOD)

3 3
4 4 s TURNTWD DILLO (x y —)
5 5 DYI - SWOP DXl - SWOP

6 6 Q0TN2 DUP OBS 87 + SWAP +-

7 7 < ROUNDING)

•8 8 IS® 31416 ♦/

9 9 C DEBREES)

1® 1® 9® SWOP- TURNTO ;
ii ii

12 12

13 13

14 14

15- 15

Screens 98 Screens 101

© ©

1 1

2 2

3 3

4 4

5 5

6 6

7 7 .

8 8

9 9

I® 1®

ii 11

12 12

13 13

14 14

15 15

Screens 99 Screens i®2

0 0 (P-namingg NAMEPT THISPT)
1 1

2 2 s NAMEPT < xxx, x y —)
3 ' 3 (BUILDS , , (xxKt - x y)
4 4 DOES) DUP 2+ © SWOP 9 §
5 5

6 6 g THISPT DILLO C xxx, —)
7 7 (xxxs — x y)
8 8 DXi DYi NOMEPT g
9 9

10 1® (or writ© SQUON)
ii ii

12 12

13 13

14 14

15 - 15

Screens

0

1

2

3

4

5

6

7

a

9

i®

n

12

13

14

15

1®3 Sereens i®6

0

1

2

3

4

(lines: 2LNX MAKLN

(al bi cl a2 b£ c2 — x y

5 PICK 2 PICK M* (bl*c£

5 4 PICK 7 PICK M* (- b£#cl

6 DMINUS D+

7 P J D/ DROP >R (x

8 2DR0P 2DR0P 2DR0P

9 R> R> R> R> 2DR0P s

1®

11 s MAKLN DILLO (— a b c

12 DXi DYI

13 OVER 10® #SIN +

14 OVER i®@ #COS + 2PT-LN ;
15

»n

eens 107Screens I®4 Sen

® (lines3 2PT-LN) ®

1 DILLO DEFINITIONS QUON LNO 1

2 QUAN LNB FORTH DEFINITIONS 2

3 i 2PT-LN (xl yl x£ y2 —a b c > 3

4 DILLO 2DUP >R >R 4

5 ROT - TO LNO (dy = a) 5

6 - TO LNB (-dx = b 5 6

7 LNO R> M* (-ax2-by2) 7

a LNB R> M* D+ DMINUS (« c) 8

9 2DUP 32767 M/ OBS 9

1® SWOP DROP -DUP 1®

11 IF 1+ >R R M/ SWOP• DROP 11

12 LNO R / TO LNO 12

13 LNB R> / TO LNP1 13

14 ELSE DROP 14

15

Sere

ENDIF LNO LNB ROT

•ens 1©5

! s> 15

Sen

®

1

2

(liness 2LNX
•

) 0

I

2M D/)(60 KLOOD)

3 3

4 FORTH DEFINITIONS 4

5 5

6 s 2LNX (al bl cl a2 b2 c2) 6

7 DILLO (—• x y) 7

a 6 PICK 3 PICK M* (al«b2) 8

9 5 PICK 8 PICK M* (- a£#bi) 9

1® DMINUS D+ >R >R I®

ii 4 PICK 4 PICK M* (cl*a2) 11

12 3 PICK 9 PICK M# (- c2«al) 12

13 DMINUS D+ 13

14 I I» D/ DROP >R (y) 14

15 — -) 15

?ens I®8

(L-namingg THISLN

5 (2PT-LN)(52 KLOOD)

s THISLN

DILLO

<BUILDS

MOKLN , , ,
DOES)

DUP 4 + 0 OVER 2+ 0 ROT 0 ;

C or write 3QU0N)

C xxx, —)
(xxxs — a b c)

^

r>

Screens 109

® (L-naraingg NOMELN)
1

2 s NAMELN (xxx9 xl yl x2 y2 —)
3 <BUILDS < kkks — a b c)

2PT-LN , , ,
DOES)

DUP 4 + 0 OVER 2+ 0 ROT 0 §

4

5

6

7

8

9

1©

11

12

13

14

15

(or write 3QU0N)

Screen s 112

0

I

2

C Dillo opt ion load block

3 t®@ LOAD (TURNTWD)

4

S 102 LOOD C POINT NAMING)

6

7 i®4 LOOD (LINE-INTERSECT.

8

9 168 LOAD (LINE NAMING)

1®

11 11® LOOD i WINDOW NAMING)

12

13

14

15

Scree'ns 11® Screens

® (W-nawiings THISWND) ®

I i

2 s THISWND DILLO (xxxs —) £

3 (BUILDS (xxxs --) 3

4 7XFM , 4

5 WNDW , WNDE , WNDN , WNDS 9 5

6 WNDLFT 9 WNDRGT , &

7 WNDTOP , WNDBOT c 7

8 DOES) >R ia 0 8

9 DO J I + 0 2 +L.OOP R> DROP . 9

I® WEDG WNUM XFORM WCTR® g 1®

11 il

12 IS

13 13

14 14

15 15

113

Screen s ill

®

1

2

3

4

5

6

7

8

9

1©

11

12

13

14

15

Screen g 114

0

1

2

(Quans TO OT

§ TO

3 -FIND ®= 0 7ERROR DROP

4 STATE 0

5 IF ,
6 ELSE EXECUTE

7 ENDIF g IMMEDIOTE

8

9 s OT

1® -FIND 0» ® 7ERROR DROP

ii 4 + ECOMPILEJ LITEROL s

12 IMMEDIOTE

13

14

15

Screens 115 Screens 118

® (Quans C206]

1

2 ASSEMBLER HEX

1 E2!43) ®

1

2

(Quans QUAN VECT

s QUAN

3 3 ON PTCH LOBEL -2 OLLOT

4 LOBEL (206) 4 C2@6) , C2!4) 9
5 0® Cf ®6 C9 Bi C, W C, 48 C, 5 I s VARIABLE 4+3 LITERAL

6 C8 Cf Bi C9 W C9 4C c, PUSH , 6 2 ALLOT OFF PTCH ;
7 7

8 LABEL (2!4) 8 s VECT

9 A® C, ®4 C9 B5 C9 ®® e* 91 Cs 9 ON PTCH LABEL -2 ALLOT

1® W C, C8 C, B5 C9 ®1 c, 91 Cf ii C2V4) 9 (2! 2) ,
ii W C9 4C C9 POP , 11 C 9 NOOP- CFO 1 LITERAL f
12 12 OFF PTCH §
13 13

14 14

15 —> 15

Screens 116 Scr

® (Quans E2!23 C2V43) 0

1 I

2 LABEL (2!2) 2

3 0® C, ®2 C9 3

4 4C C, ' C2!4) 2 + , 4

5 5

6 LOBEL (2V4) 6

7 0® C9 ®5 C9 Bl C9 W C, 48 C9 7

8 88 C9 BI C9 W C, 85 C, W C9 8

9 68 C9 85 C9 W 1+ C9 9
10 0® C9 '00 Cs 4C C, W 1- , I®

11 11

12 12

13 13

14 14

15 ss> 15

ms 119

ere»eir»: 117 Screens 1L2@

0 (Quans patch for CREOTE) 0 (Dblss DU/MQD)

i I DILLO DEFINITIONS

2 DCX 2 HEX

3 3 CODE DU/MQD (dl d2 — dr dq)
4 s (PTCH) (system) 4 09 c9 ©4 cs 2® C9 SETUP »

5 SWOP >R R = 251 R m £49 R> = 5 CO C9 94 c9 00 C9
6 OR OR ? 6 CO c9 94 c9 @® C9
7 7 CO C9 94 c9 0® C9
a s PTCH (system) 8 CA c9 94 c9 @@ C9
9 IF I ' (PTCH) CFA 3 LITEROL 9 A® c9 @4 c§ CO C9 B9 C, C5 C,

I® ELSE C ' = CFO 3 LITEROL I® ®@ C9 95 c9 00 C9 88 C, D® C,
11 ENDIF II F7 c9 0® c9 2® C9 16 C, ®2 C,
12 C ' CREOTE 63+3 LITEROL ! g. 12 36 c9 @3 c9 36 C9 0® C, 36 C,
13 13 01 cs 36 C9 @6 C, 36 C, ®7 C,
14 14 36 c9 04 C, 36 C, ®5 C, 38 C,
15 —> 15 ==>

^

'-l

*-)

Screens 121 Screen s

® (Dblss DU/MOD) ®

1 I

2 B5 C, ®6 C9 E5 C9 C4 C, 48 Cs 2 •

3 B5 C, ®7 Cs E5 C, C5 C9 3

4 48 C, B5 C, ®4 C, E5 C, C2 C9 4

5 48 C, B5 C9 ®5 C, E5 C, C3 c, 5

6 3® C, 1® C9 95 C, ®5 C9 68 cs 6

7 95 C, ®4 C9 68 C9 95 C9 ®7 cs 7

a 68 C, 95 C, ©6 C, F6 C, ®2 c, 8

9 4C C, HERE ©5 + , 68 C9 68 c, 9

1® 68 C, 88 Cs D0 C, C4 C, 4C c, i®

11 NEXT ,. c5 ii

12 12

13 DCX 13

14 14

15 —) 15

124

Screens 122

©

1

2

(Dblss D/MOD D/

s D/MOD

3 DUP 4 PICK DUP >R XOR >R

4 DOBS 2SWAP DABS 2SWAP

5 DU/MOD R> D+-

6 2SWAP R) D+- 2SW0P §
7

8 s D/

9 D/MOD 2SW0P 2DR0P ;
i®

11

12

13

14

15

Screens 125

0 '
I

2

3

4

5

6

7

8

9

1®

II

12

13

14

15

Screen s

0

i

2

3 '

4

5

6

7

8

9

1®

il

12

13

14

15

123 Screens 126

0

1

2

(Quan s TO OT

s TO

3 -FIND ®^ 0 7ERROR DROP

4 STOTE 0

5 IF ,
6 ELSE EXECUTE

7 ENDIF i IMMEDIOTE
8

9 s OT

1® -FIND ®= ® 7ERROR DROP

11 4 + ECOMPILE3 LITEROL g

12 IMMEDIOTE

13

14

15

Screens 127 Sereens 13®

® (Quans QUON) 0 (Demosg BOX

1 1

2 ASSEMBLER HEX 2 s BOX

3 3 4 ©

4 LABEL (206) 4 DO DUPDROW 9® TURN

5 A® C, ®6 C, BI C9 w c, 48 C, 5 LOOP DROP §
6 C8 C9 BI C9 W C¥ 4C c, PUSH , 6

7 7

8 LABEL (2!4) 8

9 A® C9 ®4 C9 B5 C9 @® cs 91 C9 9

1® W C9 C8 Cs B5 C, 01 c, 91 C9 I®

11 W Cs 4C C9 POP , . il

12 12

13 13

14 14

15 —> 15

Sere»ens 128 Screens 131

®

i

2

(Quans C2!23 C2V43) ®

1

2

(Demos g QUBE

LOBEL '(2! 2) s QUBE

3 A® C, 02 C9 3 >R DXi DYI DOZM R)

4 4C C, ' (2!4) 2 + , 4 DUPDROW 9® TURN

5 5 DUPDRAW 45 TURN

6 LOBEL (2V4) 6 DUPDROW 45 TURN

7 0® C9 05 C9 Bl C9 W C, 48 C, 7 DUPDRAW 9® TURN

8 88 C9 Bl C, W C9 85 C9 W C, 8 DUPDROW 45 TURN

9 68 C5 85 C9 W 1+ C9 9 DUPDROW 135 TURN

1© A® C, ®® C, 4C C, W 1- , 10 DUPDROW -9® TURN

11 11 DUPDROW 18® TURN

12 12 DUPGO

13 13 -45 TURN DROW

14 14 TURNTO GOTO ;
15 ==) 15

(n

-->

(n —)

—>

Screens 129 Screens 132

®

1

2

(Quans QUON VECT) @

I

2

(Demos a TCIRCLE QCIRCLE)

s~QUON g TCIRCLE (chord - -)

3 LOBEL -2 OLLOT 3 18 ®
4 (206) 9 (2!4) , 4 DO DUPDRAW 2© TURN

5 C ' VARIABLE 4+3 LITERAL , 5 LOOP DROP ;
6 2 OLLOT | 6

7 7 g QCIRCLE • (radius - -)

a s VECT 8 DAZM DXl DYI 4 ROLL

9 LOBEL -2 ALLOT 9 -1® TURN

1© (2V4) , (2«2) , I® 3473 I©®®® */ DUP

11 E « NOOP CFO 3 LITERAL , ? 11 I®®@@ 3473 */ 60

12 12 100 TURN TCIRCLE • •

13 13 GOTO TURNTO g

14 DCX 14

15 15

~)

^

r>

Screens 133 Screens 136

®

1

2

3

4

5

6

7

a

9

11

12

13

14

15

Screens 134 Screens 137
0

1

2

3

4

5

6

7

8

9

i®

11

12

13

14

15

Screens 135 Screens 138

©

1

2

3

4

5

6

7

8

9

10

11 .

12

13

14

15

Screens

®

1

a

3

4

5

6

7

8

9

1® •

li

12

13

14

15

Screens

0

1

2

3

4

5

6

7

a

9 '

1®

11

12

13

14

15

Screen s

®

i

2

3

4

5

6

7

8

9

i®

11

12

13

14

15

Sere

®

1

£

3

4

5

&

7

a

9

1®

11

12

13

14

15

ins 139

Screens

0

1

2

3

4

5

6

7

8

9

1®

11

12

13

14

15

Screen s

©

1

2

3

4

5

6 .

7

3

9

1©

11

12

13

14

15

14®

141

Screens 142

0

1

2

3

4

5

6

7

8

9

1®

li

12

13

14

15

Screen s 143

®

I

2

3

4

5

6

7

8

9

1®

II

12

13

14

15 •

Screeng 144

®

i

2

3

4

5

6

7

8

9

1©

11

12 .

13

14

•15

.1

~5

r>

Screens 145 Screens 148

® ®

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

1® 10

11 11

12 12

13 13

14 14

15 ' 15

Screens 146 Screens 149

® ®

1 I

2 2

3 3

4 4

5 5

6 6

7 7

8 a

9 9

1® 1®

11 II

12 12

13 13

14 14

15 15

Screens 147

®

1

2

3

4

5

6

7

8

9

i®

ii

12

13

14

15

Screen; 15®

0

1

2

(Fp ext g usefu1 constant s)

FP 3„14159265 FCONSTANT PI

3 FP 1.57879633 FCONSTANT PI/2

4 FP 1.®4719756 FCONSTANT PI/3

5 FP .785398163 FCONSTANT PI/4

6 FP .523598776 FCONSTANT PI/6

7 FP =8174532925 FCONSTANT RD/DG

8 FP 57= 2957796 FCONSTANT DG/RD

9 FP 2*71828183 FCONSTANT EXPl

I® FP I FCONSTANT FP1

Ii FP 0 FCONSTANT FP® I

12 FP IE+97 FCONSTANT FTOP

13 FP iE-97 FCONSTANT FBOT

14

15 =->

Sen

©

I

£

3

4

5

6

• 7

8

9

1®

11

12

13

14

15

>ens 151

(Fp exts FMINUS 2FDUP F+! FMOX)

Scr«

®

1

2

3

4

5

6

7

8

9

1®

11

12

13

14

15

s FMINUS
SP@ 4 + DUP C@

128 XOR SWAP C! S

(fp ~ fp)

s 2FDUP (fp fp — fp fp fp fp >
FOVER FOVER s

g F+! C fp a —)
DUP >R F@ F+ R) F! §

g FMAX C fp fp — fp)
2FDUP F<

IF FSWOP ENDIF FDROP ;

•ens 152

(Fp ©xts FMIN F®< FOBS 2FDP F,)
%FMIN (fp fp — fp)
2FDUP F>

IF FSWOP ENDIF FDROP 5

% F®<

FP® F< 1

(fp — f)

g FABS (fp ™ fp)
FDUP F©< IF FMINUS ENDIF %

g 2FDR0P

FDROP FDROP 1

SWOP ROT , , , 1

(fp fp ~ >

< fp —)

Screens 153

® (Fp exts F>R FR)
1 g F>R

2 SWAP ROT R> (ROT

3 >R >R SWOP >R >R

4

5 s FR>

6 R> R> SWOP R) R>

7 ROT >R (ROT SWAP 1
8

9 s F„S

F=S)

(fp —)

(— fp)

(—)

10 CR S® 0 SP© - 2- 6 / -DUP

11 IF -I SWAP i-

12 DO SP0 I 6 # + F@ SWOP ROT F.

13 -1 +LOOP

14 ELSE ." No FP on stack... "

15 ENDIF 3 —>

Sen

®

1

2

3

4

5

6

7

8

9

1©

II

12

13

14

15

'®ng 154

(Fp exts

CODE <F0>

HEX CO

CO C9 CO

EF@3 FPICK FROLL)

(systems — Cfp3)
Cg CO C, CO C, CO C,
C9 4C C9 NEXT , DCX

FPICK < fp. .fp n - fp. .fp fp)
1 - 6 «• SP® 2+ SWAP O+S

6-6 CMOVE <F0) \

FROLL C fp. .fp n — fp.. fp)
@ MAX -DUP

IF DUP 6 « >R FPICK SP@ •

DUP 6 + R> (CMOVE FDROP

ENDIF g

•ens IS3

(Fp ©xts -FIX -FLOAT)

~>

Sen

0

I

2

3

4

5

6

7

8

9

I®

Ii

12

13

14

15

g -FIX (fp — n)
FP -32768 FMOX FP 32767 FMIN

FDUP F0«

IF FMINUS I ELSE ® ENDIF ^
>R FIX R>

IF MINUS ENDIF §

-FLOOT

DUP ®< DUP >R

IF MINUS ENDIF

FLOAT R>

IF FMINUS ENDIF ;

(n — fp)

Screens 156

® (Fp ©xti
1

g FLWCHK

DUP 173

2

3

4

5

6

7'

8

9

1®

II

12

13

14

15

—>

FLWCHK Csystew»3

<

(

IF DROP 128 < fp fp 1
AND SWOP 128 OND

XOR >R 2FDR0P

FTOP R)

IF FMINUS

ENDIF ©

ELSE 79 <

IF 2DR0P 2FDR0P FP® ®

ELSE 2DR0P I

ENDIF

ENDIF §

system)
fp fp n n n

/ fp 0)

~l

Screens 157

© (Fp exts 2EXP0& Csysteml)
1

£ s 2EXP0&

3

4

5

6

7

8

9

1®

11

12

13

14

15

(system)
(fp fp — fp fp n n n n)

SP@ 1® + DUP C0 SWOP 6 - C@

2DUP 127 OND SWAP

127 OND SWAP i

--)

Sen

®

1

2

3

4

5

6

7

8

9

1®

11

12

13

14

15

•ens 160

(Trigg sin/cos & atn coefs

9 (i/FP)< 15 KLOOD)

LOBEL SCCFS

FP a26®i9©3®4E-5 Fs
FP -.198074187E-3 F9
FP .8333025I4E-2 F9
FP -o166666567 F,

LABEL TCFS

FP -.509@95825E-1 Fs
FP -„47®832514 F,
FP „141250074E+1 F,

Scree ns 15B Screens 161

©

1

2

(Fp exts F*OV F/OV I/FP) @

1

2

(Trigs CS/C3)

g F*OV (fp fp — fp) s (S/C) (fp f ~ fp)

3 2EXP0S + FLWCHK IF F* ENDIF ; 3 >R FDUP PI F/ FIX DUP 1 AND

4 4 IF R) I XOR >R

r 5 s F/OV (fp fp — fp) 5 ENDIF

6 FDUP F®= 6 FLOAT Pi F* F-

7 IF FDROP FBOT 7 FDUP FDUP F* FDUP F) R

8 ENDIF 8 SCCFS 4 FR) FS FPOLY >F F*

9 2EXP0& 128 - MINUS + FLWCHK 9 FOVER F* F+
10 IF F/ I® R>

11 ENDIF s 11 IF FMINUS

12 12 ENDIF i
13 s 1/FP (fp — fp) 13

14 FP1 FSWAP F/OV ; 14

15 »> 15 ->

Sereeim 159 Screens 162

@

I

2

(Fp exts ->RD ->DG) 0

1

2

(Trigg SIN COS TON)

s FR (— fpl) g SIN (fp — fp)

3 4 RPICK J P §- 3 FDUP F0< >R

4 4 FOBS R) (S/C) §
5 3 ->RD (fpl — fP2) 5

6 RD/DG F* i 6 s COS (fp — fp)

7 7 FOBS PI/2 F+

8 g ->DG C fpl ~ fp2) 8 0 (S/C) |
9 DG/RD F* ? 9

r
1® i® § TON (fp -- fp)

ii 11 FDUP SIN FSWOP COS F/OV g
12 12

13 13

14 14

15 15 =>

eer§ § 166Screens 163 Sen

® (

1

2 3

Trigs CATN3) 0

1

2(OTN) (fp — fp)
3 FDUP FPI F> 3

4 IF I/FP £ ELSE ® ENDIF >R 4

5 FDUP FP =267949192 F> 5

& IF FDUP FP io732®5@81 F» FPi 6

7 F- FSWOP FP 1.73205081 7

a F+ F/ R> 1+ >R 8

9 ENDIF 9

I® FDUP FDUP F* FDUP FDUP F>R I®

ii TCFS 2 FR> FS FPOLY >F F# 11

12 FSWOP TCFS 12 + F0 F+ F/ ' 12

13 FOVER F* F+ 13

14 I 1) 14

15 —> 15

Screeins 164

0 (

1

2

Trigs COTN3

IF FMINUS

3 ENDIF R> -DUP

4 IF

5 I DUP

& IF

7 1-

8 1F PI/3

9 ELSE PI/2

1® ENDIF

11 ELSE PI/6

12 ENDIF F+

13 ENDIF 3
14

15

Screen s

®

1

2

3

4

5

6

7

8

9

I®

11

12

13

14

15

167

Screen s 165 Sen

i

2

(Trigg OTN 0TN2) 0

I

2g OTN (fp — fp)
3 FDUP F®< >R FOBS (OTN) R> 3

4 IF FMINUS 4

5 ENDIF § 5

& 6

7 s ATN2 (fpx fpy — fp) 7

a FSWAP 2FDUP FSWAP . 8

3 F0< >R F0< >R 9

10 F/OV FOBS (OTN) R> I®

ii IF PI FSWOP F- 11

12 ENDIF R) '12

13 IF FMINUS 13

14 .ENDIF § 14

'15 15

mz 168

-^

r

Screens 169 Screen s

® ®

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

1® I®

11' 11

12 12

13 13

14 14

15 15

Screens 170 Screens

© CONTENTS OF THIS DISKs .0

1 1

2 ORMODILLO GROPHICSs 4® LOOD 2

3 + TURN TOWORDs 10® LOOD 3

4 + POINT-NOMlNGs 1®2 LOAD 4

5 + LINE-INTERSECT FCNSs 104 LOAD 5

6 + LINE-NOMINGs 108 LOAD 6

7 + WINDOW-NOMINGs 11® LOOD 7

8 LOOD OLL OBOVE +»Ss 112 LOOD 8

9 DEMOSs 13® LOOD 9

18 I®

11 FLOOTING PT* EXTENSIONS 15® LOOD Ii

12 (REQUIRES V0L4TH FLT. PT*) 12

13 QTRIG (INTEGER) FNCTNSs 3® LOAD 13

14 14

15 QUAN STRUCTURESs 114 LOAD 15

Screen s 17 i Screen s

e ®

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

1® 1®

ii 11

12 12

13 13

14 14

15 15

172

173

174

Screen s 175

0

1

£

3

4

5

&

7

a

9 '
1®

ii

12

13

14

15

Screens 176

® (Error messages
i

2 Stack empty
3

4 Dictionary full
5

6 Wrong addressing modi
7

8 Is not unique
9

i® Value error

11

12 Disk address error

13

14 Stack full

15

Screens 177

©Disk Error!

1

£ Dictionary too big
3

4

5

6

7

a

9

10

li

12

13

14

15

Screen s 178

® (Error messages
1

2 Use only in Definitions
3

4 Execution only
5

6 Conditionals not paired
7

8 Definition not finished

9

I® In protected dictionary
II

12 Use only when loading
13

14 Off current screen

15

Screens 179

® Declare VOCABULARY

1

•2

3

4

5

6

7

a

9

1®

ii

12

13

14

15

) -; *

n
is

^i

international:
3S01 e. sa™
TUCSON, ARIZONA SS713

valFORTH
T.M.

SOFTWARE SYSTEM
for ATARI*

Text Compression and
Auto Text Formatting

Atari isa tradem^lcofAtari, inc.,a division ofWamsrCommunications,

Software and Documentation
©Copyright 1982

Valpar International

valFORTH
SOFTWARE SYSTEM

Text Compression and Auto Text Formatting
Evan Rosen

Software and Documentation

©Copyright 1982
Valpar International

Purchasers of this software and documentation package are
authorized only to make backup or archival copies of the
software, and only for personal use. Copying the accompanying
documentation is prohibited.

Copies of software for distribution may be made only as speci
fied in the accompanying documentation.

r

VALPAR INTERNATIONAL

Disclaimer of Warranty
on Computer Programs

All Valpar International computer programs are distributed
on an "as is" basis without warranty of any kind. The total
risk as to the quality and performance of such programs is with
the purchaser. Should the programs prove defective following
their purchase, the purchaser and not the manufacturer, distributor,
or retailer assumes the entire cost of all necessary servicing or
repair.

Valpar International shall have no liability or responsibility
to a purchaser, customer, or any other person or entity with
respect to any liability, loss, or damage caused directly or
indirectly by computer programs sold by Valpar International.
This disclaimer includes but is not limited to any interruption
of service, loss of business or anticipatory profits or conse
quential damages resulting from the use or operation of such
computer programs.

Defective media (diskettes) will be replaced if diskette!s)
is returned to Valpar International within 30 days of date of sale
to user.

Defective media (diskettes) which is returned after the 30 day
sale date will be replaced upon the receipt by Valpar of a $12.00
Replacement Fee.

TEXT COMPRESSION AND AUTO TEXT FORMATTING

Table of Contents

LI OVERVIEW AND STROLLING THROUGH TCAF

LII TCAF- GLOSSARY

LIII TCAF - SUPPLIED SOURCE LISTING

f)

NOTICE

TEXT COMPRESSION AND AUTOMATIC TEXT FORMATTING
CODE TRANSPORTATION

The routines in this package have been coded and presented so
that they may be readily transported to other fig-FORTH systems
on machines other than the Atari 400/800. This is in response to
numerous requests to this effect from various "adventure" game
authors. We note, however, that the same restrictions apply to
the software in this package, whether run on the Atari 400/800
machines or any other:

First, the code may ONLY be used in either an AUTQ'd system as >
described in valFORTH 1.1 documentation, or in a target-compiled
system,

Seconds any software written with these routines, on any machine,
must contain the acknowledgement of Valpar International as the
source of the code* as described and detailed in valFORTH 1.1
documentation.

Other distribution may be construed to be a violation of
applicable copyright laws,

Overview

^^ This package attempts to fill at least two common needs of the programmer who
does verbal/interactive programming.

Firsts a group of automatic text formatting routines is provided that allow
two different approaches:

*A non-wrap line formatter to both the video display and the
printer, including variable-margin capability and inverse
video option9 and

A versatile window formatting system, with scrolling color and
inverse video options as appropriate,* and window naming. Notes
on the creation of window types with different "generic11 parameters
are also included.

In both modes described above, user options of left-, right-, center-, or
fill-justification are "supported, as is numerical output formatting.

Second^ two different approaches to the problem loosely termed "text
compression" are implemented:

The first is intended for use in programs where run-time retrieval of text
stored on disk is allowable, and provides a set of general virtual-memory
operators for the creation and retrieval of messages from disk. A simple
encryption scheme is provided as a (working) example for the software
developer who wishes his or her messages to be not easily readable from disk
with* for instance, a Forth screen editor. In addition, alternate points in
the virtual memory routines are indicated where deeper encryption routines
might be employed. Routines are provided for virtual memory message program
ming on both one- and two-drive development systems.

The second set of text compression routines is intended for use in "in memory"
applications, such as cassette-booted programs, that do not have access to
disk for message retrieval. In this case the most compact code practical is
desired, and a system built around some of the basic asoects of Forthfs compact
threaded-code structure is provided.

Finally5 we note that the autoformatting and text compression utilities are
designed to be used in most any of their possible different combinations.

LI-1

STROLLING THROUGH TCAF

(Text Compression and Autoformatting)

The organization of this disk is slightly different from the others in this
series. While a table of contents may still be found on screen 170 as usual,
in this package the "load chain," starting on screen 166, will get far more use.
In general when one wishes to load a TCAF development system with a specific set
of capabilities, one makes slight adjustments to the load chain option screen
and then simply loads the first screen in the chain. The chain does the rest.

To start off, first prepare two blank, formatted disks. Make your normal working
copy of TCAF on the first disk and leave it un-write^protected. The second disk
will be used a little later,

Autoformatting

In order to select options you will want to make changes-to the load chain
option screen. This may be found by locating the load chain in the directory
on screen 170§ and then scanning through the screens in the chain until you
find the one marked "options" in its first line. (This is on or near screen 167.)
Look at this screen, and see that most of the lines have a left parenthesis in the
left column, followed by a LOAD command and a comment. By removing selected
left-column left parentheses you can activate various options. Right now on your
working copy use an editor to remove all of the left-column left parentheses
except for the one on the line that says "text compression." (Text compression
uses transient structures and will be discussed separately.) And* of course, ^^
don't remove the one in the comment at the very top of the screen. OK, now J
boot a bare valFORTH 1.1.system, and load in the debugger and swap in the TCAF
disk, do MTB as usual, and load the first screen in the load chain on this disk*
(Probably 166.)

When the prompt comes back, type

ON STACK

since you HI want to watch the stack. Then type

TYPEOUT

(Failure to execute this initialization word may cause a crash as you try to
use words like *TYPE later on.) This command activates one of the two format
ting modes. This mode, called "type-out mode," since it uses the word TYPE as
its actual output word, can send formatted type to either the display or the
printer. The other formatting mode is activated by WINDOUT and is called
"window-out mode." It will be discussed a bit later.

LI-2

D

^

Now type

" Here is a simple example of the formatter's function,"

using lower case as shown, and notice that an address, actually PAD, is left
on the stack. Now reactivate upper case (press Shift and Caps-Lowr) if you
haven't already, and type

COUNT

The address was bumped by one, and the string count was extracted from the
first byte in the string created by " and placed on top of stack. All normal.
Now type

2DUP CR CR TYPE CR

and see that the typed output wraps around as usual. Now try

2DUP CR CR *TYPE *CR

The word "formatter's" is no longer split. Let's try it again but with
different formatting. Type

CTRJST ("center justification")
2DUP CR CR *TYPE *CR

How about

FILJST ("fill justification")
2DUP CR CR *TYPE *CR

The text is now spread or "filled" to take up the whole space between the
margins. The last mode is

RGTJST ("right justification")
2DUP CR CR *TYPE *CR

which gives the expected result, Finally, type

LFTJST ("left justification," the default mode)
2DUP CR CR *TYPE *CR

and we're back where we started.

Well, what precisely is happening? The 2DUP each time is there of course
to reproduce the two stack arguments, adress and count, for use by *TYPE
(or TYPE). The two CR's each time are merely to space the result down the
page a bit, and make it start at the left margin. As we will see, these two
CRss will not generally be necessary in normal programs. The TYPE we'll assume
you already know about. If not, look it up in the 1.1 glossary. While you're
looking at TYPEfs definition you might refresh your memory about how to allow
it to type inverse video characters also. A short discussion about this follows
TYPE'S definition, and we may need this feature later on. OK, what about *TYPE?
*TYPE, like TYPE, takes a count and address on the stack, but instead of
routing the text directly to an output device, *TYPE sends it instead to a

LI-3

holding buffer, located at BUF, where it accumulates. As.each character is sent
to the buffer it may be colored, inversed, or capitalized, depending on whether '
these options are loaded and appropriate. Since we loaded all three of these 7
options we'll try them presently. When the buffer at BUF overflows with a non-
blank character, *TYPE formats the line (if any format routines were loaded)
and then sends it out via a vect called *XMTLN. Roughly, a vect is a word that
can be "assigned" the meaning of a second word so that when the vect is executed
it acts precisely like the word last assigned to it.) "XMTLN" in *XMTLN stands
for "transmit line." The word *XMTLNP is currently assigned to *XMTLN and is
located, in the first release, on or near screen 73. *XMTLNP, and so now *XMTLN,
types out the buffer at BUF and increments a line counter if the printer is on
and does a few CR$s if a printed page is full, After the buffer is output,
cleared, and the overhanging characters have been moved to the beginning of the
buffer, *TYPE continues to consume the character string. In general there will
always be something in the buffer unless it has been cleared. *CR pushes the
last of the text out of the buffer to the output device, and then clears and
initializes the buffer with BUFINIT. You probably won't have to do BUFINIT
yourself unless you are experimenting with the internals of the program. To
illustrate this point about *CR, type

2DUP CR CR *TYPE 2DUP *TYPE *CR

This time, since we didn't do *CR after the first *TYPE, the next *TYPE tacked
its text right on to what was left in the buffer.

Now type

SP! (we'll make a new message) <"\
: SHOW 2DUP CR CR. *TYPE *CR ; ;
" here is another message for another purpose."
COUNT

CTRJST

CAP SHOW

SHOW

See what CAP does? Now try

ON CAPS

SHOW

OFF CAPS

SHOW

And what about inverse video? Since *TYPE uses TYPE and TYPE as it now stands

will not print inverse video (it strips the high bit before sending.a byte out)
welll need the modification discussed in the 1.1 Glossary, under TYPE. Here it
is, type it in, c a r e f u-1 1 y:

HEX FF ' TYPE 14 + C! DECIMAL

and then type

VLIST

to see an interesting side note. The high bits of the last byte of (almost) all I)

LI-4

names are set. This is used by vocabulary search words. But, back to business.
Type

SHOW

And you get trash. This is because some word in VLIST uses PAD for something,
so your message was overwritten, This is just a reminder. Type

SP! (clear the stack)
" Here is yet another message, to show other features,"
COUNT

ON CAPS

ON INVID

SHOW

ON INVBK (for "inverse background")
SHOW

OFF INVID

SHOW

2DUP CR *CR *TYPE *CR *CR CR

etc

Play with these things for a while if you like. When you're done, do

SP!

OFF CAPS

OFF INVID

OFF INVBK

and we'll continue.

Virtual Memory (Disk-stored) Text

We used the word " in the exercises above, but it has a serious shortcoming in
that it won't digest a string larger than 255 characters since it only keeps
a one-byte length byte. The word X" (for "extended quote") in this package
allows longer strings when loading from disk. X" will not work from the key
board. Use XCOUNT with X", and it retrieves the two-byte length count and
leaves it on top of the stack, There is a demo of X" on screen 120. Take a
look at it if you like and then type

120 LOAD

and a short message will come back as part of the demo. Turn your stack on if
you've turned it off for any reason, and do

XCOUNT

OFF CAPS OFF INVID OFF INVBK

FILJST

SHOW

LI-5

If you looked at the screen you may have noticed the right-arrow characters
near the end of the text. These cause a *CR to be executed at that point in /tm^
the text. See *EMIT code for details. You can make your own control characters ^}
in a similar fashion. (To type a right arrow character in the valFORTH 1.1
editor, do ESC followed by CTRL-*). Observe also that no —> was required for
X" to cross the screen boundary. XM will only stop on finding a final " and so
may run right on through a disk looking for one if you forget" to put it in.

Well, X" is ok, but not as handy as it might be for general programming. Look
at screen 122 and then type

SP!

122 LOAD

and a demo message will come back again, indicating that a new word, MSGDEM1.
now exists. This word will actually pull its message text off the disk. Let's
do it. Do MTB just to make sure it's not cheating, and then type

CR CR MSGDEM1

Notice that we didn't use SHOW this time, just the message name. The messages
end with a right-arrow. Now, the method that generates this message, namely
using a new word, V" , followed by a string and then a terminating " and then
the word M: followed by the message name, does achieve the desired result, but
at the price of leaving the V", ", M:, and name on the disk along with the
message. This method is provided only because for those working with a one-
drive development system it is the easiest, and does not involve any disk
swapping during compile time. However, for those with two drive systems, and ^
those with only one drive but also a tolerance for swapping disks every time a
message is compiled, the next and last structure in this series is provided.
It allows fully compact, text-only messages to be compiled on the final product,
and also allows encryption.of the text. We will first do it the way the one-
drivers need to.

Look at screen 124. The 80 ALTINIT command sets up an alternate set of disk
pointers to start at screen 80. This is where, in our example, the text of the
various messages compiled by this method will be stored on the extra disk we
formatted at the beginning. Notice that the message starts with X" again,
Hence, we see that it will first be assembled at PAD before being sent elsewhere.
Now look at screen 125. There's the terminating " , the defining word, MS6:,
and the message name, and a short message with ." This final message is just
there for convenience In this demo and is not needed in general. Type

124 LOAD

and when it tells you to put in the destination disk, swap in the extra blank
disk you formatted, then press START as directed. At the next prompt, swap back
and press START again. When using this method you must be very careful not to
reverse your disks or you may wipe out part of your source disk.

• *

LI-6

^

Well, the message is now written to the second disk on screen 80, and the
word MSGDEM2 knows where to find it. Let's take a quick look to see that it's
really there. Type

MTB

to empty the buffers, and then swap disks again (so that the destination disk
is in the drive) and do 80 LIST, and then 81 LIST. There's the message. The
first two strange bytes on screen 80 are the count. Now do

MTB CR CR MSGDEM2

and watch the routines pull the message from the disk. While we're here,
let's send this to the printer. But since your printer may have characteristics
different from the printer this package is initialized for, we want to adjust a
couple of things. The first item is a quan named PWID. This is the actual
number of columns your printer has. The default value is 80. To change it to
96, for example, type

96 TO PWID

The second item is the quan PRTWID which is the width of the area you'd like to
print to. The default again is 80, To set it to 60, say, type

60 TO PRTWID

The third item is how far you'd like to indent. This is the quan PRTIND and
its initial value is 0. To set it to 10 type

10 TO PRTIND

Finally, we want to tell the formatter to send its output to the printer now,
so type

PRT:

(The default setting was to the video display, and will be called back by VID:)
Is your printer ready? Let's try it. Type

MSGDEM2

Since many printers will get confused if a character with the high bit set is
sent to them you might want to be careful about this.

Incidentally, the same options are available with the video display. PRTWID
becomes VIDWID and PRTIND becomes VIDIND. PRT: becomes VID:, There is no "VWID"
since the formatter derives this from the positioning of the margins. (The left
margin is kept by the OS in the byte at 82 decimal, and the right margin byte is
at 83, Default are 2 and 39 respectively.)

LI-7

Any new printer settings only become active when PRT: is executed, and like
wise with video settings and VID:.

Try ;

20 TO VIDWID

4 TO VIDIND

VID:

CR CR MSGDEM2

38 TO VIDWID (back to default)
0 TO VIDIND (ditto)
VID: (move in new values)

QK9 now swap the source disk back in* that is* the TCAF working disk, but keep
the destination disk handy. Letfs load a few (six) more messages. Type

MTB (to empty the buffers)
126 LOAD

and follow the prompts.

As you can see, any large amount of this single-drive compilation could be
quite tiresome. Do a short VLIST (abort with any of the three yellow console
buttons) and look at the new messages. Swap in the destination disk, do MTB,
and then try

CR MO

CR Ml

etc.

Encryption and 2-Drive Systems

There are two more features to.point out. They are encryption/decryption (e/d)
and adjustments for two-drive systems. Concerning e/d, look at screen 105, or
wherever you find the title EN, DECRYPT or similar. (Do an INDEX if you can't
find the right screen easily.) Notice that there is a —> at the top of this
screen which is causing it not to load. Remove this arrow with your editor.
(Since you're going to reload the system in a minute anyway, it's ok if you
over-write the system to get an editor in. Get one in somehow.) Now on the
next two screens you should find the words ENCRYPT and DECRYPT in parentheses,
(DECRYPT is in three times.) Remove the parens to allow these two words to load.
Now, you folks with two drives, find the screen where MSG: is -defined. (On.or
near screen 112), There are several sets of parens. Leave the ones that
enclose $ENCRYPT and $DECRYPT ,., alone. Shift only the ones that are
around " DR! or " to be around " or DSTDSK " and shift the ones around " DRO
or " to be around " or SRCDSK ." Just to be on the safe side, here's a
picture of how the screens should look after these changes..

^%

^

LI-8

FOR ONE OR TWO DRIVE SYSTEMS FOR TWO DRIVE SYSTEMS ONLY

Scr « 105 Scr # 112

0 <

1

2

Vrtxta EN?DECRYPT example) 0

1

2

< Vrtxts ftLT$> MSOj)

: ALT*! < X* —)

3 3 VRTSftV ALTREC V*!

4 5 ENCRYPT < cl — c£) 4 ftLTSfiV VRTREC ?
5 117 - DUP @< 5

6 IF 256 «• ENDIF 5 6 : MSBs ()!$-)

7 7 < fENCRYPT)

8 s DECRYPT < c2 — ci) e (BUILDS DR1 (or DSTDSK)

9 H7 + DUP 255 > 9 ALTBLK , ftLTIN , .ftLT*!
10 IF 256 - ENDIF 1 10 FLUSH DR® < or SRCDSK)

11 11 DOES) VRTSflV

12 12 DUP 9 SWAP 2+ i IN 1 BLK !
13 13 V**EMT (or)

14 14 < V*© ^DECRYPT XCOUNT *TYPE)
15 -_>

15 VRTREC |

Scr # 106

8 (

1

2 i

Vrtxts V*TP V*@ V$*EMT)

V*TP < — X* C=P«D3)

3 VRTCe DECRYPT NXTVRT VRTC@

4

5

6 :

DECRYPT NXTVRT 256 * «• ;

V«© (—- X* E=PftD3)

7 POD 2+ V$TP DUP PfflD ! 0

8 DO VRTC@ OVER C! 1+ NXTVRT

3 LOOP DROP PAD |
10

11 5 V*#Ei*ST < ~- X* OPftDa)

12 V$TP 0

13 DO VRTC9 DECRYPT

14 *EMIT NXTVRT

15 LOOP | —>

Scr # 107

0 < Vrtxts V*!)

1

2 s V*! < X$ —)

3 DUP 0 2* 8

4 DO DUP C© ENCRYPT

5 VRTC! 1+ NXTVRT

6 LOOP DROP 1
7

8

9

13

11

12

13

14

15 —>

LI-9

What this last change does is substitute an automatic disk-shift for the swap
prompts driven by DSTDSK and SRCDSK. These words are no longer needed and may
be bypassed later on, if you8re comfortable with the way things are working. 7
OK, now, although some of you might be able to get these changes in by doing
some FORGETting and reloading (if you didn't have to overwrite the system before),
why not just reload the whole (modified) system this time, starting from valFORTH
LL Don't forget the debugger if you want it, and remember to initialize with
TYPEOUT. Go ahead. We'll wait.

Now you can repeat the exercises from before, starting where you did the 124 LOAD.
Two drive systems should have the "destination'1 disk, the one with the messages
on lt»Jn the second drive* and the source disk, TCAF, in the first drive. Two-
drive systems should execute DR1 (which in FORTH means the second drive, which
is number 2 on Atari systems) before saying message names so that the code will
read the right drive- Say DRO to go back to the source-code drive. (Released
programs will of course not want to say DR1 since they will expect the Hgame18
or application disk to be in the first drive, DRO, which is default. When you
are making messages in this way, be sure to start them high enough on disk that
your AUTO'd program, which will actually do the message retrieval, will fit
under them.) If you look at screen 80 on the destination disk, what you1!! see
is that the text is now scrambled. The encryption routine used is a simple off
set scheme, and would be easy to crack for a serious hobbyist, though not for
the casual user. If you are interested in a higher degree of security, you can
encode a whole string at a time with more sophisticated routines. A pair of
names, $ENCRYPT and $DECRYPT, have been reserved for these routines, We don't
provide any examples, but a modern text on cryptography might be a good place
to start looking. Anyway, if you use the names $ENCRYPT and $DECRYPT, and if
the routines expect an extended string on stack (that is, one with a two-byte ^%
count at its front end) then they will (hopefully) snap right into the spot -J
designated by the parens.

Windows

Windows are rectangular areas of the video display. They are not supported
on the printer, but are supported in both "black and white" graphics 0 mode,
and colored graphics 1 and 2 modes. Windows may be set up on-the-fly or they
may be given names so that words can call them up readily. The implementation
provided here may be used as an example and guide, since you may want your
windows to act somewhat differently.

Since it is tricky to interact with a graphics 0 window from the keyboard
(there is no simple way that we can find to date to create a split-screen
option) we'll illustrate windows in graphics 1, and so also show how color
works. Type

1 GR.

3 4 10 5 MAKECW

This makes a Color Window whose upper left hand corner is at the 3rd column
over, 4th row down (counting the left and top edges as zero), and which is

^

Li-10

10 characters wide and 5 high. We have messages MO through M5 still available,
so let's send them to the window. Type

WINDOUT (counterpart of TYPEOUT)
OFF CAPS

0 COLOR MO

1 COLOR Ml

2 COLOR M2

3 COLOR M3

WCLR

Note the extra coloration caused by the mix of upper and lower clase. This can
be canceled by ON CAPS though it restricts the user to two color for the letters
instead of four. A good practice would be to put all the source text for colored
windows in upper case. Coloration switches in the middle of a message could be
implemented by control characters similar to the right-arrow character and its
meaning of *CR. This is done in *EMIT, you'll remember, and you might even use
a case statement.

Numerical formatting is also supported, by the words *. and *.R which are
direct counterparts of . and ,R, except that they go through the formatter
before outputting. Try

3456 *. *CR

7890 7 *.R *CR

These routines should be used both with WINDOUT and TYPEOUT.
.R will upset the formatting.

There is also

Using just . or

2 2 15 8 NAMECW BINGO

which names a color window with the given parameters as BINGO, When BINGO is
executed it will clear itself and position the imaginary cursor at its the
upper lefthand corner. By studying the code, this and other performance
characteristics may be altered.

Text Compression

Finally, there is "true" text compression (TC) itself, TC is intended primarily
for applications where disk access to messages is not available, such as in
cassette-booted systems. This utility uses Transient structures which you have
probably come across before in the packages in this series, Hence, all the
warnings about memory collisions must to some extent apply. The text compression
utilities themselves are fairly straightforward to use, but what they do is
rather complex. Briefly, TC allows the creation of bits of headerless code
called "totexts" that, when executed, put a string onto the stack and then
jump to the appropriate Forth words, for formatting. These totexts come in
three types in this package, namely, towords, tosuffixes and toprefixes.

LI-11

The general procedure is to:

(1) Load the text compression routines, ^
(2) Define all needed tc-texts.
3) Define all words that use tc-texts within themselves.
4) Execute DISPOSE which will sever links to all of the

totext creating and compiling structures, leaving
only minimal, minimal, headerless structures.

Since (it turns out) we can load the text-compression routines right on top of
the rest of the code we already have in, let's do that. Look at the screen in
the Toad chain which you modified at the beginning of this excursion. It was
probably 167. Text compression was not loaded at that time. Note the load
screen for text compression (probably screen 60)-and load it. Because this
section uses transients you cannot use SAVE to create a bootable copy until
you have executed DISPOSE to break the links to the transient area. In addi
tion, FORGET will act a bit odd, and may cause crashes, so try to avoid using
it until you have disposed. There are only three new words to learn in text
compression, namely, W= , P~ , and S~, These words define towords, toprefixes
and tosuffixes. For example,

W= DOG

W= TAIL

P= SUPER

S= fS

S= !

defines five tc-texts. Type in the five definitions above and then type

DOG DOG DOG DOG DOG CR *CR

SUPER DOG CR *CR

SUPER DOG 'S TAIL ! CR *CR

The justification, capitalization, coloring, window output, and other options
will also function with-tc-texts.

Obviously, there is potential for numerous word-name conflicts between tc-texts
and FORTH. The punctuation marks, for instance P= . P= , P= ! and so on al!
are desirable and all already exist in the FORTH vocabulary. Hence the three
defining words for tc-texts automatically put the words they define into a
separate vocabulary named/X. In addition, the name I (Shift™) has been
assigned as an alias for FORTH to shorten source code and ease typing. For
instance, one might have a FORTH word like:

: ?TL '. (flag--)
IF ^ AJ3QG {S TAIL IS^HERE ! *CR I
ENDIF ;

By going into the /K vocabulary the tc-text ! was interpreted properly,
instead of as the FORTH !. Similarly, by going back into the | (FORTH)
vocabulary, the word ; was interpreted as the FORTH ; rather than as some
prefix that might have been in the /^ vocabulary.

LI-12

n

7)

Several more points are worth noting:

* If you are programming short phrases that do not generally run together,
you can save some memory by defining a <BUILDS D0ES> construct that always
attaches the *CR to the end of the operation, thus saving two bytes per message,
with the new <BUILD D0ES> that loaded with this package.

* If you want to create new types of tc-texts, such as one to deal with
problems like SHINE ING, just follow the examples of how the words W= P= S= are
constructed. Smart prefixes that strip trailing vowels, for example, would not
be difficult to code, but would not necessarily be worth the memory cost. How
ever, in a very large application it might well be worth coding a large number
of spelling rules.

* To create tc-texts that contain blanks, create a control character that is
not printed, and use this as the blank. The character we suggest for this is
the underline, whose ATASCII is 95. Note how the right-arrow, ATASCII 31, is
picked off by *EMIT, Do the same for 95, only make it perform *SPACE instead
of *CR as right-arrow does.

* Some tc-texts will get rather long, and will be cumbersome in source text.
They can be provided with a no-cost alias. For example, say we had

w" A_DOGJIITHJ_BONE

We could then add

TRANSIENT

: D&B ^ [COMPILE] A DOG WITH A B0NE_ f ; IMMEDIATE
PERMANENT ""

This alias would be removed by DISPOSE, as would, of course, the totext name
A_D0G WITH _A BONE, leaving only the headerless tc-text itself.

* As set up, the Transient system is 4000 bytes below the display list. This
may not be enough for some applications. The way to find out how much room you
have left in the transient area is to type

TRANSIENT 741 @ HERE - U. PERMANENT

You might even define a word to do this. Call it TFREE. A trap in CREATE,
and so also in : is designed to keep you from actually running into the
display list by simply aborting the definition in progress when there are
less than 128 bytes left.

"* Finally, always remember to DISPOSE when you're done with the transients.
If you forget and do.SAVE you will not get a working system.

This system of compression is quite compact, costing only two bytes to produce
output from a tc-text. The cost in memory of producing the tc-text of a word
of n letters, (not even counting the trailing blank) is only n + 2.

LI-13

f)

TEXT COMPRESSION AND AUTO TEXT FORMATTING GLOSSARY

Basic Commands

V (-)

Like ." , but sends string to the active formatting/outputti.ng
routines.

*TYPE (addr count —)

Like TYPE, but sends string of.count characters starting at addr to
the active formatting/outputting routines.

*CR (-)

Somewhat like CR in that it causes a carriage return. In
addition, *CR first formats and flushes the buffer to the output device,
and clears the buffer after doing so.

*EMIT (c —)

Like EMIT except sends the character c to the formatter, instead
of directly to the output device.

*SPACE (--)

Sends a single character of value in the quan BKGND to the
formatter, through *EMIT,

*SPACES (n ~)

Sends n characters of value-in the quan BKGND to the formatter,
through *EMIT.

*BACKS (—)

Similar to action of delete key. Backs up the formatter buffer
pointer, BPTR, one location and fills new location with BKGND value.

RGTJST (—)

Sets up formatter for right justification,

LFTJST (--)

Sets up formatter for left justification.

CTRJST (--)

Sets up formatter for center justification.

LII-1

FILJST (—)

Sets up formatter for fill justification, ^

INVID (f —)

ON INVID means text will be output in inverse video; OFF INVID
means normal video.

INVBK (f —)

ON INVBK means background of text will be output in inverse
video, OFF INVID means normal video.

CAP (--)

Causes capitalization of the next byte processed by *EMIT or *TYPE.

CAPS (f -)

ON CAPS means subsequent formatted text will be capitalized if
lower case. OFF CAPS means text will be printed, as-is.

COLOR (b —)

New color register b will be used for color of subsequent text
output to windows in Graphics modes 1 and 2.

TYPEOUT (—)

Initialization routine for the formatter. Either TYPEOUT or
WINDOUT must be executed before the first attempt to output text from
the formatter or the system may crash. TYPEOUT directs the formatter
to use TYPE as its actual output routine, allowing output to the display
screen or printer.

WINDOUT (-)

Initialization routine for the formatter. Either TYPEOUT or
WINDOUT must be executed before the first attempt to output text from
the formatter or the system may crash. WINDOUT directs the formatter
to use window routines for output. A window must be created before
attempting to use window output or the system may crash. See also
NAMWND.

<*)

^)
LI1-2

f>

Quans, vects, and subcommands

FDIR •(—+-!)

A quan that holds the next direction to be used by the fill-
justification routines when padding the text in the formatting buffer
with blanks.

*JUST (—)

A vect used to point to the routine that performs whatever
justification action is current. Altered by LFTJST, RGTJST, CTRJST,
and FILJST.

BKGND (-- n)

Quan which holds the value of the background character to be used
when clearing the formatting buffer. Generally either 32 (blank) or
160 (inverse blank.) See INVBK.

EOB '(— n)

Quan which points to the location in the formatter buffer
corresponding to the last allowable position in the current output
width. Set up by various routines including PRT:, VID:, and window-
creating routines. Stands for "end of buffer."

BPTR (— n)

Quan which points to the next available location in the formatter
buffer. May be user-altered for special purposes, but should not be
placed lower than BUF or higher than EOB. Stands for "buffer pointer."

WWID (- n)

Quan which holds width of field to which text will be output.
Used to set up EOB, which is actually used by the formatting routines.
See EOB. Stands for "window width" though windows as. defined elsewhere
need not exist.

*XMTLN (—)

A vect that points to the routine to be used to move text from the
formatter buffer to the output device. Set up at present either by
TYPEOUT or WINDOUT. Stands for "transmit line."

BUF (-)

A label that points to the beginning of the formatter buffer area.
This area need only be three bytes longer than the longest line to be
formatted.

INVBK (ON or OFF —)

When ON, background character output by formatter in 0 graphics
mode will be inverse video blank. When OFF, this character will be
normal video blank. Sets up BKGND. See BKGND,

LII-3

B.UFCLR (~)

Fills the formatter buffer with BKGND,

BUFINIT (~)

Fill the formatter buffer with BKGND, sets up EOB using WWID
and BUF, and points sets BPTR equal to BUF,

*TINT (c — c)

A vect that either points to the coloring routines when a color
window is active, or to NOOP when a 0 graphics window is active.

*CAP (c ~ c)

Capitalization routine.

*INV (c — c)

A vect that either points to the inversing routine when a 0
graphics window is active, or to NOOP when a color window is active.

Text Compression

W= xxx, (--)
xxx: (~-)

Creates a toword-compiling word, named xxx, and a headerless
tc-word which when executed sends the string xxx through the formatter
followed by *SPACE.' xxx when executed, compiles in the cfa of this
tc-word. W= and xxx are both in transient area and so are disposed by
DISPOSE.

P= xxx, (—
xxx, (—

Creates a tc-prefix-compiling word, named xxx, and a headerless
toprefix which when executed sends the string xxx through the
formatter, xxx when executed, compiles in the cfa of this toprefix.
P- and xxx are both in the transient area and so are disposed by
DISPOSE.

S= xxx,
xxx,

Creates a tosuffix-compiling word, named xxx and a headerless
tosuffix which when executed sends the string xxx through the formatter
preceded by *BACKS and followed by *SPACE. xxx, when executed, compiles
in the cfa of this tosuffix. 5== and xxx are both in the transient ^
area and so are disposed by DISPOSE. 1

LII-4

^

£5

Typed Output

PRTWID (— n)

A quan containing the width of the area to be printed when printer
output from the formatter has been selected by PRT:. PRT:, among other
things, moves PRTWID to WWID.

PRTIND (— n)

A quan containing the number of spaces the printer is to indent
when outputting from the formatter. PRTIND is moved to PVIND by PRT:

PVIND (— n)

A quan containing the number of spaces the output device is to indent
when outputting from the formatter. Set up by PRT: from PRTIND or by VID:
from VIDIND.

PWID ' .(— n)

A quan containing the number of columns the printer is actually able
to print as it is currently configured, and independent of the formatting
routines.

VIDIND (— n)

A quan containing the number of spaces the output routines is to
indent when outputting from the formatter. VIDIND is moved into PVIND
by VID:.

VIDWID (— n)

A quan containing the width of the area to be written when video
output from the formatter has been selected by VID:. VID:, among other
things, moves VIDWID to WWID.

PRT: (—)

Directs TYPEd output to the printer, and moves appropriate values
into WWID and PVIND.

VID: (--) .

Directs TYPEd output to the video display, and moves appropriate
values into WWID and PVIND.

PRINIT (—)

Resets PCTR, the printed line counter.

*XMTLNP (—)

Routine sent to the vect *XMTLN by TYPEOUT. Routes output
through TYPE.

LII-5

Windows

WADR C—). . ^
Address in memory corresponding to character position in upper

lefthand corner of current window,

WHGT (-)

Height in lines of currently active window.

LPTR (—)

Counter that holds number of next line in window to which text is
to be written. If LPTR points beyond the window then scrolling will
occur at next output.

B/LN (- n).

Bytes per line. Necessary datum for scrolling and clearing routines
for windows.

WCLR ' (~)

Fills the current window with BKGND.

NAMWND (wadr wid hght b/ch byt/ln --)

One of many possible window-defining structures. Accepts window
upper lefthand corner address, its width, height, byte-character, and
the bytes/In of the current graphics mode.

NAMEBW xxx, (column row wid hgt —)
xxx: (--)

Names a 0 graphics window for later activation.

MAKEBW (col row wid hgt —)

Establishes a 0 graphics window immediately but does not name
it for later retrieval.

NAMECW xxx, (col row wid hgt ~)
xxx: (—)

Names a 1 or 2 graphics window for later activation.

MAKECW (col row wid hgt —)

Establishes a 0 graphics window immediately but does not name
it for later retrieval.

^

LII-6

Virtual (Disk-based) Memory

(A pointer to a byte on disk is implemented by the two system variables, BLK and
IN in the fig model. BLK contains the block number pointed to and IN contains
the number of bytes into the block the byte in question is located.)

VRTC@ (— b)

Fetches the byte pointed to on disk by the system variable BLK and
IN. (BLK is the block number, and IN is the number of bytes into the
block the desired byte is located.)

VRTC! (b —)

Stores the byte on stack to the location on disk pointed to by BLK
and IN, See VRTC@.

VRTSAV (--)

Saves the values of system variables BLK and IN to quans OBLK and
OIN respectively.

VRTREC (--)

Recalls the values of the system variables BLK and IN from the
quans OBLK and OIN respectively.

NXTVRT (—)

Bumps the system variables BLK and IN as required to point to the
next location in virtual memory.

RELVRT (offset —) .

Takes an offset on stack and alters the system variables BLK
and IN as necessary to point offset bytes from their initial virtual
memory location,

Vss (— blk in)

Leaves the values of BLK adn IN on the stack at the time it is
executed and then scans the virtual memory pointer formed by BLK and
IN forward until the next " character is encountered.

XMTV (--)

Starting from the location in virtual memory pointed to by BLK
and IN, outputs characters through *EMIT until a " character is
encountered, which it does not output.

LII-7

XCOUNT (adr — adr+2 xcount }

Extracts a two-byte count from an extended string, and leaves ^)
the count on top of the address + 2.

M: xxx, (blk in —)
xxx: { —)

Generally used after V". Takes a virtual memory pointer from
the stack, and creates a word xxx which when executed will push the
virtual memory pointer to BLK and IN and then exectue XMTV, thus
retrieving a message from disk. See Strolling... for an example.

V: xxx, (blk in --)
xxx: (—)

Creates a word xxx which when executed pushes the virtual memory
pointer which was on stack at the time of its creation to BLK and IN.

V$TP (— XCOUNT)

Extracts a two-byte string count from the disk location to which
BLK and IN point, leaves it on stack, and bumps the virtual memory
pointer made up of BLK and IN twice.

y${3 (~~ X$=PAD)

Extracts the extended string in virtual memory pointed to by BLK /*<
and IN. The string is left at PAD.

V$*EMT (--)

Sends the extended string pointed to by BLK and IN through *EMIT.

V$! (X$ -)

Stores the extended string on stack to virtual memory starting at
the location pointed to by BLK and IN.

X" (—X$=PAD)

Reads the following characters until the delimeter " as an
extended string and stores the string at PAD. Operates from screens
only Crosses block and screen boundaries without additional code.
Do not use —> to cross screens, as —> will just become part of the
string.

ALTSAV (~)

Copies variables BLK and IN to quans ALTBLK and ALTIN respectively.

ALTREC (~)

Copies quans ALTBLK and ALTIN to variable BLK and IN respectively. J

LI1-8

ALTINIT (scr --)

Sets up ALTBLK and ALTIN to point to screen scr. ALTBLK and ALTIN
form an auxiliary virtual memory pointer that is used to keep track of
how far messages have been compiled onto the destination disk.

ALT$! (X$ -) .

Like V$! except stores string through alternate virtual memory
pointers made up of ALTBLK and ALTIN.

LII-9

Screen :

0

1

£

3

4

5

6

7

8

9

10

11

12

13

14

15

creen:

0

1

£

3

4

5

6

7

8

9

10

11

12

13

14

15 .

Screen s

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

LI11- TEXT COMPRESSION AND AUTO TEXT FORMATTING

SUPPLIED SOURCE LISTING

Sere

®

1

e

3

4

5

6

7

8

9

1®

11

12

13

14

15

sen s 4

(Transients? setup)
' < QUAN)(5 KLOOD)

BASE 9 DCX

HERE

741 9 4800 - DP !

(SUGGESTED PLACEMENT OF TAREA)

HERE CONSTANT TAREA

QUAN TP

QUON TPFLAG 1 TO TPFLAG

QUAN OLDDP (old HERE) TO OLDDP

—>

Screen §

0

1

2

3

4

5

6

7

8

9

1®

11

12

13

14

15

< Xsientss TRANSIENT PERMANENT)

< Expanded from code by Phillip)
(Wasson, in Forth Dimensions)

TRANSIENT

TPFLAG NOT

IF HERE TO OLDDP TP DP

1 TO TPFLAG

ENDIF %

PERMANENT

TPFLAG

IF HERE TO TP OLDDP DP

0 TO TPFLAG

ENDIF ;

(— >

< —)

—>

Screeni 6

0 < Transientss DISPOSE)

1 : DISPOSE PERMANENT

2 CR ." Disposing..." VOC-LINK
3 BEGIN DUP 0 53279 C!

4 BEGIN 9 DUP TAREA U<

5 UNTIL DUP ROT ! DUP 0=

6 UNTIL DROP VOC-LINK 0

7 BEGIN DUP 4 -

8 BEGIN DUP @ 53279 C!

9 BEGIN PFA LFA 9 DUP TAREA U<

10 UNTIL

11 DUP ROT PFA LFA ! DUP 0=

12 UNTIL DROP 9 DUP 9m
13 UNTIL DROP ECOMPILE3 FORTH

14 DEFINITIONS ." Done" CR |
15 PERMANENT BASE !

Screens 7 Screens 10

0 0 (Quan: ASSIGN

1 1

£ 2

3 3

4 4 M CFALIT

5 5 s ASSIGN CCQMPILE3 CFALIT ?
6 6 IMMEDIATE -->)()

7 7

S 8 I ASSIGN C — cfa)

9 9 STATE 9

10 1@ CC0MPILE3 C

11 11 EC0MPILE3 ' CFA SWAP
12 12 IF 3

13 13 ENDIF EC0MPILE3 LITERAL f
14 14 IMMEDIATE

15 15 —>

n

Screens 8 Screens 11

0 ' 0 (Quans TO AT)

1 1

£ 2 s TO

3 3 -FIND 0» % ?ERROR DROP

4 4 STATE 9

5 5 IF , ^
6 6 ELSE EXECUTE)
7 7 ENDIF ; IMMEDIATE
8 8

9 9 t AT

10 10 -FIND ®= 0 ?ERROR DROP

11 11 2+ STATE 0

12 12 IF ,
13 .13 ELSE EXECUTE

14 14 ENDIF § IMMEDIATE
15 15 (corrected) —>

Screens 9 Screens 12

0 ® C Quans [£@63 E2!43)

1 1
£ 2 ASSEMBLER HEX
3 3
4 4 LABEL (296>
5 5 A© C, 06 Cs Bl C, W C, 48 C,
6 6 C8 C, Bl C, M C, 4C C, PUSH ,
7 ' 7
8 8 LABEL <2!4)
9 9 A0 C, 04 C, B5 C, ®0 C, 91 C,
10 10 W C, C8 C, B5 C, 01 C, 91 C,
U 11 W C, 4C C, POP , *\
12 12 '
13 13
14 14
15 ' 15 —>

UMAX UMIN HIDCHR
Screens 13 Screens 16

© (Quans

1

£ LABEL (i

[£V&:I) 0

1

2

C Utilsi

2V6) s UMAX

3 A0 C, 07 C, Bi c, y C, 48 CT 3 2DUP U<

4 88 C, Bl C, y Cs 65 c, .y c, 4 IF syop

5 68 Cs 85 C, y i+ cs 5 DROP i

6 A© C, 0® C, 4C C, W 1- »
6

7 7 s UMIN

B 8 2DUP U>

9 9 IF SUAP

10 10 DROP i

11 11

12 12 » (HIDCHR

13 13 s HIDCHR

14 14 -1 94 !

15 —) 15

(ul u2 — u3)

ENDIF

(ul u2 -- u3)

ENDIF

) (

! >

P§

Screens 14 Screen s 17

0 (

1

2 Dl

Quans patch for CREATE) ®

i

£

C Utilss Ss I

:x ' < Ss IS > <)

3 3 HEX

4 8 <PTCH) < system) 4

5 SUAP >R R m £51 R = 249 R> • 5 s Ss

6 OR OR i 6 PFLAG 9 SyAP

7 7 IF 1 OR ELSE

8 § PTCH (system) 8 PFLAG ! i

9 IF t ? (PTCH) CFA 3 LITERAL 9

10 ELSE E * » CFA 3 LITERAL 10 a Ps

11 ENDIF 11 PFLAG @ SyAP

12 E 8 CREATE S3 + 3 LITERAL ! s 12 IF £ OR ELSE

13 13 PFLAG ! §
14 14

15 —> 15 DCX

Screens 15 Screens

0 < Quans QUAN VECT) 0

1 1

£ : QUAN £

3 ON PTCH LABEL -£ ALLOT 3

4 <2@6> , «2?4) , 4

5 C * VARIABLE 4 + 3 LITERAL , 5

6 2 ALLOT OFF PTCH i 6

7 7

a 8 VECT S

9 0^ PTCH LABEL -2 ALLOT 9

10 <SV6) , <£!4) , 1®

r ii L ' VARIABLE 4+3 LITERAL , 11

12 E s NOOP CFA 3 LITERAL , 12

13 OFF PTCH t 13

14 14

15 15

18

< f

FE AND ENDIF

(f

FD AND ENDIF

—>

Screen s

0

1

2

. 3

4

5

&

7

8

9

10

11

12

13

14

15

19 Screens BB
® (Screen code conversion \
I

words

2 SWAP ! 91 C, C4 C, 68 C, 29 C,
3 80 C, 11 C, C4 C, 91 C, C4 C,
4 ce c, D© C, D3 C, E6 C, C7 C,
5 E& C, LsO L?| ^ML> L#| f

&

7

8 s >SCD SP@ DUP 1 >BSCD |
9 s SCD> SP@ DUP 1 BSCD) ;
10

11

12

13

14

15 BASE !

Screens £@ Screens

® (• Screen- cod©
1

conversion words) 0

1

22 BASE @ HEX

3 3

4 CODE >BSCD { a a n —) 4

5 A9 Cf 03 C, 20 C, SETUP i 5

6 HERE C4 c* C2 c, D0 Cs 07 C, .6

7 C6 C, C3 cs 10 c9 03 C, 4C C, 7

8 NEXT , Bi c, C6 Cf 48 C, 8

9 29C, 7F c8 C9 c, 60 C, B0 C, 9

10 ©D C, C9 c, 20 cs B@ C, Id 1L§ 10

11 ISC, 69 c, 40 c, 4C C, HERE 11

12 2 ALLOT 38 c. E9 c, 20 Cf HERE 12

13 SyAP ! 91 c9 C4 cs 68 C, 29 Cf 13

14 14

15 •—> 15

Screens 21 Screen s

0 C Screen code conversion iwords) 0

1

2
1

2 80 C, 11 c, C4 c, 91 C, C4 C,
3 C8 C, D0 c. D3 C, E6 C, C7 C, 3

4 E6 C, C5 c, 4C c, »
Cf 4

5 5

6 CODE BSCD> C a a n — > &

7 A9 C, 03 c, 20 cs SETUP »
7

8 HERE C4 c, C2 c8 TO C, 07 C9 e

9 C6 C, C3 c9 10 c, 03 C, 4C C, 9

10 NEXT , Bl cs CS C, 48 C, 10

11 29 C, 7F c, C9 c, 60 C9 B0 C, ii

12 ®D C, C9 c9 4® c9 B0 C, 06 C, is

13 18 C,; 69 c. 28 c, 4C C, HERE 13

14 2 ALLOT 38 c, E9 c, 40 C, HERE 14

15 —> 15

23

24

n

n

O

Screen s

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

creeni

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

25

26

Screeni 27

0

1

2

3'

4

5

6

7

8

9

10

11

12

13

14

15

Scrs

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

en s 28

(AF0s quans vects

QUAN BKGND

BL TO BKGND

QUAN EOB

QUAN BPTR

quan yyID

QUAN B/C

QUAN LyD < 1st chr of last wd)

VECT #XMTLN

(background chr)

C end of buffer)

< buffer pointer)
(characters/line >

< bytes/character)

(send frnted In)

LABEL BUF 123 ALLOT (buffer)

(Need only be longest line +3)

—>

Screen § 29

0 C AF@s ?BL INVBK)

1

2 ? ?BL ('.— f)
3 C@ 31 AND 8= |
4

5 % INVBK . < f —)

6 IF 160

7 ELSE BL

8 ENDIF TO BKGND ;
9

li

11

12

13

14

15 —>

Screen s 30

8

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(AF0s BUFCLR BUFINIT)

s BUFCLR (—)

BUF yWID BKGND FILL $

s BUFINIT < —)
yyio BUF + 1- TO EOB

BUFCLR BUF TO BPTR |

38 TO yWID

BUFINIT

(Setup for 0 BR. display)

Screen s

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

31

Screen s 32

0 < Just ifys #JUST LCRH

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

VECT *JUST

QUAN LCHR

s ^LCHR

EOB

BEGIN DUP BUF U>

yHILE 1-

REPEAT TO LCHR ;

Screen s

0

1

2

3

4

5

6

7 '

8

9

10

11

12

13

14

15

33

Scrs

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

•ens 34

i R,cjusts *RJ ACJ

* C #JUST)C 16 KLOAD)

s CRCJ) C b

>R BUF BUF EOB LCHR -

R> / DUP >R +

LCHR BUF - 1+ <CMOVE

BUF R> BKGND FILL \

s ARJ

1 CRCJ) i

s *CJ

2 (RCJ) s

>r>

™)

'-)

Sere>eirts 35

^LCHR > 0

1

2

(R,cjust s RGT,LFT,CTRJST)

s RGTJST (—)

3 ASSIGN ARJ TO *JUST j
4

C — > 5 s LFTJST < —)

6 ASSIGN NOOP TO *JUST s

'BL AND 7

a s CTRJST (--)

9 ASSIGN ACJ TO *JUST ?
10

11

12

13

14

15

Screen s

0

1

e

3

4

5

6

7

8

9

10

11

12

13

14

15

36

~>

Screen s

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

37

Screen s 38

0

1

2

C Fjusts quans <FPTR

s < #JUST)(16 KLOAD)

3

4 QUAN FDIR 1 TO FDIR

1r 5 QUAN FPTR

6 QUAN ?FJ

7

a s <FPTR>

9 FPTR BUF U< NOT

10 FPTR LCHR U> NOT AND

11

12

13

14

15

Screen: 39

(f —)

0 « Fjusts FPASS)
1

£ : FPASS (—)

3 @ TO ?FJ

4 BEGIN LCHR EOB U< (FPTR) AND

5 WHILE FPTR ?6L

6 IF 1 TO ?FJ

7 FPTR FPTR 1+ EOB FPTR -

8 <C«OVE 1 AT LCHR +!

9 BEGIN FDIR AT FPTR + !

10 FPTR ?BL NOT <FPTR> NOT OR

11 UNTIL

12 ENDIF FDIR AT FPTR +•

13 REPEAT ?
14

15 —>

*FJ FILJST

Scr«

0

1

2

3

4

5

6

7

8

9

1®

11

12

13

14

15

en s 40

< Fjusts '

s AFJ

1 TO ?FJ

(--)

BEGIN LCHR EOB U< ?FJ AND '

MHILE FDIR 0>

IF BUF ELSE LCHR ENDIF

TO FPTR FPASS

REPEAT FDIR MINUS TO FDIR s

FILJST

ASSIGN AFJ TO #JUST s

< —)

Screen s

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

41

•en s 42

< AFlg CLyD3 MOVyD

1 < BKGND)(;S)

s CLyD)

BPTR

BEGIN 1- DUP BUF U<

OVER ?BL OR

UNTIL 1+ TO LyD s

s wovyo

RETyD)

(—)

()

Scrs

0

i

2

3

4

5

6

7

8

9

1@

11

12

13

14

15

LWD HERE BPTR LyD - <CMOVE s

< —)s RETyD

HERE BUF BPTR LyD -

DUP >R CMOVE

R> BUF -8- TO BPTR f —>

•0 (AFls CSNDLN3 SENDLN

1

2 s (SNDLN) < —
3 ' (*JUST '-LCHR *JUST) ()
4 *XMTLN BUFCLR ;

5

£ : SENDLN < —
7 (LyD) LyD BUF U>
B IF MOVyD LyD EOB LyD - 1+
9 0 MAX BKGND FILL
10 ENDIF (SNDLN)

11 LWD BUF >

12 IF RETyD
13 ELSE BPTR 1- C© BUF Ci
14 BUF 1+ TO BPTR
15 ENDIF s

Screen s 46

) 0 (

1

AFls *TYPE

) 2 s *TYPE C addr o

3 BEGIN DUP 0>

4 yHILE

5 OVER CS 127 AND

) 6 *EMIT 1- SWAP-1+ SyAP

7 REPEAT 2DR0P ;

a

9

10

11

12

13

14

•> 15

^
—)

—>

n ~)

Screen : 44 Screen s 47

0 (AFls *CR) 0

1

2

(AFls *SPACEES3 *BACKS

1

2 : *CR (—) s *SPACE

3 BPTR BUF = 3 BKGND *EMIT §

4 IF BUF yyiD BKGND FILL 4

5 '(*JUST 5 s *SPACES ('

6 ELSE -LCHR)() 6 0 MAX -DUP

7 ' (•-•FJ ASSIGN •%FJ) (0) 7 IF 0 DO #SPACE LOOP

6 ' (#JUST 8 ENDIF |

9 AT *JUST 9 <> 9

10 IF *JUST 10 % #BACKS

11 ENDIF () 11 BPTR 1- BUF UMAX TO BPTR

12 ENDIF 12 BL ' (*INV *INV) (>

13 *XMTLN BUFINIT 5 13 BPTR C! i

14 14

15 -) 15

Screen s 45 Screen s 48

0 (AFls *EMIT) 0

1

2

(AFls E*»"3 *. "

1

EMIT (c —) s C. ")

3 DUP 31 = 3 R COUNT DUP 1+

4 IF DROP *CR 4 R> + >R *TYPE |

5 ELSE '(*TINT #TINT) () 5

6 '(*CAP #CAP)() 6 s *. "

7 '(*INV *INV.)() 7 ASSIGN TYPE ASSIGN (.")

8 BPTR C! 1 AT BPTR + ! 8 E ' ." 13+3 LITERAL

9 BPTR EOB 1+ U> 9 ASSIGN (*.") OVER !

10 IF BPTR 1- ?BL 10 E ' ." 35 + 3 LITERAL

11 IF BPTR EOB 2+ MIN TO BPTR 11 ASSIGN *TYPE OVER !

12 ELSE SENDLN 12 ECOMPILE3 ."

13 ENDIF 13 <ROT ! ! ; IMMEDI

14 ENDIF 14

15 ENDIF i — -> 15

^

—>

(—)

^

eens 49Sen

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Screens 5®

0 (Colorings #TINT etc.
1

2 * ()SCD)(I© KLOAD)

3

4 VECT #TINT

6 »(CLRBYT)(

7 © VARIABLE CLRBYT

8 s COLOR CLRBYT ! 5)
9

10 s TINT

11 >SCD CLRBYT 9

12 64 * OR SCD) |
13

14 ASSIGN -"TINT TO #TINT

15

Screen s

0

1

£

3

4

5

&

7

8

9

10

11

12

13

14

15

51

(c — c)

Screen: 52

0 (Capitalizations CAPES3 etc.)
1

2 QUAN ?CAP

3 QUAN ?CAPLK
4

5

6 t CAP

7

8

9 s CAPS (f —)

1® DUP TO ?CAPLK TO ?CAP s

11

12 OFF CAPS

13

14

15 -->

1 TO ?CAP i
(—)

Screens 53

0

1

2

< Capitalizations *CAP)

s #CAP (c - - c)

3 ?CAP

4 IF

5 DUP 127 AND DUP

6 122 <- SyAP

7 97 >= AND

8 IF 32 -

9 ENDIF 7CAPLK TO ?CAP

1® ENDIF 5
11

12

13

14

15

Screen s 54

® (Invert

1

2 QUAN ?INV

3 VECT *INV

4

5 i INVID

6 128 * TO ?INV 1
7

8 s TNV

9 ?INV OR i
1®

11 ASSIGN TNV TO *INV.
12

13 OFF INVID
14

15

Videos #INV etc.

(f

< c — c ')

Screen s

0

1

2

3

4

5

6

7

8

9

10

II

12

13

14

15

55

Screen s 56

0

1

2

3

4

5

6

7

8

9

10

11 LABEL (DOES)

12 IP 1+ LDA, PHA, IP LDA,
13 (WIP) JSR, * VARIABLE 4
14 JMP,
15 DCX

(Efficient (BUILDS...DOES))

(Partly after G. B. Lyons)
—) (Pick up C, code nxt scr)
ASSEMBLER HEX

LABEL (WIP)

y)Y LDA, CLC, 3 # ADC,
IP STA, INY, W)Y LDA,
0 # ADC, IP 1+ STA,
DEY, RTS,

PHA,
+

Sere(ens 57

0

1

2

(Efficient (BUILDS...DOES)

ASSEMBLER HEX

3

4 LABEL *WIP

5 8i c, y C, 18 C, 69 C, ®3 C,
6 85 C, IP C, C8 C, Bl C, W C,
7 69 C, 0@ C, 85 C, IP 1+ c,
8 88 C, 60 C,
9

10 LABEL (DOES)

11 A5 C, IP 1+ C, 48 C,
12 A5 C, IP C, 48 C, 20 C,
13 AyiP , 4C C, s VARIABLE 4 + ,

14

15

Scrs

0

1

2-

3

4

5

6

7

8

9

10

11

12

13

14

15

ens 58

(Efficient <BUILDS...DOES)

s DOES)

COMPILE (|CODE)
4C C, (DOES) , i IMMEDIATE

s (BUILDS

CREATE SMUDGE s

DCX

Screen s

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

IS

59

>en s 6®

(Txt comps TLABEL i

* C TRANSIENT)< 2 KLOAD)

M *WIP)(28 KLOAD)

TRANSIENT

s TLABEL- (— :

HERE TRANSIENT

CONSTANT PERMANENT

ECOMPILE3 ASSEMBLER %

g I ECOMPILE1 FORTH s IMMEDIATE

VOCABULARY A IMMEDIATE

~)

^

~>

Scri

0

1

2

3

4

5

6

7

8

9

I@

11

12

13

14

15 PERMANENT —>

Screen s 61 Screesn§ 64

0

1

2

(Txt cowips DMCP*) 0

1

2

(Txt comps y= P= S=)

HEX i y= (- -)

3 3 <W-> , CURRENT 0
4 TLABEL DCMP$ 4 TC= CURRENT ! g
5 A5 c, IP 1+ Cs 48 C, 5

6 A5 c, IP C, 48 C, 20 C, AWIP , 6 g p= .(- -)

7 CA c, CA C, 18 C9 A5 C5 W C, 7 (P») , CURRENT 9
3 69 c, ©2 C, 95 C, 0® C, a TC= CURRENT ! ;
9 A5 c, y 1+ C, 69 c, 00 C, 9

10 95 c, 01 C, A© C, 01 C, 10 s S= (- -)

11 C8 c, bi c, y c, 11 (S=) ,' CURRENT 0
12 10 c, FB C, 12 TC= CURRENT ! |
13 88 c, 98 C, 13

14 A0 c, 00 C, 4C C, PUSH0A , 14 PERMANENT

15 —> 15

Screen s 62

0 (Txt comps
1

TLABEL <W=0 ASSEMBLER

4C C, DCMPH ,
3 #TYPE #SPACE ;S C

Ey=3 EP=3 ES=3)

2

3

4

5

6

7

8

9

10 TLABEL (S=> ASSEMBLER '

11 4C C, DCMP$,
12 3 #BACKS *TYPE #SPACE

13

14 DCX

15

TLABEL (P=) ASSEMBLER

4C C, DCMP* ,
3 *TYPE ;S [

sS E

—>

Screen s 63

0 (Txt comps
1

2 TRANSIENT

3

4

5

6

7

8

9

10

11

12

13

14

15

TC=

TC=

EC0MPILE3 A DEFINITIONS

HERE >R TRANSIENT

(BUILDS CC0MPILE3 IMMEDIATE

LATEST C0 31 AND >R

LATEST 1+ I* R CMOVE

R I9 + DUP C@ 128 AND SWOP C!

R> R) 2- , PERMANENT ALLOT
DOES) 0 STATE 9

IF . ELSE EXECUTE ENDIF s -•->

Screen s

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Screens

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

65

66

Sere

0

1

2

3

4

5

6

7

8

9

10

II

12

13

14

15

ins 67

Screen s 68

0

1

2

(Numerics: FMT#

S FMT#

3 IF

4 ASSIGN *TYPE

5 ASSIGN ^SPACES

6 ASSIGN &SPACE

7 ELSE

8 ASSIGN TYPE

9 ASSIGN SPACES

10 ASSIGN SPACE

11 ENDIF

12 E ' D. 4+3 LITERAL

13 E ' D.R 22 + 3 LITERAL

14 E ? D.R £4 +] LITERAL

15

Screen s 69

0 (Numerics? *. *. R

(f —

I

2

3

4

5

6

7

8

9

10

11

12

13

14

15

s *.

ON FMT#

s *. R

(n —

OFF FMT# §

(n r —

ON FMT# „R OFF FMT# s

quans)1
Screen s 70

0

1

2

(Typed outs

QUAN PRTWID

3 80 TO PRTyiD

4

5 QUAN VIDyiD

6 38 TO VIDyiD

7

8 QUAN PCTR (

9 0 TO PCTR (

10

11 QUAN VIDIND

12 0 TO VIDIND

13- QUAN PRTIND

14 0 TO PRTIND

15 QUAN PVIND

(printer ch/ln >
(init value)

(video ch/ln)

(init value)

printer line c£r)
init value)

(video indent)

« init value)

(printer indent)
(init value)

(indention) —>

?CR pyio ?P,VCR)
Screens 71

) 0

i

2

(Typed out s ?

) VECT ?CR

3 QUAN PFLG (

4 QUAN PyiD

5 80 TO PWID (

6

7 s ?PCR

a ywiD PVIND +

9 IF CR ENDIF |
10

11 s ?VCR

12 yyio PVIND +

13 83 C@ 82 C© -

14 IF CR ENDIF §
) 15

value for PFLAG)

adjust to suit)
^

(—)

PWID <=

(—)

1+ (

—)

PRINIT VIDs)

Screen s 72

) 0

• -i

2

(Typed outs PRTs PR

) § PRTs

3 PRTIND TO PVIND

'4 PRTWID TO WWID

) 5 ASSIGN ?PCR TO ?CR

6 2 TO PFLG BUFINIT ;
7

8 s PRINIT

9 0 TO PCTR i
10

11 s VIDs

12 VIDIND TO PVIND

13 VIDWID TO WWID

14 ASSIGN ?VCR TO ?CR

15 1 TO PFLG BUFINIT s

(—)

(—)

O

VIDs —)

Screen s 73 Screen s 76

0 (Typed outs *XMTLNP) 0

I I

2 s *XMTLNP '< —) 2

3 PFLAG 9 3

4 PFLG PFLAG ! 4

5 BUF WWID PVIND SPACES TYPE 5

& ?CR PFLG 2 = 6

7 IF 1 AT PCTR +! 7

8 PCTR 60 = (lines/page) 8

9 IF CR CR CR CR CR CR 9

10 PRINIT 10

11 ENDIF 11

12 ENDIF 12

13 PFLAG ! ? 13

14 14

15 —> 15

Screens 74 Screen s 77

0 (Typed outs TYPEOUT) 0

1 1

2 s TYPEOUT (—) 2

3 ASSIGN *XMTLNP TO *XMTLN 5 3

4 4

5 (for buffer fmting, no windows) 5

6 6

7 TYPEOUT 7

8 8

9 9

10 10

11 li

12 12

13 13

14 14

15 —> 15

Screens 75 Screens 78

0 0

1 1
2 '- 2

3 3

4 4

5 5
6 6

7 7
8 8

9 9
10 10

li ii
12 is
13 13

' 14 14

15 15

79

WCLR
^

Screen s

0

1

£

3

4

5

6

7

B

9

10

11

12

13

14

15

:cre>en s 82

0 (yindowss i

1

2 s yCLR

3 B/C yHGT #

4 DO I WWID

5 BKGND

6)SCD FILL

7 B/LN /LOOP

8 0 TO LPTR

9

10

11

12

13

14

15

B/LN *

(f —)

WADR + WADR

—)

Screen: 83Screen s 80

0 (Windowss

1

2 '()SCD)(10 KLOAD)

3

4 QUAN yADR (window uplftcr adr)
5 88 @ 2+ TO yADR (cmt. upl ft)
S

(# lines in window)

(setup for 0 GR.)

quans etc. 0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(Windowss NAMWND ySTP RECWND)

s NAMWND (wadr wid hgt b/ch)
(BUILDS (byt/ln --)
? ? i » t 1

7 QUAN WHGT

8 £4 TO WHGT

9

10 QUAN LPTR

11 0 TO LPTR

12

13 QUAN B/LN

14 40 TO B/LN

15

WSTP (wa wid hgt b/c b/1
TO B/LN TO B/C TO yHGT

TO WWID TO WADR

BUF WWID + 1- TO EOB

WCLR BUFINIT §

->r)

(wndw line pointer)
(default to top)

(bytes/line)
(setup for 0 GR.)

—)

RECyND

)R -2 8

DO J I +

(system)

9

-2 +LOOP R) DROP ySTP ; —>

—)

Screens Si Screen s 84

0

1

2

(yindowss ESCR0LL3 SCROLL) 0

1

£

< Windows! *XMTLNW WINDOUT

s (SCROLL) (—) s #XMTLNW (•

3 WWID B/C #)R (# to cmove) 3 7SCR0LL
4 B/LN B/C *)R (# to advance) 4 BUF LPTR B/LN * WADR +

5 R WHGT 1- * WADR + WADR 5 WWID)BSCD 1 AT LPTR +! s.
6 DO I J + I 4 RPICK CMOVE 6

7 J /LOOP 7 § yiNDOUT (

3 WADR WHGT 1- R) * + R) 8 ASSIGN #XMTLNW TO *XMTLN ;
9 BKGND)SCD FILL ; 9

10 10 WINDOUT

11 s 7SCROLL (—) li

12 LPTR WHGT = 12

13 IF (SCROLL) -1 AT LPTR +! 13

14 ENDIF i 14

15 —> 15

— >

n

—)

r

Screen s

0

1

2

3

4

5

6

7

a

9

10

11

12

13

14

15

85

Screen s 86

0 (B&W windows? BWPRM

1 * (WADR)(40 KLOAD)

BWVCT

2

3

4

5

6

7

8

9

10

II

12

13

14

15

s BWPRM (col row wid hght —)

ROT 40

88 9 +

1 40 |

(wa wid hgt b/c b/1)
* 4 ROLL +

(ROT (set up wadr)
(b/chr b/lr.)

BWVCT

' (#TINT ASSIGN NOOP

TO #TINT)()

s (*INV ASSIGN •-•INV

TO #INV)<) ?

< —)

—>

Screen s 87

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(B&W windows: NAMEBW MAKEBW)

% NAMEBW (coi row wid hght —)
BWPRM NAMWND

DOES) RECWND BWVCT ;.

i MAKEBW (col row wid hght --)
BWPRM WSTP BWVCT \

Screen § 88

Color

(WADR

windowss CRPM

)(40 KLOAD)

CVCT0

1

2

3

4

5

6

7

S

* 9
1©

II

12

13

14

15

s CPRM (col row wid hght —
.(wa wid hgt b/c b/1

ROT 2® * 4 ROLL +

88 @ •*• (ROT (set up wadr
1 2® | (b/chr b/ln)

CVCT

9 < #TINT

TO #TINT

* ((INV

TO #INV

ASSIGN TINT

) ()

ASSIGN NOOP

>< > 5

(

—>

Scre^

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

ens 89

(Color windows: NAME,MAKECW)

s NAMECW (col row wid hght —)
CPRM NAMWND

DOES) RECWND CVCT ;

s MAKECW (col row wid hght —)
CPRM WSTP CVCT ;

Screens

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

90

Screens 91 Screens 94

0 0 f**
1 1 ~J
2 2

• 3 3 •

4 4

5 5

6 6
7 7

8 8

9 9

10 10

11 ' 11

12 12

13 13

14 14

15 15

Screens 92 Screens 95

0 0

1 1

2 2

3 3
4 4

5 5 ^
6 6 . • ^1
7 7
8 8

9 9
10 1®

ii , ii
12 12

13 13

14 14

15 15

Screens 93 Screens 96

0 . 0

i i

2 2
3 3 . •

4 . 4

5 5

6 6

7 7

a ' s
9 9

10 1® A
11 ii ^)
12 12 ^
13 13

14 14
15 15

Screens

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Screen s

0

1

2

3

4

5

6

7

8

9

10

II

12

13

14

15

Screen z

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

97

98

99

(—)

cretins 10®

0 •(Vrtxts VRTADJ VRTC

1

2 j: VRTADJ

3 ?LOADING

4 IN @ B/BUF >=

5 IF 0 IN ! 1 BLK +!

6 ENDIF j
7

8 ',s VRTCX

9 VRTADJ

10 BLK 0 BLOCK IN 0 + ;
11

12

13

14

15

(— adr)

—>

Sere

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

>ens 101

(Vrtxts VRTC@,! VRTSAV,REC)

s VRTC© (— b)

VRTCX C@ i

s VRTC! (b —)

VRTCX C! UPDATE ;

QUAN OBLK QUAN OIN

s VRTSAV (— blk in)

BLK 9 TO OBLK IN 9 TO OIN •,

s VRTREC (blk in —)

OIN IN ! OBLK BLK ! ;
—>

Screi

0

1

2

3

4

5

6

7

8

9

10

ii

12

13

14

15

ens 102

(Vrtxts NXTVRT RELVRT

s NXTVRT

1 IN +« VRTADJ |

< —

s RELVRT

?LOADING

IN 9 + B/BUF /MOD BLK -8-!

DUP 0<

IF B/BUF + -1 BLK +!

ENDIF IN ! i

(offset —)

—)

Screen s 103 Screen s 106

0 (

1

£ :

Vrtxts V" XMTV XCOUNT) 0

1

2

(Vrtxts VsTP V$© V**EMT)

V" (— blk in) 5 V$TP (— XCOUNT)
3 VRTADJ BLK 9 IN 9 3 VRTC© (DECRYPT) NXTVRT VRTC®
4 BEGIN VRTC© 34 = NXTVRT 4 < DECRYPT) NXTVRT 256 * + s
5 UNTIL i 5

6 6 s V*@ (— X$ E=PAD3)
7 s XMTV (—) 7 PAD 2+ V$TP DUP PAD ! 0

a BEGIN VRTC© DUP 34 () 8 DO VRTC© OVER C! 1+ NXTVRT
9 WHILE *EMIT NXTVRT 9 LOOP DROP PAD ;
10 REPEAT NXTVRT DROP 5 10

11 11 s V**EMT (—)

12 : XCOUNT (adr — adr-t-2 cnt) 12 V$TP 0

13 DUP 9 SWAP 2+ SWAP % 13 DO VRTC© (DECRYPT)

14 14 *EMIT NXTVRT

15 -) 15 LOOP 1 —>

Screens 104 Screens 107

0 (

1

2 s

Vrtxts Ms Vs) 0

1

2

(Vrtxt: V$!)

Ms (blk in —) 0 V$! (X$ —)
(BUILDS , , 3 DUP ©2+©

4 DOES) VRTSAV 4 DO DUP C© (ENCRYPT)

5 DUP 9 IN ! 5 VRTC! 1+ NXTVRT

6 2+ 9 BLK ! 6 LOOP DROP 5 I
7 XMTV #CR VRTREC s 7

8 a

9 5 Vs (blk in —) 9

10 (BUILDS , , 10

11 DOES) 11

12 DUP 0 IN '! 12

13 2+ @ BLK ! 5 13

14 14

15 — -) 15 —)

o

n

Screens 105

0 (Vrtxts EN,DECRYPT
1

£ — -)

3

4 ; ENCRYPT

5 117 - DUP 0<

6 IF 256 + ENDIF s

7

8 s DECRYPT

9 117 + DUP 255)

10 IF 256 - ENDIF 5
11

12

13

14

15

example)

(ci — c2)

(c2 — cl)

—)

Screens 108

0 (Vrtxts X")

I

2 s X" < — X* E=PAD3)

3 0 PAD ! PAD 2+

4 BEGIN VRTC© DUP 34 ()

5 WHILE OVER C! 1+

6 1 PAD +! NXTVRT

7 REPEAT NXTVRT 2DR0P PAD 5
8

9

10

li

12

13

14

15 —)

O

Screen

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

109

Vrtxt:

Screens 110

0 (Vrtxt s ALTSAV,REC
1

£ QUAN ALTBLK QUAN ALTIN

vi

4 s ALTSAV
cr BLK 9 TO ALTBLK

6
"7

IN 9 TO ALTIN ;
i

a s ALTREC

9 ALTBLK BLK !

10 ALTIN IN ! ;
1.1

12

13

14

15

—)

(—)

(—)

—)

Screen s 111

0 (Vrtxts

1

£ s ALTINIT

3 B/SCR * TO ALTBLK

4 0 TO ALTIN ;
5

6

7 s SRCDSK (—)

8 CR ." Insert source disk and p
9 ress START." WAIT CR s

10

11 s DSTDSK (—)

12 CR ." Insert dest. disk and pr
13 ess START." WAIT CR ;
14

15 —>

ALTINIT SCRDSK DSTDSK)

(screen —)

Screens 112

0 (Vrtxts

1

ALT*! MSGs

2

3

4

5

6

7

8

9

10

li

12

13

14

15

ALT*!

VRTSAV ALTREC V*!

ALTSAV VRTREC s

MSGs

(^ENCRYPT)

(BUILDS (DRl or) DSTDSK

ALTBLK , ALTIN , ALT*!
FLUSH (DR0 or) SRCDSK

DOES) VRTSAV

DUP © SWAP 2+ © IN ! BLK !

V**EMT (or)

(V$@ $DECRYPT XCOUNT *TYPE)

VRTREC ;

Screen:

0

1

2

3

4

5

6

7

a

9

i©

11

12

13

14

15

113

Screens 114

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(X* —)

(X$

Screens 115

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Screens 116

0

1

2

(For demoss UMOVE

' (*! |S)(.)
3

4 s UMOVE (

5 (ROT OVER OVER U<

6 IF

7 ROT (CMOVE

a ELSE

9 ROT CMOVE

10 ENDIF s

11

12 s *!

13 OVER C@ 1+ UMOVE ;
14

15 —)

Screens 117

0 (For d@mo®s E"3 ")

i

2 s (") < — * >

3 R DUP Cl i+ R) +)R j
4

5 s "

6 34 (Ascii quote)
7 STATE 9

8 IF (cccc" —)

9 COMPILE <"> WORD

10 HERE C@ 1+ ALLOT

11 ELSE

12 WORD HERE (cccc" — %)

13 PAD *! PAD

14 ENDIF i
15 IMMEDIATE

Screens 118

0

1

2

3

4

5

6

7

6

9

1®

11

12

13

14

15

Screens 119

0

1

2

3

4

5

6

7

8

9

16

11

12

13

14

15

Screens 120

(X"

^

~)

demo)0

I

2

3

4

5

X" When you are going to take in
hand any act, remind yourself w

hat kind of an act it is. If yo
u are going to bathe, place befo

6 re yourself what happens in the
7 baths some splashing the water,
8 others pushing against one anot
9 her, others abusing one another,
i@ and some stealings and thus wi
ii th more safety you will undertak ;
12 e the matter, if you say to your ~
13 self, I now intend to bathe, and
14 to maintain my will in a manner
15 comformable to nature. And so

o
Screens 121

0 you will do in every acts for t
1 has if any hindrance to bathing
£ shall happen, let this thought b
3 e readys it was not this only t
4 hat 1 intended, but 1 intended a
5 Iso to maintain my will in a way
£ conformable to nature; but 1 sh
7 al not maintain it sof if I am v
B exed at what happens.** Epictetus
9 , translated by George Long, 187
10 7.*"

11

12 CR

13 . "

14 CR

15

The X-quote string is loaded88

Screens 122

0

1

2

4

(V88 Mg message-name demo)

V88 There is an inconvenience whi

ch attends all abstruse reasonin

g, that it may silence, without
5.convincing an antagonist, and re
6 quires the same intense study to
7 make us sensible of its force,
8 that was at first requisite for
9 its invention. When we leave ou

10 r closet, and engage in the comm
11 on affairs of life, its conclusi
12 ons seem to vanish, like the pha
13 ntorns of the night on the appear
14 ance of the morning; and ftis di
15 fficult for us to retain even th

Screen: 123

0 at conviction, which we had atta
1 in'd with difficulty. This is s
8 till more conspicuous in a long
3 chain of reasoning, where we mus
4 t preserve to the end the eviden
5 ce of the first propositions, ari
•6 d where we often lose sight of a
7 11 the most received maxims, eit
8 her of philosophy or common life
9 . 1 am not, however, without h
10 opes. ..**David Hume, 1793.
11

12

13

14

15

opes. ..**David Hume,

M§ MG60EM1

CR

MSGDEM1 now exists.

CR

Screens 124

8

1

2

3

4

5

6

7

8

3

10

11

12

C XD8 MSG§ msg-name demo)

8© ALTINIT

9Accessory No. 5 i
pass and is used i
with putting. Lik
inst. you land on
t I® ft. from the

ext thing is to fi
rection the hole i

can1t be done and

13 hout a compass.**
14 e seen a whole lot

15 y and putt without

X18

s a pocket com
n connections

e suppose for
the green abou
cup, why the n
nd out what di

s at and this

done right wit
fit lease 1 hav

of golfers tr
no compass, a

Screen: 125

© nd their ball has went from 10 t

1 o 45 ft. degrees to the right or
2 left of where the hole is actua

3 lly located. This is because th
4 ey was just guessing where as wi
5 th a compass they? s no guess wor
6 k about it. If you miss a putt
7 with a compass to tell you just
8 where a hole is at, why it's b©c
9 ause you can't putt so good.'**R
10 ing Lardner on New Golf ficcesori

'11 es, 1924* Vs
12

13 MSG^ MSBDEM2

14 CR . 88 MS60EM2 now exists,, " CR

15

Screens 126

@ (More MB6§fs)

1

2 X68 The rat the cat I bought ca
3 ught escaped.V8 MSGs M8
4

5 X" There are gold coins here!*"
6 MSGs MI

7

8 X" flwwf gee, Beave!^91
9 MSGs M2

10

11 Xs8 You seef Watson, but you do re
12 ot observe. ♦" MB6.8 M3

13

14 X" Never look back§ something ma
15 y be gaining on you.*" -->

Screens 127

® (More MSSs's)
1

£ MSGs M4

3

4

5

6

7

6

9

10 measure to a wave of atavistic

11 sense of comformity and reputabi
12 lity that passed over the commun
13 ity at that period. '-#-»Thorstein
14 Veblen, 1899.-*" MSGs M5
15

X" 'The precise date at which th
e reversion to cap and gown took
place, as well as.the fact that
it affected so large a number o

f schools at about the-same time

, seems to have been due in some

Screens 128

0

i

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Screens 129

0

1

£

3

4

5

6

7

8

9

10

li

12

• 13

14

15 •

Screen s

8

1

2

3

4

S

6

7

8

3

I®

ii

12

13

14

15

Screen s

0

1

2

3

4

. 5

6

7 .

8

9

10

li

12

13

14

15

Screen s

0

i

2

3
4

5

&

7

8

9

i@

ii

IS

13

14

IS

130

n

131

n

132

3

e
Screen 133 through 161 are' blank.

~%^>- -

Screens 162

0

1

£

3

4

5

6

7

8

9

10

11

12

13

14

15

Screens 163

0

1

2

3

4

5

6

7

a

9

10

11

12

13

14

15

Sere

0

1

£

3

4

5

6

7

8

9

10

11

12

13

14

15

»ns 164

Sere

0

1

£

3

4

5

6

7

8

9

10

11

12

13

14

15

?ns .165

Screen s 166

0 < Load Chain

'(QUAN)(10 LOAD)

16 LOAD (utilities)

(Do not modify these lines)

1

1

2

3

4

5

6

7

8

9

10

i!

12

13

14

15 —)

Screen 8 It»7

0 (Load Chai n

i 28 LOAD <

£ (34 LOOD (

3 (38 LOAD

4 < 50 LOAD

5 < 52 LOAD

6 < 54 LOAD

7 42 LOAD <

8 (60 LOAD

g (68 LOAD (

10 (70 LOAD

11 C 86 LOAD <

12 < 88 LOAD (

13 (select)

14 (100 LOAD (

15 (116 LOAD <

p options screen
af, do not modify.
rgt & ctr justify

(fill justify
C coloring

< capitalization
(inverse video

af, do not modify
(text compression
fmtfd num. output

(typed output
B&W window output

(Color wndw output
1 of above 3)

Virtual mem. text
81 for demos)

.3

i
Screens 168

© 0

1

£

3

4

5

6

7

8

9

10

11

12

13

14

15

Screen s 169

0

1

2

3

,
4

:r
5

6

7

a

9

10

li

12

13

14

15

Screen %

0

1

£

3

4

5

6

7

8

9

10

11

12

13

14

15

Screens

0

1

£

3

4

5

6

7

8

9

10

ii

12

13

' 14

15

171

172

Screens 170 Scr

0 CONTENTS OF THIS DISKs 0

1 1

2 LOAD-CHAIN 1&6 LOAD 2

3 3

4 EFFICIENT (BUILDS DOES) 4

5 (ALSO LOADED BY TXTCMP) 56 LOAD 5

& QUAN STRUCTURES 10 LOAD 6

7 TRANSIENT STRUCTURES 4 LOAD 7

8 8

9 9

10 10

11

12

13

14

11

12

13

14
': 15 15

m% 173

Screens 174

0 ;
1

£;

3

4

5

6

7

8

9

10

11

12

13

14

15

Scrs

0

1

E

3

4

5

6

7

a

9

10

11

12

13

14

15

.>•#'

»ns 175

Screens 176

0' < Error messages
1

2 Stack empty

4 Dictionary full

5

6 Wrong addressing mode
7

8 Is not unique
9

10 Value error

11

12 Disk address error

13

14 Stack full

15

in rJ ^

Screens 177

0 Disk Error!

1

2 Dictionary too big
3

4

5

6

7

8

9 .

1®

11

12

13

14

15

Screens 178

© C Error messages
1

2 Use only in Definitions
3

4 Execution only
5

6 Conditionals not paired
7

8 Definition not finished

9

1© In protected dictionary
11

12 Use only when loading
13

14 Off current screen

15

Screens 179

0 Declare VOCABULARY

i

£

3

4

5

S

7

' 8

9

10

11

12

13

14

15

%*r-2Sp,

IMaiMiaMVALPAP
INTERNATIONAL
3801 E. 34th STREET
TUCSON, ARIZONA B5713
60E-7S0-7141

valFORTH
T.M.

SOFTWARE SYSTEM
for ATARI*

va/EXQ®

Software and Documentation
©Copyright 1982

Atari is a trademark of Atari, Inc., a division of Warner Communications.

o

o

o

valFORTH
T.M.

SOFTWARE SYSTEM

va/IMS
Stephen Maguire

Software and Documentation
©Copyright 1982
Valpar International

Purchasers of this software and documentation package are
authorized only to make backup or archival copies of the
software, and only for personal use. Copying the accompanying
documentation is prohibited.

Copies of software for distribution may be made only as speci-
fied in the accompanying documentation.

o

o

c

VALPAR INTERNATIONAL

Disclaimer of Warranty
on Computer Programs

All Valpar International computer programs are distributed

on an "as is" basis without warranty of any kind. The total

risk as to the quality and performance of such programs is with

the purchaser. Should the programs prove defective following

their purchase, the purchaser and not the manufacturer, distributor,

or retailer assumes the entire cost of all necessary servicing or

repai r.

Valpar International shall have no liability or responsibility

to a purchaser, customer, or any other person or entity with

respect to any liability, loss, or damage caused directly or

indirectly by computer programs sold by Valpar International.

This disclaimer includes but is not limited to any interruption

of service, loss of business or anticipatory profits or conse-

quential damages resulting from the use or operation of such

computer programs.

Defective media (diskettes) will be replaced if diskette(s)

is returned to Valpar International within 30 days of date of sale

to user.

Defective media (diskettes) which is returned after the 30 day

sale date will be replaced upon the receipt by Valpar of a $12.00

Replacement Fee.

o

o

o

o

'V :i. 0053

Tab 1 e_gf ...Contents

o

l.y.J,. Strolling Through valDOS
A brief look at the features of the valDOS system.

I . < T 1 . val DOS Lornmarirl Descr ipti ons
Detailed descriptions of all the valDOS commands,,

U X 1 II.. valDOS System Plossarv
a) rhe internal workings of val DUS
h) (he system glossary
i) The command system glossary
I ' l-mir n.ess«ges and meanings

I.X | v a | ons t i l hdi t or

User's manual Tor the va l DOS file editor,.

LXV. va l DUS 1 Supplied Source listing

I XVI. val DUS II Supplied Source listing

O

o

o

C'

Strolling Through valDQS

Until now, one of the' major drawbacks o+ FORT'Hs for Atari

was that vou could could either save code on screens or in DOS
files, but not both. The demand to have both brought on the
development of this two-disk package — valDOS.

With valDOS vou can load FORTH screens iust as before, or

vou can load FORTH source from standard Atari DOS files. But
this package allows much more than that. A complete file
editor is supplied which can be used to edit FORTH (or

assembly. Rascal . etc. > source code and save it in DOS format.
To use this package to its fullest, at least 32K of memory

should be available. If vou have less than 32K. don't worry,
it iust means that vou can't, load all of the commands at once.
The package is broken into six major parts:

1 i valDOS (approximately 3.6K compiled)
VI) valDOS extensions
5) Basic: DOS commands (keyboard entry nnlv/
4) DOS command extensions
r
j i For m a 1 1 <?r /' c op i er s
ol f i i e odi tor

Wn shall Ttegin Thus stroll by taking a look at the first
five r.-irt' . Before' starting. duplicate both master disks
iwt’ 1 1 be modi t'.-i no the valDOS 11 copy) . Insert your valDOS .1.

disk in drive one and list screen I/O bv tvpmn I/O LIST
I (-nil- t nr t ti

* - I i no that save DOS OUTIITAND hit FNS 1 DNS and load
them in.. ibis should take a few minutes. There arc so manv
command's with p.n many variations on each that only the
h l pi. I i ght c: uf the package will be discussed Imre. barb of the
commands is explained in detail in section LXJ1,.

Insert tour copy of the valDOS II diskette. Type DIR and

pro. « the return let. Vou should see the following on your
d i * p 1 ay :

Tiles on: vaJDIlS — disk 1.1

MAI'IF to SI. /.t SEC A TTR
+ - —i— i— i - a- i i --i—i— i—i—i—i-—i—i—i-

ASBM . 4TH
X.UOUT . A TT-I

DULL I STS. 4 III

I ILF II ,.4 04

33 4 L
1 0 57 L

7 4 / L.

8 S4 I

.

'*
<) 'y f~0 c. t". o y~ s f r f? f?

LX I 1

Strolling Thru valDCIS

The DIR command simply displays the directory of the disk.
There are four files on this disk. ASSM.4TH is the standard
valFQRTH assembler with a correction for the "absolute. Y"

instruction which assembled incorrectly when the "absolute"
address was in the zero page. XB00T.4TH is a routine which
allows dictionaries greater than 32K to be SAVEd and AUTOed.
D0CL1STS.4TH is the routine used to list six screens/page tor
val FORTH documentation. And finally. FILEIT.4TH is a routine
that transfers FORTH screens to DOS files.

If vou have a two drive system, DIR 2 will give the
directory of the disk in drive two. The DIR command will also
accept, file specifications. Try the followings

DIR ASSM.4TH
DIR X*
DIR ????!*
DIR MYFILE

In these examples, there are? the two characters "?" and
which need some explanation. SimDly put, "?" will match

any single letter when compare with a filename in the
directory. will match any group of letters to the right
from its position to the end of the filename. In the second
example above, all files starting with "X" are listed. In the
third example, all files whose fifth letter is "I" are listed
(the first four can be anything).

For advanced FORTH programmers, the SECtor column of the
listing is the first sector of the? file. This is a DOS sector
(FORI H sectors are offset bv -1, i.e., FORTH sectors are
numbered starting at zero while Atari has numbered DOS sectors
beginning with one; hence, DOS sector 4 is FORTH sector 3).
The last column indicates the attributes of the files. All of
the files on this disk are locked and therefore have the "L."

at.tr i bute.
Notice that unlike most FORTH words, DIR expects its

arguments on the right. Although valDOS system itself expects
all parameters to be passed on the stack, the valDOS user
commands all expect their arguments on the right, as is usual
with DOS’s. The only restriction on this method of input, is
that no blanks may appear within the command list.

Let’s make a copy of one of the files. The CORY command
does this nicely for us;

COPY FILE1=FILE1T„ 4VH

This command has the basic: format "new=old". The COPY
command can also append two or more files together and save
this new tile into another file;

COPY F I LE2=F 1 LE 1 T . 4 TH , DOCL I STS . 4TH

FILE2 should now contain FILEIT.4TH with DOC-LISTS. 4TH

LX I.

Strolling Thru valDOS

appended to it. It is possible to string as many files

together as desired. We’re not quite through yet. It we were

to enter:

COPY FILE2=XB0DT.4TH

FILE2 would contain an enact copy of XBQ0T.4TH. However, if we

typed

:

COPY F ILE2/ A=XBOOT . 4TH

XB00T.4TH would be appended to whatever was already in FILE2.

namely FILEIT.4TH + DOCLISTS. 4TH. Of course, also legal is:

COPY FILE2/A=XBOQT„ 4TH, ASSM.4TH

and all of the original files would be contained in FILE2.

Unfortunately, FILE2 is FORTH source, but does not have the

extension 4TH (it is not needed, but desirable). The RENAME

command can rememdv this:

RENAME F I I-E2 . 4TH=F 1 LE2

Like the COPY command, the format for RENAME is "new=oid". For

some, tvping a long name like RENAME might be a chore. Since

we are are in FORTH, we can easily customize:

: REN RENAME s

Now that we have some more files to work with, type

DIP F»
and DIR F *

.

Notice the difference? In the first example, the remainder of

the filename is wild, while in the second example, the files

must end with a null extension.
If we want to keep the file FI LEI from being modified in

any way, we can lock it using the LOCK command:

LOCK FI LEI
DIR

The LOCK (and so UNLOCK and KILL) command can take several

arguments, separated by commas:

LOCK F I LE 1 » MYF I LE , ASSM . 4TH , F # . 4TH

In this case,
being non-existent,
verification prompt,
specification FK.4TH.

LOCK would lock FILE!, report MYFIL.E as
lock ASSM.4TH, and then issue a

before locking any file that matches the
Try the following two examples;

LX I

Strolling Thru valDOS

LOCK #.4TH
LOCK *.4TH/N

In the first form, a verification prompt is issued for
each file before it is locked, while in the second form, the
verification message is not displayed. The /N switch stands
for "No ask" or "No verify".

both KILL and UNLOCK have exactly the same argument list
as LOCK. Use caution when using the /N switch with the KILL
command

.

If we want to get a listing of a text file, we use the
PRINT command. For example:

PRINT FIL.E-ir.4TH

we get

;

LX I 4

Strolling Thru valDOS

o

o

o

F i le: 1)1 : F ILEX T. 4TH

000

1

0002 (Routine: FILE- IT
0003
0004 The following routine will
0005 transfer a specified range of

0006 FORTH screens to a file on
0007 a DOS formatted disk.
0008
0009 Format: FILE- IT 1st , 1 ast , f i I ename
00 1

0

FILE- IT 10, 20. MYFILE
001

1

0012 Note that DOS commands tend to be
0013 long because of error checking and
0014 parameter parsing.
0015
00 1

6

0017 : FILE- IT DOS (—)

00 1

8

GETARGS 7WRGARG 44 GETARG 7WRGARG
0019 GETVAL SWAP 44 GETARG 7WRGARG
0020 GETVAL SWAP <R0T OVER - 14-

002

1

PAD DUP 1 AND - BURBOT OVER -

0022 B/BUF / 3 PICK B/SCR * OVER >

0023 IF
0024 CR .

11 Too many screens, "

0025 B/SCR / . max." CR
0026 2DR0P 2DR0P
0027 ELSE
0028 DROP < ROT 04S
0029 DO
0030 16 0
003

1

DO
0032 I J (LINE)
0033 -TRAILING >R OVER
0034 R CMOVE R> 4

0035 155 OVER C! 14

0036 LOOP
0037 LOOP
0038 PAD DUP 1 AND -- SWAP OVER -

0039 FLUSH INSDST ROT DUP (ENTER) 0=

0040 IF FL.EXST DSKERR = 7SYSERR END IF
004

1

(OPEN) 7SYSERR SWAP DROP >R
0042 R (WRITE) 7SYSERR
0043 R (ENDF) 7SYSERR
0044 R> (CLOSE)
0045 END IF
0046 CR s

004 7
0048 FORTH

LX I

Strolling Thru val DOS

The PRINT command has several, options. It the switch /N
(no line numbers) is present, the tile is displayed without
line numbers. It an optional starting line number is supplied,
printing begins at that line:

PRINT F1LEIT. 4TH/N, 17

This will print the tile starting with line 17, and with
no line numbers. Note that the listing may be aborted at any
time by pressing one ot the yellow console keys.

The PRINT command is ideal tor displaying text tiles, but
is utterly useless tor listing a binary or data tile. For this
reason, the command FDUMP (tile DUMP) has been supplied. Let's
try FDUMP on FILEIT.4TH:

FDUMP F I

L

.Err .41 H

File: Dl; F1LE1T .4"m

0000 9B 28 20 52 6F 75 74 69 . (Rout

i

0008 6E 65 3A 20 46 49 4C 45 ne: FILE
00 1

0

2D 49 54 9B 20 9B 20 20 -IT. .

0018 54 68 65 20 66 6F 6C 6C The toll
0020 . . .

Like PRINT, FDUMP may be aborted by pressing one ot the
yellow console keys. It the tilename has the "wide 11 switch /W
appended to it, the file is dumped with 16 bytes/line instead
of eight as above. This format is more appropriate when sent
to a printer. FDUMP always dumps in hexadecimal.

Let's compile a routine from a DOS file. The tile
D0CL1STS.4TH is the program used to print 6 screens/page tor
documentation. To load this file, we simply enter:

FLOAD DOCL ISIS. 4TH

and the routine DOCLISTS should now be in the dictionary. There
is a nice feature to the FLOAD command:

FORGET DOCL 1 STS
ON ECHO
FLOAD DOCL I ST S . 4TH

Notice that this time the file was echoed to the display as it
was being loaded. Like the PRINT command, FLOAD can take an
optional starting line so that loading can begin mid-file.
Holding down a console key will abort a load once the current
definition is compiled.

If you have a source file which is physically contained
two or more tiles, they can be linked together using the FLOAD
command. For example, PARTI. 4TH could end with an

L.X I - 6

Strolling Thru valDDS

FLOAD PART2.4TH, and part.2 could end with FLOAD PART3.4TH, etc.

In this wav. a multi-part tile could be loaded. Although this
method works, it should be avoided tor several reasons. One
reason is that it any ot the tiles are renamed, or it they are
moved to a ditterent drive, each of the original files may have

to he edited to change the FLOADs. A second and more
complicated reason is that for each file FLOADed this way, a

separate file buffer needs to be allocated. The default number
of file buffers is four, therefore no more than four files can

be chained.
The solution to this problem is to create a file which

contains nothing but FLOADs:

File: ALLPARTS. 4TH

0001 FLOAD PARTI. . 4TH (load in the ??? routines)

0002 FL0AD PART2.4TH (load in the ??? routines)

0003 FLOAD PART3.4TH (...)

This method requires exactly two file buffers and allows
filenames to be changed easily, if desired.

This was just a brief stroll through the valDOS package.

There are many powerful commands left to explore. I he

following section on command words explains each command in

detail. Read through this section carefully and out the
commands on a test disk. And then there is the File Editor,
with its own set of documentation, in section L.XIV.

Have fun.

LX 1 - 7

File: D2s VERIFY. 4TH

000

1

0002
0003

(Routine: Write w/o verify

0004 The following routine allows writ.'

0005 operations to the disk without
0006 read verification. This speeds up
0007 disk access by many times. Note
0008 that once this routine is loaded,
0009
00 1

0

it may neat be forgotten i

001

1

Format: ON VERIFY
0012
00 1

3

0014

OFF VERIFY

0015 BABE a HEX
00 1

6

00 1

7

ASSEMBLER

00 1

8

LABEL -DSK
0019 AD C, 02 C, 03 C, 09 C, 52 0,
0020 D0 C, 05 C, A9 0, 40 C, 40 C,
0021 HERE 4 + , A9 C, 80 0, 8D C,
0022 03 C, 03 C, A9 C, 31 C, 8D 0,
0023 00 0, 03 0, A9 C, 07 0, 8D C,
0024 06 C, 03 C, A9 0, 80 C,
0025 (or 00 C, for Percom?) 8D 0,
0026 08 C, 03 C, A9 0. 00 C,
0027 (or 01 C, for Percom:’) 8D 0,
0028 09 C, 03 C, 20 C, 59 C, E4 C,
0029
0030
003

1

0032

60 C,

0033 ; VERIFY (f —
0034 0# 7 * 50 +

0035 C
’ -DISK 7 + :i

0036
0037

LITERAL C! ;

0038
0039

-DSK ’ -DISK 27 + !

0040
004

1

BASE !

Command Words

Introduction and Conventions

The val FORTH Disk Operatina System can be broken into

two distinct categories. The first contains the system

words which are for use within running programs and are
The second

designed to
command words
or delete a

rarely typed directly at the keyboard,

category contains "command" words which were

be executed onlv at the keyboard. Typical

are those that list the directory of a disk.

file from the disk.
^ . . ,

Commands words differ from normal FORTH words in that

all necessary arguments are entered following, the command

word. For example, to remove a file from a directory, we

would types

KILL UNWANTED. F1L

instead of the usual FORTH-1 ikes

" UNWANTED. F I L." KILL

which will not work
this method of input
appear within the
indicate the end of

as-is. The onlv restriction placed on

is that absolutely no blanks must

command list since the blank serves to

that list. Thus,

K I L.L F I LE. 1 . F I LE2 , F I LE3

would properly kill the three files specified while

KILL FT LEI ,
FTI...E2, FIL.E3

would kill the first file and then abort with an error.

In the command descriptions that follow, any portion

of. the command format enclosed by the braces "1" and ,•

is optional and need not be entered.

Additional.!.'/, some of the commands may be aborted bv

pressing one of the yellow console keys found on the far

right of the keyboard. Those commands which have this

feature are indicated by the sentences

'This command is interruptable"

A1 1 commands and arguments must be entered in upper case.

LX II I.

valDOS Commands

cCLOSE
Release file buffer and update file.

STATUS;

User memory at PAD is untouched.

COMMAND FORMAT;

CLOSE i f i 1 enumJ

DPERAT I ON

;

The CLOSE command flushes the file buffer (different from
the FORTH disk buffers), if updated, associated with the
specified file number. The disk buffer is then released for a
subsequent open (see OPEN). Any future references to the
specified tile number are ignored until another OPEN command
re-assigns it. If a file-number is not specified, or if it is
zero, all open tiles are closed.

EXAMPLES;

CLOSE

Close all open files.

CLOSE 0

Close all open tiles.

CLOSE 2

Close file number two.

NOTES;

c>

lxti

valDOS commands

o
COPY
Transfer the contents of one or more files to another file

STATUS:

User memory at PAD is untouched.

O

o

COMMAND FORMAT

:

COPY outfile{/A}=infileU,infile2f, . . . >>

OPERATION:

The contents of "infilel" are transferred to "outfile." If

it does not alreadv exist, "outfile" is created. If the /A

switch is present, the input file is instead appended to the

output file. All additional input files are appended to -he

output file in the order in which thev appear. Single
rurrent
frive users

file in
should also FMIYUF

EXAMPLES:

COPY MYFIL-E. BAK=MYFILL-

Transfer contents of MYFILE to MYF1LE.BAK on the

default drive unit. (see SET UN IT)

COPY D2: PARTI /A=PART 2

Append the file PART2 found on the default unit

to file PARTI found on unit two.

COPY ALLPART8=PART 1 , D3 : PART2 , PART 3

Transfer the contents of PARTI to ALLPARTS. then

append PART2 on unit three to the new file ALLF ART _

,

and finallv. append PART3 to ALLF'ARTS.

NOTES:

In the event that an error occurs, the output file mav be

left, open and should be closed using the CLOSE command.

LX 1

1

valDQS Commands

DIR
Display list of files on disk.

STATUS:

User memory at PAD is untouched.
This command is i nterruptabl e.

COMMAND FORMATS:

DIR Cfil espec>
DIR unit

OPERATION:

The DIR command lists all files within the directory on
the default drive unit unless an optional file specification or
drive number is specified. If the optional filespec is
specified, it must resolve to a legal filename or else an error
will result. Likewise, if the optional unit specification is
supplied, it. must be a number from 1 to 4 inclusive. The DIR
command also displays the current number of free sectors. Note
that the size of a file displayed in the listing is not
necessarily accurate unless that, file is closed. However, the
number of free sectors on disk is always accurate.

EXAMPLES:

DIR

DIR MVFILE

list information about, ail files
found on the default, unit.

list, information on MYFILE found
on the default unit.

DIR D2;#.4TH list information on all files with
the extension 4TH found on unit. two.

DIR list information about all files
found on unit three.

NOTES:

If the DIR command is given within a file that is to be
loaded, a filespec or unit must be specified. Thus the
first example above must be: DIR *

LX 1

1

4

val DOS commands

Duplicate an existing diskette.

STATUS;

PAD is modified.

COMMAND FORMAT:

DISKCOF'Yl single-drive copy

D1SKC0PY2 multi-drive copy

OPERA! 1 ON

:

DtSKCOPYl is for users with only one disk drive. D IShCUF1Y

is for users with two or more drives.

EXAMPLES:

D 1 SKCOPY

1

Copy a disk, using only drive one. The user is

prompted to insert the source diskette, and then

the destination diskette. This is repeated

until the entire source diskette is duplicated.

D I SKCOPY ii

Ihe diskette in unit one is copied to the

diskette in unit two.

NOTES:

LX II

valDQS Commands

ED X T
Edit a (FOETH) source file.

STATUS:

PAD i s mod if ied.

COMMAND FORMA T

:

EDIT inf i le{ f outf i le>

OPERATION:

The input file is read i

the editor is used to modify
modified file is written to
otherwise it is written back
File Editor documentation
information.

nto memory beginning at PAD
it

the
to the input file
in section LX IV

wnere
Upon leaving the editor, the

output file, if specified,
See the valDOS
for further

EXAMPLES:

EDIT MYFILfc

Edit the file MYF] Lb on the default drive unit and
write the modified version back to MYFILE.

EDI T D1 : PACMAN. 4TH, D2: RAGMAN. 4TH

Edit the file PACMAN. 4TH on unit one and write the
resultant file into file PACMAN. 41 H on unit two.

NOT ES

:

~ 6>LX 1

1

valDOS command

ENDF I L_

End-file at current file cursor position.

STATUS:

User memory at PAD is untouched.

COMMAND FORMAT

:

ENDF 1L filenum

OPERATION:

The current file cursor position within the specified file

is marked as the new end of that file- Ail data a+ter that

point in the file is lost and anv disk space used by lost data

is reclaimed.

EXAMPLE:

ENDF 1 L 2

En d -f i 1 e file number t wo

.

NOTES:

Care should be taken if this command is used on a file

that is open under more than one file number.

LX 1

1

7

valDOS Commands

EOF
Move the file cursor to the end of the tile.

STATUS:

User memory at PAD is untouched.

COMMAND FORMAT:

EOF +i lenum

OPERATION!

the cursor ot the spec:, tied tile is repositioned at theend of the tile. The tile must already be open.

EXAMPLE:

EOF 1

Position the cursor of tile one at the end ot that
file.

NO f'ES

:

L X 1

1

B

valDCJS commands

ENTER
Enter (create) a filename in a disk directory.

ST ATUS

s

User memory at PAD is untouched.

COMMAND FORMAT!

ENTER filename

OPERA'!' 1 UN

:

Ihe specified filename is

directory. The filename must

will result. The file is created,

this command is usually called

in FORTH-

entered into the indicated
not. already exist or an error

but is not opened. Although

CREATE, that word already exists

EXAMPLES:

ENTER MYFTLE

Enter the filename MYFII..E into the directory on

the default drive unit.

EM 1 ER 02 ; 1 NVADERS 4 I'l l

Enter the filename INVADERS. 4TH into the directory

on unit two.

NOT ESs

LX 1

1

9

valDOS Commands

FDUMP
Perform a hex /ASCII dump of a file

STATUS:

User memory at PAD j. s untouched.
This command is i nterruptabl e.

COMMAND FORMAT

;

I- DUMP f i 1 ename f /W>

OPERATION:

The specified file is displayed as a sequence of hexnumbers and ASCII equivalents. This is typically used forlooking at machine language programs stored on disk. Normaloutput is 8 bytes per line, however, if the /W (for "wide")switch is present. 16 bytes per line are displayed. which ismore suitable for printed output.

EXAMPLES:

FDUMP MVP 1 LE . OBJ

Durnn the file MYF1LE.UBJ to the current output
device. Eight bvtes/iine are displayed.

FDUMP MVF || E. OBJ /W

Dump the tile MYFILE.OBJ to the current output
device., 16 hvt.es/line are displayed.

NOTES

:

LX 1 1 - lu

valDOS commands

c

F" I I- E — I T
Transform FORTH screen format to DOS file format

STATUS:

PAD is used.

COMMAND FORMAT:

FILE— IT sc r 1 , scr 2 , f i 1 ename

OPERAT I ON

:

The screens from scrl to scr2, inclusive,, are read

free memory, 1 he DOS disk is then swapped into the drive

the screens are written to the specified filename.

into
and

o
EXAMPLES:

F 1 1 1 T 50 . 60 ,
MVCODE . 4TH

Screens SO through 60 are read into free memory.

The user is then prompted to insert the DOS-

formal disk: into the drive. f he data is next

written to the file MYCQDE.4IH.

NOTES:

c

- 1

1

LX 1

1

vaiDOS Commands

FLOAD
Compile a FORTH source file from disk.

STATUS:

PAD is moved bv compilation as usual.
This command is i nterruptabl e.

COMMAND FORMAT:

FLOAD f i 1 enamet /CD-
FLOAD f i 1 enamel, 1 inenuml

OPERATION:

The FLOAD command sends the FORTH
the specified file to the val FORTH

source code contained in
compiler. If the /C (forcontinue") switch is qiven, loading begins at the

edited in the file editor. This
tived and compilation to he

If the optional line number
that line of the file.

the last line
errors to he

is present.

beginning of
allows load

:ontinued mid-file,
loading proceeds from

EXAMPLES:

FLOAD MYOAME „ A T H

Load the DOS file MYGAME. 4'TH from the default
drive unit and compile it.

FLOAD D2 ; CYCLOPS '

C

Load the DOS tile CYCLOPS from unit two starting
with the last line edited in the file editor.

FLOAD F OR TPAN .

A

I H . SO

Load the DOS file FORTRAN. 4 TH from the defaultumt beginning with the 50th line in the file.

NOTES:

It i. != possible to LOAD a screen from a
and vice versa. Usually. LQADi no and FL.OADi
different units. Also see ECHO command.

file being FLOADed
rig should done from

- 12LX 1

1

val DOS commands

FMOVE
Single drive interdisk -file transfer

STATUS:

Memory at PAD is used.

COMMAND FORMAT:

FMOVE out+i 1 e=i nf i 1

e

OPERAT I ON

:

The FMOVE
only one disk d

one disk to
available free
will prompt for

command is for those users who have access to

rive. It is used to transfer a DOS file from

another. If infile is too large to fit in

memorv , multiple disk swaps must be made. FMOVE

all necessary inputs, and swaps.

EXAMPLES;

FMOVE MYFILE. BAK=MYFILE

Transfer contents of MYFILE to MYFILE. DAK. MYFILE

is read into free memorv, source and destination

disks are then swapped, and the data stored in free

memory is written to MYFILE. BAK.

"’Multi-drive users can use the COPY command tor this

purpose.

13LX 1

1

valDOS Commands

FORMAT
Format a diskette for use.

STATUS:

User memory between PAD and BURBOT is untouched.

COMMAND FORMAT

:

FDRMA T I’un i t >

OPERA I I ON

s

If

I he I ORMAI corofn&nd init.ializBB a disk for use? with vaJ DOS*
a unit number is supplied, formatting will be attempted onthat unit.

, otherwise the default unit, is assumed. The command
will issue verification prompts and will also allow sectors tobe locked so that no file will ever occupy those sectors. Thisfeature allows mixing FORTH screens < virtual memory) and files
on a single disk. The valDOS II disk is an example of this.This command also allows the newly formatted disk to be named.

EXAMPLES:

FORMAT

Format the default drive unit.

FORMAT 2

Format uni t two.

NO I ESs

this command replaces the one found on the vaj FORTH 1 ldisk. See NAMED I SK

.

LX 1 1 - 14

valDOS command

FSPACE
Move the tile cursor relative to its current position.

STATUS:

User memorv between PAD and BUFBOT is untouched.

COMMAND FORMAT:

FSPACE f i 1 enum , count

OPERATION:

The cursor of the specified
offset specified by count. The
32767 bytes in either direction,
toward the beginning of the tile
file cursor is left untouched.

file is moved by the signed
file cursor may be moved up to
with a negative count spacing

If the count is zero. the

EXAMPLES:

FSPACE 5.123

Move the cursor of file one 123 bytes toward the

end of the file.

FSPACE -345

Move the cursor of file two 345 bytes toward the

start of the file.

NOTES:

Spacino backward is generally much slower than spacing

forward due to the manner in which data is stored on disk. For

this reason, backward spacing should be avoided.

LX 1 1 - 15

valDQS Commands

K I I I

Remove files and release disk space.

STATUS:

User memory between PAD and BUFBOT is untouched.

COMMAND FORMAT:

KILL f

i

lespecl C/NJ t, f i Iespec2{/N} {, . . . >}

OPERATION:

The KILL command removes the specified files from the
specified unit. If no unit is given in the file specification,
the default unit is assumed. If the filespec is unambiguous
,i.e. ,, no wild cards)

, no verify prompt is issued. If the
filespec is ambiguous, a verify prompt is issued for every file
about to be deleted unless the /N switch is present.

EXAMPLES:

KILL THIS

Delete tile THIS on the default drive unit.

K I LL PAR 1 1 ,, PART 2 . PARTS , 1)3 ; PART?

Remove files PARTI, PART2, and PARTS from the
default, unit, and all files found on unit three with
five letter names that begin with PART.

KILL #.BAS, *. 6AK/N, 02: MYFILE, TEST. */N

Remove all files on the default unit with the
extension BAS giving verify prompts. Remove all
files with the extension BAK without verify
prompts. Delete MYFILE on unit two, and all
files named TEST on the default unit.

NOTES:

L. X 1

1

16

valDDS commands

o
l_OCK

Write and modi f v-protect. tiles on disk

STATUS:

User memory at PAD is untouched.

COMMAND FORMAT:

LOCK ti 1 espec 1 t /N> i , t i 1 espec2C/N> {,...)>

OPERATION;

The LOCK command protects the specified files from being

modified in anv wav. If the filespec is unambiguous (i.e.. no

wild cards), no verify prompt is issued. If the filespec is

ambiguous, a verify prompt is issued for every tile about to be

locked unless the /N switch is present.

EXAMPLES:

LOCK D2:

*

Lock all tiles on unit two, with prompts.

LUCK FILE7/N, PART 1 ,
PAR I 2

Lock all files with five letter names that start

with FILE, without prompts. Lock PARTI and PARI 2.

LUCK * . 4TH, D2: MYF IL..E ,
PROS*/N

Lock ail files with the extension 4TH giving

verifv prompts. Lock MYF1LE on unit two, and

all files beginning with PROG on the default unit,

without prompts.

NOTES:

c

LX 1 1 - 17

val DOS Commands

NAMED I SK
Name a diskette.

STATUS:

User memory at PAD is untouched.

COMMAND FORMAT:

NAMED I SK {unit}

OPERA T I ON

;

I he val DOS tile system allows disks to named foridentification. Currently, this name is displayed only mdirectory listings, but is available for user programs. The
NAMED I SK command displays the name of the disk in the specified
unit and prompts for the new name to be entered. Disknames mav
be up to 20 characters long, and any character mav be includedwithin that name.

EXAMPLE:

NAMED I SK

Rename the disk in unit three.

NO T ES

:

Disks named in val DOS will
DOS's tor the Atari computers.

function properly in other

LX 1

1

18

val DOS commands

o
OPEN
Open a file for access.

STATUS:

User memorv at PAD is untouched.

COMMAND FORMAT

:

OPEN filename

OPERATION:

The OPEN command assigns a butter area and a tile access

number to t.he specified file.

EXAMPLE:

o OPEN TEST . 4TH

Opens the file TEST . 4TH on the default unit.

NOTES:

Files mav be multiply open, but are logically different

files as far as the DOS is concerned. If a file is opened more

than once and an operation such as ENDFIL is ^iven, l- is

possible that the other opens will contain data in thei

transfer buffers that technically no longer exists. Note also

that' disks should not be exchanged when there are tiles open on

the disk.

o

LX 11 19

va 1 DOS Comand 5

OPEN?
List all tiles currently open.

STATUS;

User memory at PAD is untouched.

PERAT I ON

;

All files currently open are displayed
associated file access numbers.

along with

EXAMPLE;

OPEN?

NOTES

:

- 20

thei r

L.XII

valDOS commands

F-R I NT
Display a text tile on the current, output device.

STATUS:

User memory at PAD is untouched.

This command is i nterruptabl e.

COMMAND FORMAT:

PR I NT til ename { /N > t, li nenum)

OPERA I" I UN

;

The contents ot the specified tile are sent to the current

output device. Each line of text is automatically numbered

unless the /N switch is present. If the optional line numbe

specification is supplied, printing will beqin with that line

of the file.

EXAMPLES:

PRINT GALAXY. 4TH

Print the tile GALAXY. 4TH with line numbers.

PRINT EDITOR. 4TH/N

Print the file ED1I0R.4TH without line numbers.

PR 1 NT D2 : MYP 1 LE . T XT , 5h

Print the file MYPTLE.TXT on unit two with line

numbers., beginning with the both line of text

in the file.

NOTES:

LX II

valDOS Commands

(READ
Read a file into memory.

STATUS

s

User memorv between PAD and BUFBOT is untouched.

COMMAND FORMATS!

READ f i 1 enarne, addressi , count

>

READ f i 1 enum. address { , count}

OPERATION:

In the first form, the specified file is opened and the
first "count" bytes are read into memory starting at the
address specified. If the count is not specified, the entire
file is read in. The file is left, closed. In the second form
of the command, the first "count" bytes of the alreadv opened
file are read into the specified address. The file is left
open after the read is complete. Note that the address can bespecified by a number or by a. single word (such as PAD) which
returns a number.

EXAMPLES:

READ DRIVER. OBJ, PAD

Read the entire file DRIVER. OBJ into the address
specified by PAD. The file is then closed.

READ 1,40960,1000

Read the first 1000 bytes from the file specified
by the file access number one into address 40960.
The file is left open.

NOTES:

No check is made to see if the data is being read intomemory occupied bv the FORTH dictionary. DOS buffers, 'or videomemory. It is up to the user to supply safe load addresses.

o

c

LX 1

1

valDOS commands

o
RENAME
Rename a file.

STATUS:

User memory at PAD is untouched.

COMMAND FORTMAT:

RENAME newname-ol dname

OPERATION:

The specified file is given the specified new name,

must, not already exist a file with the same name

specified new name or an error will result.

o
EXAMPLE:

RENAME MYF I L E . 4TH=MYF I l-E

The file MYFILE is renamed as MYFILE.4TH.

NOTES:

c

There
as the

LX 1

1

valDOS Commands

REUI I MD
Move the file cursor to the beginning of the file.

STATUS:

User memory at PAD is untouched.

COMMAND FORMAT:

REW I ND f i 1 enum

OPERATION:

1 he cursor of the specified -file is repositioned at
beginning of the file. lhe file must already be open,.

EXAMPLE:

REWIND 1

Rewind file number one.

the

NOTES:

v a I DOS commands

SETUN I

T

Set the default drive unit.

STATUS:

User memory at PAD is untouched.

COMMAND FORMAT:

SE TUN I T un i

t

OPERATION:

Whenever a filename does not explicitly contain

specification, the new default drive unit will be

Units are numbered from one to four.

a drive
assumed

.

EXAMPLE:

SET UN 11 2

Set the default unit to two.

NOTES:

LX 11

vaiDOS Commands

UNLOCK
Unprotect a -file so that it may be modified.

STATUS:

User memory at PAD is untouched.

COMMAND FORMAT;

UNLOCK f i lespecl C/NJ {

,

f i 1 espec21 /N

>

i , . . . j >

OPERATION:

„ no v. r

.»
y
“*

r^r«
•

, .

' liespec is ambiguous, a verify nrnmnf -i «=°v,ry m * •t°ut *° »* unl„. thi /« sit;;

EXAMPLES:

UNLOCK THIS

Unlock file THIS on the default drive unit.

UNLOCK PART 1 . PART2 , PARTS , 03 : PART?

Unlock files PART]
, PART2, and PARTS from thedefault unit, and all files found on unit threewith five letter names that begin with PART.

UNLOCK * . BAS, * . BAK/N. D2: MYF

I

LE„ TEST. */N

Unlock all files with the extension BAS qivincverify prompts. Unlock all files with the

Mv^p’
Dn BftK Without veri+ V prompts. Unlock

unit two, and all files named TESTon the default, unit.

NO TES;

LX 1

1

26

valDOS commands

l*JR I TH
Write an area of memory to a -file

STATUS;

User memory at PAD is untouched*

COMMAND FORMATS:

WRITE fi 1 ename, address, count

WRITE fi lenum, address, count

OPERATION:

In the first form, the first "count" bytes of memory at

£ «r.
The address can be specified by either a number or a singl

word (such as PAD) which returns a number.

EXAMPLES;

WRITE MYFILE, PAD, 1000

Write the 1000 byte block of memory at the addres

sp©ci‘fi©d by PAD to MV FILE-

Ia|R I TE 1 h 40960 , 256

Write the first 236 bytes of memory at address

40960 to the file associated with file access

number one?.

NOTES:

27LX 1

1

o

T h e valDOS

The following set of words make up the heart of the valDOS

svstem. Note that all of the following words- are in a special

vocabulary named DOS. Any word which uses one of these system

operations must contain the word DOS in the definition, as it

is necessary to inform the compiler where to look for these

definitions. Since most of these commands are on the system

level, a brief description of how the system works is

appropr i ate.
Before any file can be manipulated, it

access. A file buffer and a status block

each open file. Additionally, each fil

cursor (which is positioned at the beginning

time). This cursor always points to a

file. If a byte is read from the file, the

this cursor is returned and the cursor is

into the file. When a byte is written to the

the byte pointed to by the file cursor, and

must be
are all
e has i

of a f i.

1 oc at ion
byte poi
moved a

file, i

the fil

opened for
ocated for
ts own file
le at open
within the

nted to by
byte deeper
t replaces
e cursor is

then bumped.
Thus, if a 3 OK file is opened and five bytes are

to the file, the first five bytes will be changed,

remainder of the file will be left, untouched. If the

then closed, the file will still be 10k long. Most

however, will "end-file" a file when it is closed, i

this example, the file would be reduced to five bytes,

implicitly end-filing a file when it is closed,

flexibility is gained. Note that the valDOS commands

COPY and EDIT) do implicitly perform an end-file p

written
and the

file is
BASICS,

. e « , in
By not

greater
(such as
rior to

closing a file.
The two most, common operations are reading a file ana

writing a file. Usuailv when reading a file, the file is

opened, read to the end (eof), and then closed. Generally when

a file is written, it is opened, written, end-filed, and then

ci osed

.

LX 1 1

1

1

val DOS

r
y®iJSB§_System_Words

DOS
This is the name of the vocabulary which contains all

of the following DOS system words. DOS stands for' Disk
Operating System (not Software as some claim). Any word
which contains one of the following words must contain
this word within its definition: : myword DOS
DOS i s I MMED I ATE J

SENTRIES n
A quan which contains the number of entries that

matched the (wild) filename last checked by CHKDIR. CHKDIR
returns this value automatically. This value can also he
used to index the first "n" elements of the table pointed
to bv D.IRTBL (below).

#FREE
A

entries

n
quan which
in the last

contains the number of free directory
directory scanned by CHKDIR.

#UNTRN n
A quan which contains the number of bytes left

untransferred in the last block read/write operation. This
value is only accurate immediately after the read/write
operation returns control to the calling routine.

o

<?OPEN> * if 13/0
This routine checks to see if the file specified bv $

is open. If the operation is successful. a flag is
returned along with the value one. If this flag is 0, the
file is closed. If an error occurred, only a zero is
returned. See DSKERR. This routine uses FNCON.

(OPEN) * faddr fl# 13/0
Ihis routine opens the file specified by $ „ It is

used to create the necessarv data transfer path between
the application and the DOS. If the open is successful, a
file transfer buffer is allocated and is assigned a file
access number. All subsequent operations upon the open
file require that, this file number be supplied. On a
successful open, the file number and the transfer buffer-
address are returned. In most cases, the buffer address
can simply be discarded, while the file number must be
stored by the application. Pile numbers are always greater
than zero. See DSKERR. This routine uses FNCON.

c

L XIII

val DOS

o
(CLOSE)

The
associ ated
buffer is
subsequent
channel

s

no errors..

(CLOSE) operation closes the data transfer path

with the specified file number. The file

flushed to disk if updated, and is freed for a

open operation. If "fl#" is zero, all open

are closed from access. This routine generates

Illegal file numbers are ignored.

Each open file has a file cursor which points to the

next byte to be read or written. The "end file" operation

marks the current byte as the end of t.he file. Thus if

the file cursor points to the fifth byte of a 10K file,

the current byte and all successive bytes are lost, and

the disk space is reclaimed. This is typically used lust

before closing a file that has been written to.
_
This

ensures that no "stale" data remains. The command b.NDI- 11-

uses this routine.

o The filename specified by * is entered into the

directory on the unit specified within the filename. if

no unit is explicitly stated, the default unit (specified

bv DFLLJNT) is assumed. A one is returned if the operation

was successful, otherwise a zero is returned. See DSKERR.

This routine uses FNCON. (This routine is usually called

"create". That name is already used in FORTH, however.)

> * — +

The filename specified bv $ is deleted from the

directory on the unit specified within the filename. If

no unit is explicitly stated, the default unit (specified

bv DFLUNT) is assumed. A one is returned if the operation

was successful, otherwise a zero is returned. See DSKERR.

This routine uses FNCON.

The filename specified by $ is locked so that

not be written to, killed, or renamed. A one is

if the operation was successful, otherwise a

returned. See DSKERR. This routine uses FNCON.

it may
returned
zero is

o
LX 1 1

1

val DOS

(RDB) fl# {b 1J/0
The "read byte" operation reads the next byte from

the file whose access number is "fl#". If an error occurs
a zero is returned, otherwise the byte along with a one is
returned. If many bytes are to be read, (READ) should be
used if possible as that routine is many times faster than
(RDB). Note that if a read is attempted with the file
cursor at the end of the file, an EOFERR error is
generated. See DSKERR.

(READ) addr cnt fl# f
This operation reads the next "cnt" bytes of the file

whose access number is "fl#" and stores them in memory
beginning at "addr". If an error occurs a zero is
returned, otherwise a one is returned. The quan #UNTRN
contains the number of bytes left untransferred in the
event of an error. See DSKERR.

(REN) $n So f

This operation renames the file $o to $n. A one is
returned :i.f no error occurred, otherwise a zero is
returned

.

o
(SPACE) cnt: fl# f

The space operation repositions the cursor of the
file whose access number is "fl#" by the signed number
"cnt". The value "cnt" must lie in the range of -32768 to
32767. Also note that the file cursor cannot be spaced
past byte no. 65,535 of the tile. If "cnt" is zero, the
space operation is ignored. A one is returned if no error
occurred, otherwise a zero is returned.

(UNLOCK) $ f

The filename specified by $ is unlocked so that it
may be written to, killed, or renamed. A one is returned
if the operation was successful. otherwise a zero is
returned. See DSKERR. This routine uses FNCQN.

(WIND) f fl# f

The (WIND) command is used to position the file
cursor at beginning or end of the file. If "f" is one.
the file cursor is rewound to the beginning of the file.
This allows the file to be re-read. If "f" is zero, the
file cursor is moved to the end of the file for subsequent
writing, effecting an append operation. A one is returned
if the operation was successful, otherwise a zero is
returned. See DSKERR.

LX 1 1

1

4

val DOS

(WRB) b + 1# —
The byte "b"

number is "fl#". If ,

tile, (WRITE) below should be used instead

is written to the file whose access

manv bytes are to be written to the
as it is many

times faster than (WRB)

.

operation was successful.
See DSKEER

A one is returned if the

otherwise a zero is returned.

(WRITE) addr cnt fl# f

The block of memory "cnt" bytes long beginning at

memory location "addr" is written to the file whose access

number is "fl#". A one is returned if the operation was

successful, otherwise a zero is returned. See DSKEKR.

-'DO! IERR
Thi

rout i lies

is zero,
control
7D0SERR,
ex amp 1 e

,

within (

to (OPE
7D0SERR
return
quan DSK
good ex a

a SWAP

f err#
i is one of
avai 1 abl

e

the system
does not
but to the

three (see DOSERR
at the system level,

error "err#" is gener
return to the word
word which called th

if an application calls (OPEN

OPEN) generates an error, 7D0SERR w

;iM) . but to the application, pass!

does not generate an error, program

to (OPEN). 7D0SERR stores the err

ERR. Bee the actual definition of

mple of how this is used. 7D0SERR
Q— IP DOSERR END IF DROP

7DSKERR) error
If the flag "f"

ated. Program
which contained
is word. For
) and a 7D0SERR
•ill not return
ng a 0. If the

control will

or value in the
(OPEN) for a

is essentially

7DSKERR f

7DSKERR
to the next.
7D0SERR

.

is used to propogate an error from one word

It replaces the sequence DSKERR 7D0SERR. See

7WILD f

This is a quan
f i 1 ename converted
card characters "7"

cards aopeai'' ed -

which contains a one if the last

by FNCQN contains either of the wild

or A zero is returned if no wild

BUFBOT addr
This is a word which returns the

address used by the DOS file buffers.
lowest memory

LX III

val DOS

CHKDIR n
The check-directory routine scans the directory on

the unit specified within the last filename converted by
FNCON for all occurrences of that filename. For every
match found (multiple matches are due to wild cards) in
the directory, a directory entry number is stored in the
next available location of the memory block pointed to by
DIRTBL. Thus if CHKDIR finds five occurrences of a
filespec, the first five elements of DIRTBL. contain the
directory entry numbers for those five matches. These
values can then be used in conjunction with the ENTRY
command to access the files. CHKDIR returns the number of
matches.

DFLUNT n
A quan which contains the number of the default unit.

I hi s drive number is assumed if no drive specification is
contained within a filename converted by FNCON. Caution,
this contains 0 if DOS drive 1 is the default, 1 if DOS
drive 2 is the default, etc. (FORTH drive = DOS drive-1)

DIRFRE n
A quan which contains the entry number

free entrv in the directory last scanned
routine.

of the next
by the CHKDIR

DIRTBL addr
A word which returns the starting address of a 64

byte memory block: that contains directory entry numbers of
a.ll files that matched the last, filename checked by the
CHKDIR routine. See CHKDIR.

D I RUP
This marks the current directory as being updated so

that, it is written to disk upon the next DSKFLS command.

DOSERR err# 0
This is one of three (see 7DQSERR, 7DSKERR) error

routines at the svstem .level. DOSERR unconditionally
generates the error whose error number is "err#". Program
control continues two levels up (instead of the usual one)
and a zero is returned. See 7D0SERR.

DSKERR

DOS

n
A quan which contains

error that occurred. See
the error number of the last
List, of Errors below.

LX I II - 6

va'l DOS

DSKFLS
A routine which

free space map if

should end with this
pre-defined commands

flushes the current directory and
updated. All user defined commands
command. See source listing tor

ENTRY unit n addr
The entry command returns the address of the "nth"

entrv m the directory on the specified drive unit. The

16 byte entry has the following format:

addr+O;

addr+1

:

addr+3:
addr+5:

ad dr+13:

status byte
bit 7: File deleted it set

6: File entry valid if set.

5: File locked if set
4: File random if set
3: File; in use if set (not. used)
2; Unused
1: DOS format 2 if set
0: File open for output if set

length of file in sectors
first (DOS) sector of file
8 letter filename

,

left justified, blank filled
3 1 etter e;-: ten s i on ,

left justified, blank filled

If any changes are made, executing DIRUP and DSKFLS will

write those changes to disk.

FL.BIJF3 fi# addr
Whenever a file is opened, a 128 byte transfer buffer

and a 16 bvt.e status block are allocated. The FLBUFS)

command returns the address of the file status block

associated with "fl#"« 1 he 16 byte table contains the

following information:

addr+0:
addr+1

;

addr+3:
addr+5:
addr+7

:

addr+8;
addr+9:
addr +10:
addr+1 1

:

addr+13:
addr+14:
ad dr- 128;

File status byte (see ENTRY).
Current size of file in sectors.
If high bit is set, file is updated.
First (1)08) sector of file.
(FORTH) sector currently in file buffer.
Number of bytes into current sector.
Unit associated with the file.
Entry number in the directory.
Non-zero = current sector is updated,
(reserved for) Current random block,
(reserved for) Random block update flag.
Number of bytes into file (unsigned).
Address of 128 byte file buffer.

L.XIII

va] DOS

FLFL.S fl#
This operation flushes the

with the file access number "fl#'
file buffer associated

FNCON $ f

The FNCON command takes the file
converts it to directory format (i.e.,
blank filled). It stores the
at the memorv location pointed

specification $ and
left j ust i f i ed and

11 byte formatted filename
to by FNFLD. All wild

cards are converted to question marks, thus, "MY7FIL*"
will become "MY7F.1.L?????" . Additionally, if a drive
specification is contained in the filespec, it is
determined and stored in the quan UNIT. If no drive
specification was supplied, the default unit (in DFLUNT)
is stored in UNIT. FNCON will also parse out a single
switch ("/«"> where the character "s" is stored in the
quan FMSWCFI. If no switch is found, a zero is stored in
FNSWCH. If any wild cards appear in the file
specification, the quan 7WILD is set to one, otherwise
zero is stored. If no errors were detected, a one is
returned, otherwise zero.

FNFLD addr
A pointer to an eleven byte storage

contains the filename last formatted by FNCON.
whi ch

FNSWCH s
A quan which contains the ASCII value of the switch

in the last filename converted bv FNCON. If no switch was
present, FNSWCH contains zero. See FNCON.

F SNAP add r
A word which i* eturns the address of the current free

space map.

FSMUP
The FSMUP

being updated.
command marks the current free space map as

MAXFL
A constant which contains the maximum number of files

that. can be open at any given time. This has a default
value of four. If this constant is changed. valDOS must
be completely reloaded.

LX I I 1 8

val DOS

(I

VADR n

After a block read/write operation, this quan

contains an address one byte higher in memory than that of

the last byte transferred. This can be used to determine

how much data was transferred in the event of an error.

UN I T n

A quan which contains the unit specification of the

last filename converted by FNCON. Note that this is a

FORTH unit li.e., FORTH unit = DOS unit-1).

WRKSPC addr
A quan which points to a 128 byte scratch area used

by many of the system words described above. This is free

for user applications between val DOS system calls.

o

o
lx i n 9

val DOS

ysl DOS _Command_.SuBBgrt_ Words

7CMDERR n err#
Like 7D0SERR, but prints the error message, clears

both stacks, and aborts program execution through QUIT, if
the status flag "n" is zero. If "n" is true, 7CMDERR
returns to the calling word.

7SYSERR n
Like 7DSKERR, but aborts through 7CMDERR if "n" is

zero. If "n" is non-zero, 7SYSERR returns to the calling
wor d

.

?WR6ARG n
This is an abbreviation for WR6ARG 7CMDERR .

CQNFN addr unit $
The CONFN routine takes the directory formatted

filename at "addr" (usually FNFLD) and converts it to a
string. I he drive specification "unit" is attached to the
beginning of the filename (i.e., unit = 0 would generate
"Dli").

CMDERR err#
Like DQSERR, CMDERR unconditionally generates the

error specified bv "err#".

ECHO ON/OFF
When echo is ON, all files being FLOADed will be

echoed to the current output device(s). When echo is OFF.
no output is generated.

FWORD c

Read the next text characters from the input file
whose file number is in the quan FL.FL# (FLOAD initializes
FLFL#) until a delimiter "c" is found, storing the packed
character string beginning at the dictionary buffer HERE.
FWORD leaves the character count in the first byte,
followed by the characters, and ends with two or more
blanks. Leading occurrences of "c" are ignored. Note
that "c" may not be the return character (ATASCII 155).

LX 1 1 1 -10

val DOS

(3ETVAL * n

1+ ¥ is the name of a dictionary word, the word is

executed and had better return a single value. If ¥ is

not found in the dictionary, it is assumed to be a number

and is converted leaving the number n. GETVAL is used so

that addresses may be stated explicitly,
(PAD. HERE, etc.).

or by reference

GETARGS C* 11/0
This routine converts the next non-blank

characters in the input stream to a string. If a

non-blank characters is found, it is returned along

one. If no set is found, a zero is returned.

set of
set of
with a

GETAR6 ¥ c C¥i ¥2 13/{¥ Q>

The string ¥ is divided into two parts, broken at the

first occurrence of the character "c". If the character

"c" is found in ¥, the leftmost portion of ¥ is returned

3rd on stack, the rightmost 2nd on stack, and 1 on top. If

"c" is not in the string, the original string along with 0

is returned.

LX 1 1 1 -11

val DOS

§Y5fe§ffiJfceqcs i§11...3Ci_Q5fc!§I6W.Is2.

AMBNME n

Ambiguous filename. This error is generally issued
when a filespec containing wild cards is passed to one of
the primitive file operators like (OPEN) or (KILL).

BADFL# n
Bad file number. The error is generated when a file

number does not lie in the range 1 < fl# < MAXFL (default
of four)

.

BADFSM n

Bad tree space map. This is issued when the number
of free sectors does not match the true number of free
sectors. If this error is reported, a new disk should be
made and all files should be transfered to this new disk
using COPY or FMOVE.

BADNME n

Bad filename. The filename passed to the system
routine contained an illegal character, or was too long.
File names can only contain the letters "A" through "Z"
and the digits "O" through "9". Note that the first
character of a filename must be a letter. The two wild
card characters "?" and are also allowed.

BADUN'T n

Bad drive specification. A drive number was
encountered that did not lie in the range 1 < unit < 4.

D I RFUL n

Director'/ is full. There is no more room in the
directory. Kill some unwanted files and try the operation
agai n

DSKFUL n

Disk is full. There are no more free sectors on the
disk. Kill some unwanted files and try the operation
agai n

.

EQFERR n
End of file has been reached. This error generally

results from an attempt to read data past the end of file
mark

.

FLDNE n

File does not exist.

FLEXST n

File already exists.

L X 1 1 1 -12

valDCJS

o

o

FLNOPN n

File is not open. Use
file. This error should
primitives like (SF'ACEI) and

FLOFN n

File is open. Use the
appropriate file. See OF'EN?

the OPEN command and open the
onlv occur when using the file
(WIND)

.

CLOSE command to close the

FLTBG n

F
rile is too big. This error is usually reported by

the file editor when there is not enough free memory to
edit the tile. Break the file into two parts, or use the
FORGET command to free some memory.

FLWPRT n

file is write protected (locked). Use the UNLOCK
command and perform the last operation again.

TMFOPN n

Too manv files open. For each file open, a file
buffer and a file status block is allocated. There are a

limited number of available buffers (determined by the
constant. MAXFL) , If ail buffers are being used and an

open operation is attempted, this error will be generated.
Use the CLOSE command to free a buffer.

WRGAKG n

Bad/no argument list. This is generated
command expects a list, of arguments and none is

This is also generated when the wrong number
arguments is supplied.

when a DOS
suppl i ed

.

or type of

o

L.X III -13

c

O

A_.nqtet.gn_.QyAN structures

The "quan " is a new FORTH data structure, developed at
Vaipar, and is used in this package. Quans were devised to cut
down on wasted memory and runtime encountered when using the
"variable" data structure. Quans work as -follows: (Advanced
users may want to follow along in the source code for these
structures also.

Defining a quan:
QUAN BINGO

Note that quans do not take initial values. This form was
chosen to allow for simpler upgrading to target-compiled code
later on.

Giving a quan a value:
1234 TO BINGO

Note that since TO is immediate, "TO BINGO" compiles to only 2
bytes instead of the 4 bytes that would be required if BINGO
were a variable (i.e., BINGO !).

Getting the value back from a quan:
BINGO

Simply saying the name
stack, in this case
constants. BINGO above
the 4 bytes required
BINGO 3)

.

of the quan will leave its value on the
1234. In this way, quans act like

also compiles to only 2 bytes instead of
to fetch it if it were a variable (i.e.,

Getting the address of the data in the quan:
AT BINGO

This will leave the address of the first byte of data in
BINGO on the stack, or compile the address as a literal if
encountered during compilation. (AT is immediate.) This is
useful for a variety of purposes in general programming and in
interfacing to machine language routines.

Advanced users:

The FORTH
"non-state-smart

"

applications. We
"non-state-smart.

"

different users.

83 Standard appears to lean toward
words. which is proper for target-compiled

expect to support both "state-smart." and
versions of various words, as appropriate for

Note that while

15 AT BINGO +! and 15 BINGO + TO BINGO

accomplish the same task and take the same amount of memory,
the first version is faster by one primitive nest.

The most significant internal feature of a quan is that it
has 3 cfa’s instead of just the one common to most FORTH words.

This initial four byte disadvantage is overcome at the second

use of a quan, and so poses essentially no problem. When a quan

is not preceded by "TO" or "AT", the first cfa <quan®> is

compiled in. If the quan is preceded by "TO", the second cfa

(quan!) is compiled in. And if the quan is preceded by "AT",

the third cfa ('quan) is compiled into the dictionary.

val DOS File Editor

Version 1.0
Oct. 1982

The FORTH language is a very powerful addition to the

Atari home computer. F'rograms which are impossible to write in

BASIC < usual 1 y because of limitations in speed and flexibility)
can almost alwavs be written in FORTH. Even when one has

mastered the BASIC; language, making corrections or additions to

programs can be tedious. The video editor described here

removes this problem from the FORTH environment. Similar to

the MEMO PAD function in
editor makes it possible
code, insert and delete
insert and replace modes,

the Atari operating system, this
to insert, and delete entire lines of

single characters, toggle between
move entire blocks of text, and much

I

o

o

c

'

File Editor

Overview

This editor is a powerful, extension to the val FORTH system
designed specifically for the Atari 400/800 series of

microcomputers. The main purpose for this editor is to give

the FORTH programmer an easy method of text entry to DOS file

for subsequent compilation. For those already familiar with

the val FORTH 1.1 screen editor, this editor is very similar in

function. In fact, all of the commands found in that editor

(except ctrl-A) are supported in the file editor. More

importantly, many additional capabilities have been added to

this editor. They are:

1) Tab stops can be set/reset
2) Splice (unsplit) is now supported
3) Global pattern searches
4) A repeat function which repeats the next

command /key typed until a console key is pressed
5) File merge (i.e., reading a file into a file)

6) True si ngl e-/mul t- line scrolling either
forward or backward

7) Input and output files may be different

The editor has four basic modes of operation:

1) It allows entering of new text into a file as
though typing on a regular typwriter.

2) It allows simple modification of any text
with a powerful set of single stroke
editing commands.

3) It pinpoints exactly where a compilation error
has occurred and sets up the editor for
immediate correction and recompilation.

The set of single stroke editing commands is a superset of

the functions found the in ME!MQ PAD function of the standard
Atari operating system. In addition to cursor movement, single

character insertion/deletion, and line insertion/deletion, the

editor supports a cl ear-t.o-end-of-1 i ne function, a split

command which separates a single line into two lines, its

complement splice (unsplit), global searches, and many other

features usually found only in higher quality word processors,

and almost never in file editors.
Also provided is a visible edit storage buffer which

allows the user to move, replace, and insert up to 320 lines of

text at a time. This feature alone allows the FORTH programmer

to easily reorganize source code with the added benefit of

LX IV 1

File Editor

knowing that re-typing mistakes are avoided. Usage has shown
that, once edit-buffer management is learned, significant typing
and programming time can be saved.

For those times when not programming, the editor can
double as a simple word processor for writing letters and
filling other documentation needs. Perhaps the best method for
learning how to use this powerful editor is to enter the edit
mode and try each of the following commands as they are
encountered in the reading.

NOTE:

this editor can be used to enter assembly language source,
Pascal, or any other text oriented data. The only limitation
upon this is that no lines may be longer than 38 characters in
length. Additionally, this editor can edit files created from
other sources

5 however, only the first 38 characters of a line
will be retained.

LX IV

File Editor

Load ing._and_.Ent©ring the_Editgr

To load the editor, first load valDOS as described in

"Strolling Through valDOS". Next, insert, the valDOS II disk

and list screen 1/0. This should tell you exactly which screen

to load. The edit mode is initiated using the EDIT command,

this command has the following format:

EDIT infilet, outfileJ

The DOS file "infile" is loaded for editing. When all changes

have been made and the file is saved, the modified text is

written to the file "outfile", if supplied, otherwise it is

written back to "infile".
Insert a copy of your valDOS II disk and type:

EDIT FILEIT. 4TH, MYFILE

The editor will display some information which can be ignored

for the time being, and then it will wait for the return key to

be typed . After pressing the return key, the display should

look like fig. 1.

The top window, composed of a single line, indicates which

tile is currently being edited. Also shown is the size of the

edit buffer (decribed later). In this example, the buffer is

five lines in length. This window is known as the heading

window.
The second window (the text window) contains 16 lines of

text within the specified file- This window is -38 characters

wide and 16 lines high. The white cursor (indicated by the

symbol "®"' will be in the upper-1 efthand corner of the display

awaiting editing commands.
The final five-line window found at the bottom of the

display is known as the buffer window. This is used for

advanced editing and is described in greater detail in the

section entitled "Buffer Management.

"

LX IV

File Editor

c
File: MYFILE #Bufs: 5 !

SI

(Routine: FILE- IT

The -following routine will
transfer a specified range of
FORTH screens to a file on
a DOS formatted disk.

Format: FILE- IT 1st , 1 ast , f i lename
FILE— IT 10, 20, MYFILE

Note that DOS commands tend to be
1 ono because of error checking and
parameter parsing.)

o

Fig. 1

re-edit last file ()

This command is used to re-edit the "Last" file
edited. It functions identically to the EDIT command,
except that no file names need to be specified.

Example: LL <ret> (re-edit MYFILE >

(

LX I

V

4

File Editor

WHERE find location of error < >

If, when compiling code, a compilation error occurs,

the WHERE command will enter the edit mode and position

the cursor over the last letter of the offending word. The

word can then be fixed and the file saved for subsequent
compilation using the "F'LOAD filename/C" command.

#BUFS set buffer length (#lines)

The #BUFS command allows the user to specify the

length (in terms of number of lines) of the special edit

storaae buffer. The power of the edit buffer lies in the

number of lines that, can be stored in it. Although the

default value is five, practice shows that at least 16

lines should be set aside for this buffer. The maximum

number of lines allowable is 320 which is enough to hold

20 full screens simultaneously.

.INFO display file information (>

If an error occurs and an edited file is not saved to

disk, the .INFO command will supply all the necessary

information to save the file using the WRITE command.

c

LX IV

File Edi tor

The -following sections give a detailed description of all
commands which the video editor recognizes. A quick reference
command list can be found following these descriptions.

Cursor Movement

When the edit mode is first entered via the EDIT command,
a cursor is placed in the upper lefthand corner of the screen.
It should appear as a white block and may enclose a black
letter. Whenever any key is typed and it is not recognized as
an editor command, it is placed in the text window where the
cursor appears. Likewise, any line functions (such as delete
line?) work on the line where the cursor is found.

Ctrl T , Ctrl 'k , Ctrl , Ctrl * move-cursor commands

To change the current edit line or character, one of
four commands may bo? given. These are known as cursor
commands. They are the four keys with arrows on them.
These keys move the cursor in the direction specified by
the arrow on the particular key pressed. There are times,
however, when this is not the case.

Similarly, if the cursor is positioned on the
leftmost edge and the "cursor-left" command is given, the
cursor will "wrap" to the rightmost character. Issuing
"cursor-right." will wrap to the left edge.

RETURN next -line command

The RETURN key positions the cursor on the first
character of the next line. If RETURN is pressed when the
cursor is on the last line of the file, a line is inserted
at the end of the file.

TAB tabulate command

The TAB key is used to tabulate to the next TAB stop
to the right of the current cursor character.

LX I

V

6

File Editor

c
Ctrl TAB clear TAB stop

Clear the tab stop at the current cursor location.

The default tab stops can be reset by issuing the RT

subcommand

.

shift TAB

Set a
default tab

set TAB stop

tab stop at the current cursor location,

stops can be reset by issuing the

subcommand

»

ctrl L continue search

Search for the next occurrence of the pattern set up

using the PS subcommand. Patterns can be up to 3u

characters in length.

o
y enter subcommand mode

The puts the editor into the subcommand mode. See the

section entitled "Subcommands" for a list of available

commands.

NOTE:

lianv commands in the editor will "mark" the file as

updated so that any changes made can be preserved on disk. As

simple cursor movement does not change the text window in anv

wav, these commands never mark the file.

o

LX IV

File Editor

Editi.ng_Commartds

Editing commands are those commands which modify the te>;t.

in some predefined manner and mark the tile as updated for
later saving.

Ctrl INS character insert command

When the "insert-character" command is given, a blank
character is inserted at the current cursor location. The
current character and all characters to the right are
pushed to the right by one character position. The last
character of the line "falls off" the end and is lost. The
inserted blank then becomes the current cursor character.
This is the logical complement to the "delete-character"
command described below.

Ctrl DEL delete character command

When the
current cursor
the right of

“delete-character " command is issued, the
character is removed, and all characters to
the current cursor character are moved left

one position, thus giving a " sqeeae" effect. This is
normally called "closing" a line. The rightmost character
on the line (which was vacated) is replaced with a blank.
This serves as the logical complement to the
"insert-command" described above-

shift INS line insert command

The "line-insert" command inserts a blank line
between the current cursor line and the line immediately
above it. If this command is accidentally typed, the
"oops" command (ctrl-D) described later can be used to
recover from the mistake. Also see the "from buffer"
command described in the section on buffer management for
a similar command. This command serves as the logical
complement to the "line-delete" command described below.

LX IV S

File Editor

shi-ft DEL Line delete command

The "line-delete" command deletes the current cursor
line. It this command is accidentally issued. recovery
can be made by issuing the "oops" command (ctrl-O)

described later. Also see the "to-buffer" command
described in the section on buffer management for a

similar command. The "delete-line" command serves as the

logical complement to the "line-insert" command.

c trl H erase to end of line

The "Hack" command performs a clear—to-end-of-1 ine

function. The current. cursor character and all

characters to the right of it on the current line are

blank filled. All characters blanked are lost. The
"oops" command described later can be used to recover from

an accidentally hacked line.

ctrl 1 insert/repl ace toggle

In normal operation. any key typed which is not

recognized by the editor as a control command will replace
the current cursor character with itself. This is the

standard replace mode. Normally, if one wanted to insert

a character at the current cursor location, the insert
character command would have to be issued before any text

could be entered. If inserting many characters, this is

cumbersome.
When active, the insert submode automatically makes

room for any new characters or words and frees the user

from having to worry about this. When the editor is

called up via the EDIT command, the insert mode is

deactivated. Issuing the insert toggle command will

activate it and the cursor will blink, indicating that the

insert mode is on. Issuing the command a second time will

deactivate the insert mode and restore the editor to the

replace mode. Note that while in the insert mode, ail

edit commands (except BACKS, below) function as before.

LX IV 9

File Editor

BACKS delete previous character

The BACKS key behaves in two different ways,
depending upon whether the editor is in the insert mode or
in the replace mode. When issued while in the replace
mode, the cursor is backed up one position and the new
current character is replaced with a blank. If the cursor
is at the beginning of the line, the cursor does not move,
but the cursor character is still replaced with a blank.

If the editor is in the insert mode, the cursor backs
up one position, then deletes the new current cursor
character and then closes the line.. If the cursor is at
the beginning of the line, the? cursor remains in the
same position, the cursor character is deleted and the
line closed,.

NOTE:

As all of
manner, the file
ensure that all

the above
is marked as
chanaes made

"quit" command described later allows one
session so that major mistakes need not be

commands modify the tile in some
having been changed. This is to
are eventually saved on disk. The

to abort
saved

.

the edit

o

l

L.XIV 10

File Editor

§!-_Managgment

Much of the utility of the -file editor lies in its ability
to temporarily save text in a visible butter. To aid the user,
it is possible to temporarily send text to the butter and to
later retrieve it. This storage butter can hold as many as 320
lines of text simultaneously. This butter is viewed through a

5 line "peephole" visible as the last. window on the screen.
Using this butter, it is possible to duplicate, move, and
easily reorganize text, in addition to temporarily saving a

line that is about to be edited so that the original form can
be viewed or restored if necessary. The following section will
explain exactly how to accomplish each of these actions.

Ctrl T to buffer command

The "to-buf ter" command deletes the current cursor
line, but unlike the "delete— 1 ine" command where the line
is lost, this command moves the "peephole" down and copies
the line to the bottom line of the visible buffer window.
This iine is the current buffer line. The buffer is
rolled upon each occurrence of this command so that it may
be used repeatedly without the loss of stored text.

For example, it the cursor is positioned on ninth
line of the display shown in figure 1 and the "to-buffer"
command is issued twice, the final result will be as shown
in figure 2.

Ctrl F from buffer command

The "from-buf f er " command does exactly the opposite
of the "to-buffer" command described above. It takes the
current buffer line and inserts it between the current
cursor line and the line above it. The cursor line and
all lines below it are moved down one line. If the cursor
were placed on line 14 of the above screen display and the
"f rom-buf fer" command were issued twice, the display shown
in figure 3 wou 1 d result.

— 1 . 1LX I

V

File Editor

File: I1YF1LE #Bufs: 5

current

(Routine: FILE- IT

The following routine will
transfer a specified range of
FORTH screens to a file on
a DOS formatted disk.

19

Note that DOS commands tend to be
long because of error checking and
parameter parsing.)

: FILE -IT DOS (—)

GETARBS 7WRGARG 44 GETARB 7WRGARG

current
Format: FILE— IT 1st . 1 ast , f i 1 ename

FILE— IT 10. 20. MYFILE

fig.

— 12LX IV

File Editor

File: MYFILE #Bufs: 5 1

(Routine: FILE- IT

The following routine will

transfer a specified range of

FORTH screens to a file on

a DOS formatted disk.

Note that DOS commands tend to be

long because of error checking and

parameter parsing.

a Format: FILE- IT 1 st f 1 ast „ f i 1 ename
FILE- IT 10. 20, MYFILE

: FILE- IT DOS < — >

Format: FILE-IT 1 st , 1 ast. , f i 1 ename
FILE- IT 10. 20. MYFILE

fig.

Ctrl K copy to buffer command

The "copy—to—buffer" command takes the current cursor

line and duplicates it. sending the copy t.o the buffer.

The cursor is then moved down one line, this commands

functions identically to the "to-buffer" command described

above. except that the current, cursor line is NOI deleted

from the text window.

ctr 1 U copy from buffer

The "copy-f rom-buf f er " command replaces the current

cursor line with the current buffer line. This command

functions identically to the "f rom-buf ter " command

described above. except that the buffer line is not

inserted into the text window, it merely replaces the

current cursor line. The "oops" command described below

— i:LX IV

File Editor

can be used to recover from accidental. usage of this
command

.

(

ctrl R roll butter

The "rol 1 -butter " command moves the butter "peephole"
down one line and redisplays the visible window. It the
butter were the minimum tive lines in length, the bottom
tour lines in the window would move up a line and the top
line would "wrap" to the bottom and become the current
butter line. It there were more than tive butter lines,
the bottom tour lines would move up a line, the topmost
line would be pushed up behind the peephole, and a new
butter line coming up trom below the peephole would be
displayed and made current. For example, it the butter
were tive lines long and contained;

Current

:

(Who?)

< What?)

(When?)

< Where?)

(Why?)

fig. 5

the "rol 1 -buff er " command gives:

o

! (What? >

! (When?)

! (Where?)

! (Why?)

Current; ! (Who?)

fig. 6

Ctrl B back-rol 1 -buffer command

The "back-roll-buffer" does exactly the opposite of

the "rol 1 -buff er " command described above. For example,
if given the buffer in fiqure 6 above, the "back-roll"
command would give the buffer shown in figure 5.

c

— 14LX IV

File Editor

o
ctrl C clear butter line command

The "clear-butter-line" command clears the current
butter line and then "back-rolls" the butter so that
successive clears can be used to erase the entire butter.

NOTE:

Any ot the above commands which change the text window
will mark the tile as updated. Those commands which alter on.lv

the butter window (such as the "roll" command) will not change
the status ot the current screen.

o

c

LX IV 15

F-ile Editor

§EC.QlIiDS

Ctrl X previous line command

The "previous-line" command scrolls the text window
up a line within the tile.

Ctrl E next line command

The "next-line" command moves the text window down a
line within the -file,.

Ctrl P previous page command

The "previous-page" command scrolls the text window
up 16 lines within the file.

Ctrl N next

The "next-page" command moves
lines within the file.

page command

the text window down 16

Ctrl S save command

The "save" command saves any changes made to the
current file and exits the edit mode.

ctr'l G quit command

The "quit" command aborts the edit. session
"forgetting" any changes made to the text file in memory.
1 he "quit" command is usually used when either the wrong
file has been called up, or if it becomes desirable to
start over and re-edit.

LX IV 16

File Editor

Special Commands

There are -four

greater flexibility
special commands in this editor which allow
in programming on the valFORTH system:

ESCAPE special key command

The "special -key" command instructs the video editor
to ignore any command function of the next key typed and
•force a character to the screen,, For example, normally
when "ctrl is typed, the cursor is moved right. By

typing "ESCAPE Ctrl •>" the cursor is not moved
rather, the right-arrow is displayed.

Ctrl J split line command

Often times, for formatting reasons, it is necessary
to "split" a line into two lines. The split line command
takes all characters to the left of the cursor and creates
the first line, and with the remaining characters of the
original line, a second line is created. Braphicallv,
this looks like:

before: ! The quickfflbrown fox lumped . !

after

:

! The quick®
! brown fox jumped.

Ctrl G splice (unsplit) command

'f he
operation

"splice-command" performs just
of the "split-command" above.

the opposi te

c trl Y repeat command
The "repeat-command" repeats the next. command or

character typed until a predefined stop condition occurrs,
or until a console key is pressed. This is used mostly
with the previous/next page commands for continuous
scrol ling.

LX IV — 17

File Editor

(

Ctrl 0 oops command

Occassi onal 1 y , a line; is inserted or deleted
acci dental 1 y , halt a line cleared by mistake, or some
other major editing blunder is made. As the name implies,
the "oops" command corrects most of these major editing
errors. The "oops" command can be used to recover from
the following commands:

1) insert line command (shift INS)

2) delete line comand < shift DEL)
3) hack command (Ctrl H)

4) to buffer command (Ctrl T)

5) from buffer command (Ctrl F)

6) copy from buffer command (Ctrl U>

7) split line command (ctr 1 J)

8) splice command (ctrl B>

o

(

LX IV 18

File Editor

Subcommands

The subcommand is entered by typing ctrl-V. The display
will be cleared and a prompt "> will be issued. The
Following commands may be typed in response.

ST < return

>

Make the current line the start of the
File, (i.e., hack off the beginning)

EN < return

>

Make the current line the end of the
File. (i . e., hack off the end)

F'L. <return> Position the cursor on the first line
of the file.

LL < return > Position the cursor on the last line
of the File.

RT < ret urn

>

Reset the TAB stops to their original
setti ngs.

PB <return> Enter the pattern search submode. The user
will be prompted to enter the search string.
The ctrl-L command will continue the search.

IF filename <return>
Insert the specified File into the File
fust after the current cursor line. This
is useful For pulling subroutines From
another File. This can be stopped at any
time by pressing a console key.

LXIV 19

F i 1 e Editor

iditor_Command_Symmary

Below is a quirk reference list of all the commands which
the video editor recognizes.

Entering the Edit Modes (executed outside of the edit mode)

edi r i n f i 1 e-C , outf i 1 e) < j

tnl ur the edit mode and edit "infile". If
“outf ile" is specified,, send edited text
to "outf ile", otherwise send it "intile".

LL
<)

Re-edit, the last file edited.

WHERE
()

Enter the edit mode and position the
cursor over the word that caused a
compilation error.

#BUFS
< #1 i nes)

Sets the length (in lines) of the storane
buffer. The default is five.

. INFO
()

Display memory allocation of the current file
so that it may be saved using the WRITE
command, (used in case of a save error)

Cursor Movement;: (issued within the edit mode)

Ctrl r Move cursor up one line, scrolling the
file down one line if necessary.

Ctrl y Move cursor down one line, scrolling the
tile up one line if necessary.

Ctrl 4 Move cursor left one character, wrappma
to the right edge if moved off the left.

Ctrl 4 Move cursor right one character, wrapping
to the left edge it moved off the right.

RETURN Position the cursor at the beginning
of the next line. Insert line if at the
end of the file.

TAB Advance to next tabular column.

LX IV — 20LX I

V

File Editor

Ctrl TAB Clear tab stop at current cursor location.

shift TAB Set tab stop at current cursor location.

Editing Commands: (issued within the edit mode)

Ctrl INS Insert one blank at cursor location.

Ctrl DEL.

losing the last character on the line.
Delete character under cursor, closing
the line.

shift INS Insert blank line above current line.

shift DEL Delete current cursor line, closing the
f i 1 e

.

Ctrl M Insert blank line below current line.

Ctrl I Togql e i n serf.-mode/repl ace-mode,
(see full description of ctrl-I).

BACKS Delete last character typed, if on the
same line as the cursor.

Ctrl H Erase to end of line (Hack).

Ctrl V Enter the subcommand mode, (see below)

Buffer Management: (issued within the edit mode)

Ctrl T Delete current cursor line sending
it I'D the edit buffer for later use.

Ctrl F Take the current buffer line and insert
it above the current cursor line.

Ctrl K Kopy current cursor line sending
it to the edit buffer for later use.

Ctrl IJ Take the current buffer line and copy
it to the current, cursor line. Unkopv

L.4-=u Roll the buffer making the next buffer
line current.

Ctrl B Roll the buffer Backwards making the

Ctrl C
previous buffer line on the screen current
Clear the current buffer line and
performs a ctrl-B.

Note: the current buffer line is last line visible in the
buffer window.

File Editor

Scrol 1 ing/Savi ng: (issued within the edit mode)

Ctrl X Scroll the edit window up a line
within the file.

Ctrl E Scroll the edit window down a line
within the file.

Ctrl P Scroll the edit window up 16 lines
within the file.

Ctrl IM Scroll the edit window down 16 lines
within the file.

Ctrl S Save the changes made to the current
file and exit the edit mode.

Ctrl 0 Quit the edit session forgetting all
changes made to the current file.

Special Keys: (issued within the edit mode)

ESC Do not interpret the next key typed
as any of the commands above. Send
it directly to the screen instead.

Ctrl J Split the current line into two lines
at the point where? the cursor is.

Ctrl (3 Splice (unsplit) the current line and
the? line above it.

Ctrl 0 Corrects any major editing blunders. Oops!

Ctrl L Continue searching for the pattern entered
in the subcommand mode. Look

c t r 1 Y Enter the repeat mode. The next command
or character typed will be repeated until
a stop condition is met, or until a console
key is pressed. Used most.lv with Ctrl p,
ctrl-M, and the cursor commands.

Subcommands: (entered in the subcommand mode)

The subcommand is entered by typing ctrl-V. The display
will be cleared and a prompt ("; ") will be issued. The
following commands may be typed in response.

ST (return) Make the current line the start, of the
file, (i.e., hack off the beginning)

LX IV

File Editor

EN '"return

>

Make the current line the end o-f the
file,, (i.e., hack off the end)

FL. <return> Position the cursor on the first line
of the file.

LL < return

>

Position the cursor on the last line
of the file.

RT < return 15- Reset the TAB stops to their original
settings.

PS <return> Enter the pattern search submode. The user-

will be prompted to enter the search string
The ctrl -L command will continue the search

IF -filename < return

>

Insert the specified file into the file
just after the current cursor line. This
is useful for pulling subroutines from
another file. This can be stopped at any
time by pressing a console key.

c

o

o

(

val DOS I

Supplied Source Listing

G
L XV.

c

C i

o

u

Screen: 10
0 (valDOSs
1 ' (QUAN

quans and constants
) (150 LOAD)

Screen: 13
0 < val DOS:
1

arrays

2 • (CARRAY) (160 LOAD) 2 4 CONSTANT MAXFL

3 VOCABULARY DOS IMMEDIATE T 128 CONSTANT 128

4 DOS DEF I N I T I ONS 4

5 5 (addresses of file buffers

6 LABEL FNFLD 11 ALLOT 6 MAXFL 1+ ARRAY FLBUF

7 QUAN FNCNT 0 TO FNCNT 7 0 FLBUF MAXFL 1+ 2* ERASE

8 QUAN FNSEP 0 TO FNSEP 8

9 QUAN FNSWCH 0 TO FNSWCH 9 (map of buffers in use)

10 QUAN UN I

T

0 TO UN I

T

10 MAXFL 2* 2 + ARRAY OPNSTT

1

1

QUAN DFLUNT 0 TO DFLUNT 1

1

0 OPNSTT MAXFL 4 * 2 + ERASE

12 QUAN FNSEC 0 TO FNSEC 12

13 QIJAN ?W I l-D 0 TO 7WILD 13 (the filename "D::: *")

14 QUAN GENTRIES 0 TO SENTRIES 14 LABEL ALLNMS
15 QUAN #FREE 0 TO ttFREE —

>

15 04 C, 68 C, 0 C, 58 C, 42 C,

Screen

:

1 1 Screen

:

14

0
1

(val DOS: quans and constants) 0 (val DOS: error c<

QUAN u_Liima 0 TO DSKERR 2 1 CONSTANT BADNME
3 QUAN DIRBLK 0 TO DIRBLK 3 2 CONSTANT BADUNT

-f QUAN FSMBL.K 0 TO FSMBL.K 4 2, CONSTANT BADFSM
5 QUAN 7FSMUP 0 TO 7FSMUP er 4 CONSTANT FLEXST

6 QUAN 7SAME 6 5 CONSTANT DIRFUL.

7 QUAN DIRFRE 7 6 CONSTANT DSKFUL
8 QUAN FLtt 8 7 CONSTANT AMBNME
9 QUAN TADR 9 8 CONSTANT FLDNE

10 QUAN ttlJNTRN 10 9 CONSTANT TMFOPN

1

1

QUAN N1 $ 1 1 10 CONSTANT EOFERR
12 QUAN N2$ 12 11 CONSTANT FLNOF'N

13 QUAN DIRLQC 13 12 CONSTANT BADFL#
14 QUAN WRKSPC 14 13 CONSTANT FLWPRT
15 QUAN DGSTMP — > 15 14 CONSTANT WRGARG

Screen: 12
0 (val DOS: quans and constants)

1

2 VEST RDMOF'N
3 ASSIGN NOOP TO RDMOPN
4
5 VECT RDMCLS
6 ASSIGN NOOP TO RDMCLS
7

8 VEST RDMSPC
9 ASSIGN NOOP TO RDMSPC
10
11 VECT RDMENDF
12 ASSIGN NOOP TO RDMENDF
13
14 VEST RDMWND
15 ASSIGN NOOF TO RDMWND —

>

Screen: 15
0 (val DOS: error codes
1 15 CONSTANT FLOPN
2 16 CONSTANT FLTBG

4 HERE 1 AND ALLOT (even addr
5 144 MAXFL * 192 + ALLOT
6 HERE TO WRKSPC 128 ALLOT
7 : TOF'OM 741 3 1- S

8
9 : FSMAP < — a

10 WRKSPC 128 -
;

1

1

12 : DIRTBL FSMAF' 64 -
; < — a

13
14 : BUFBOT (— a

15 DIRTBL 144 MAXFL * -
;

error routines •filename conversion)

Screen: 16
0 (val DOS:

Screen

:

19

3
4
5
6
7
8
9

10
1 1

12
1.3

14
15

DOSERR (#
TO DSKERR R> DROP 0 ;

< f # —)7DOSERR
SWAP 0=
IF
R> DROP DOSERR

END IF
DROP :

7DSKERR (f

0= IF R > DROP
DSKERR DOSERR END IF :

6
7
8
9

10
1

1

12
13
14
15

(val DOS:

: FNCON < $ — f)(

0 TO DSKERR
COUNT GETSWCH GETUNIT ?DSKERR
8 TO FNCNT 46 TO FNSEP
FNFLD 11 BLANKS FNFLD
BEG I

N

3 PICK CS> DUP FNSEP =
IF
2DR0P FNFLD 7 +
DUP 1+ 3 BLANKS
3 TO FNCNT 0 TO FNSEP

ELSE
DUP 42 () =

7
8
9

10
1.

1

12
13
14
15

filename conversion)

a c)

Screen: 17
0 (val DOS:
1

2 : GETSWCH (a c -

3 0 TO FNSWCH DUP 2 >

4 IF 2D1JF' + 2- CD 47 ("/"
> =

5 IF
6 2- 2DUP + 1+ CS>

TO FNSWCH
END IF

END IF :

GETUNIT (a c — a c)

DFLUNT TO UNIT DUP 2 >

IF OVER S 14916 ("D: "

)

=
IF
2- SWAP 2+ SWAP —

>

Scr
0
1

een: 20
(val DOS:

IF

filename conversion)

6
7
8
9

10
1

1

12
13
14
15

OVER FNFLD 11 + OVER
63 ("?"> FILL DROP

" 0 ")

> OR

ELSE
DUP 48 (

90 ("Z"

)

57 < "9")

65 ("A")
OVER 63 <

IF 2DR0P 2DR0P
BADNME DOSERR

END IF
OVER C!

END IF

OVER
OVER

3 PICK
AND OR

? n
) <> AND

c

Screen: 18
0 (val DOS: filename conversion)

1

2 ELSE DUP 3 >
3 IF OVER C8 68 ("D" > ==

4 3 PICK 2+ C3 58 = AND
5 IF OVER 1+ CS> 49 ("1") -
6 DUP 0< NOT OVER 3 > NOT AMD
7 IF
8 TO UNIT 3 -- SWAP 3 + SWAP
9 ELSE

10 2DR0F' DROP BADUNT DOSERR
11 END IF
1 2 END I

F

1 3 END I

F

1 4 END I

F

15 END IF 1 ; —

>

scr

0
1

een
(val DOS: filename conversion)

FNCNT 1- DUP TO FNCNT 0<
2 IF DROP 2DR0P
3 BADNME DOSERR
4 END IF
5 END IF
6 1+ ROT 1+ ROT 1- ROT
7 OVER 0=
8 UNTIL
9 2DR0P DROP FNFLD CS 63 >=

10 BADNME 7D0SERR 0 TO 7WIL.D
11 11 0
12 DO
13 FNFLD I + C3 63 = (

14 IF 1 TO 7WILD END I

F

15 LOOP 1 ; —

>

Screen
alias definitions)0 (valDOS:

: -_*r i cr-.

3 3 PICK ;

4
5 : FLBUF3
6 FLBUF 3 ;

7
8 : FLINFO
9 FL# FLBUF3 ;

10
11 : 720* 720 * ;

12 : 256* 256 * ;

13 : 128- 128 -
;

14 : 1 -:>5 loo —
5

15 ; 4* 2* 2* j

(— n)

n — a)

(— a)

Screen: 25
0 t valDOS: put free space map i

1

2 : FSMFLS < — >

3 7FSMUP
4 IF
5 FSMAP FSMBLK 0 R/W
6 ENDIF
7 0 TO 7FSMLJP
8 0 TO FSMBLK 5

9
10 : FSMUP < >

11 1 TO 7FSMUP ;

12
13 : DSKFLS < — >

14 DIRFLS FSMFLS ;

15 —

>

0 (valDOS: get & put directory
1

2 : DIR6ET (sector —
3 OFFSET 3 OVER DR0 BLOCK
4 TO DIRLOC OFFSET ! TO DIRBLK
5
6 : DIRFLS
7 FLUSH 0 TO DIRBLK 5

8
9 : DIRUP

(

<
—

10 UPDATE ;

11

12 ; ENTRY < unit # —
13 1- 8 /MOD 360 +

1.4 ROT 720* + DIR6ET
15 16 * DIRLOC + ;

)

)

3

)

)

)

Screen: 26
0 <

4

valDOS: check directory
1

2 s CHKDIR (

3 0 TO SENTRIES 0 TO #FREE
4
5

65 TO DIRFRE 0
DO

368 360

6 I UNIT 720* + DIR6ET
7 DIRLOC 128 + DIRLOC
8 DO
9 1+ 1 TO 7SAME

10 I C3 195 AND 66 —

11 IF 11 0
12 DO
13 J I + 5 + C3 FNFLD I

14 C3 DUP 63 ("?") =

1

5

Screen; 24
0 (valDOS: get free space map)

1

2 : FSMGET < unit —)

3 720* 359 +

4 DUP FSMBLK <>
5 IF
6 7FSMUP
7 IF
8 FSMAP FSMBLK 0 R/W
9 ENDIF
10 FSMAP OVER 1 R/W
11 TO FSMBLK 0 TO 7FSMUP
12 ELSE
13 DROP
14 ENDIF ;

15 — >

Screen: 27
0 < valDOS: check directory)

1

2 IF DROP DUP ENDIF <>
3 IF 0 TO 7SAME LEAVE ENDIF
4 LOOP 7SAME
5 IF
6 DUP SENTRIES DIRTBL + C!

7 1 AT SENTRIES +!

8 ENDIF
9 ELSE
10 DUP DIRFRE MIN TO DIRFRE
11 1 AT SFREE +!

12 ENDIF
13 16 /LOOP
14 LOOP
15 DROP SENTRIES 5

—

5

28 Screen: 31
0 (valDQS: allocate a sector) 0 (valDOS: -find free buffer
1 1

X. ; AI..TSEC (unit - C# t]/f) NXTQF'N (— a
3 FSMGET T MAXFL 4* 0
4 FSMAP 3 + 3 DUP 4 DO
5 IF 5 I -144 * DIRTBL 16 - + I ’ 0
6 1- FSMAP 3 + ! 6 DO
7 0 -1 FSMAP 10 + 90 O+S 7 I OPNSTT 0 OVER =
8 DO B IF DROP 0 LEAVE END IF
9 I CS> 9 LOOP -DUP

10 IF 10 IF DUP I’ 0
1

1

SWAP DROP DUP LEAVE 1

1

DO I OPNSTT 0 0=
12 128 I C3 12 IF I OPNSTT ! LEAVE END

I

13 BEGIN DUP 128 AND 0= 13 LOOP LEAVE
14 WHILE 2* ROT 1+ ROT 2/ ROT 14 END IF
15 REPEAT — > 15 LOOP ;

Jcr 6sen : 29 Screen: 32
0 (valDQS: allocate a sector) 0 (valDOS: flush file buffer
1 1

X. DROP I SWAP TOGGLE X. s FLFLS < fltt —
3 ELSE 3 FLBUF3 DUP 10 + C0
4 8 + 4 IF
5 END IF 5 DUP 8 + C0 720*
6 1 /LOOP 6 OVER 5 + 3 +
7 SWAP 0= 7 OVER 128- SWAP 0 R/W
P IF 8 10 + 0 SWAP C!
9 DROP BADFSM DOSERR 9 ELSE
10 END I

F

10 DROP
1

1

FSMUP 1 1

1

END IF ;

12 END IF ; 12
13 13
14 14
15 ~ ' 15

Screen: 30 Screen: 33
0 (valDOS: release a sector) 0 (valDOS: COPEN]
1 1

2 : RELSEC (unit # —) 2 ; (OPEN) (t — Ca # 13/0 :

3 SWAP FSMGET 3 FNCON 7DSKERR
4 1+ 8 /MOD FSMAP 10 + + 4 7WIL.D NOT AMBNME 7D0SERR
5 SWAP 128 5 CHKDIR FLDNE 7D0SERR
6 BEG I

N

6 0 MAXFL 1+ 1

7 OVER -7 DO
8 WHILE 8 I FLBUF3 0=
9 2/ SWAP 1- SWAP 9 IF I + LEAVE END IF

10 REPEAT 10 LOOP
1 1 SWAP DROP OVER 03 1

1

-DUP TMFOPN 7D0SERF:
12 OR SWAP C! 12 >R NXTOF'N DUP R FLBUF !

13 FSMAP 3 + DUP 0 1+ SWAP ! 13 DUP 16 ERASE
14 FSMUP ; 14 UNIT DIRTBL C3 ENTRY
15 — > 15 .—

;

o

Screens 34
0 (val DOS: C OPEN

3

1

2 OVER 5 CMOVE
3 3 + DUP 3 1- OVER 2+ !

4 5 + UNIT OVER C! 1+

5 DIRTBL 03 SWAP C!

6 R FLBUFS) 128- DUP
7 UNIT 720* OVER 133 +

8 3+1 R/W R>
9 RDMOPN 1 ;

10
1

1

12
13
14
15

Screen: 37
0 (val DOS: [READ II >

1

2 : (READ) (adr cnt f 1 # — f)

3 TO FL# TO #UNTRN TO TADR
4 FL# 1 < FL# MAXFL > OR
5 NOT BADFL# 7D0SERR
6 FLINFO FLNOPN 7D0SERR
7 BEGIN
8 FLINFO 7 + DUP C3
9 OVER 8 - 03 =

10 IF
11 DUP 10 - DUP 03 3 AND
12 256* SWAP 1+ 03 + -DUP 0=

13 IF DROP EOFERR DOSERR END IF
14 1- FL# FLFLS OVER 135-

15 OVER 4 PICK 1+ 03 —

>

Screens 35
0 (val DOS:
1

e close:

6
7
S
9

(CLOSE) (fl# —
-DUP
IF D1JF' ELSE MAXFL 1+ 1 END IF
DO

I DUP TO FL# FLBUFS)

IF
RDMOLB FL# FLFLS
FLINFO 2+ 03 128 AND

Screen
0 (

1

4
5
6
7
8
9

10 IF 10

11 FLINFO DUP 8 + 03 11

12 OVER 9 + 03 ENTRY 1+ 12

13 SWAP 1 1 - 3 32767 AND 13

14 SWAP ! DIRIJP DIRFLS 14

15 END I

F

> 15

: 38
val DOB: [READ

I

720* + 1 R/W
OVER 2- ! 0 OVER C!

END IF
DUP 8 - 03 OVER 03 -

#UNTRN OVER U<
IF DROP #UNTRN END IF

DUP 3PICK 7 + DUP 3

ROT + SWAP !

OVER 135- 3PICK 03 +

TADR DUP 4 PICK + TO TADR
SPICK CMOVE ttUNTRN OVER -

TO ttUNTRN OVER 03 +

SWAP 0! ttUNTRN 0=
UNTIL 1 5

)

Screens 36
0 (val DOS: C CLOSE 3 >

1

2 FLINFO 0 FL# FLBUF !

3 0 OPNSTT
4 BEGIN
5 DUP 3 3PICK <>
6 WHILE
7 2+
B REPEAT
9 SWAP DROP 0 SWAP !

10 END IF

1 1 LOOP ;

12
13
14
15 — '

Screens 39
0 (val DOS: I WRITE 3 >

1

2 s (WRITE) (adr cnt +1# — f)

3 TO FL# TO ttUNTRN TO TADR
4 FL# 1 < FL# MAXFL > OR
5 NOT BADFL# 7D0BERR
6 FLINFO -DUP FLNOPN 7D0SERR
7 03 32 AND NOT FLWF'RT 7D0SERR
8 BEGIN
9 FLINFO 7 + DUP 03 125 =

10 IF
11 DUP 10 - DUP
12 03 3 AND 256* SWAP 1+

13 03 + -DUP 0=
14 IF DUP 1+ 03 ALTSEC 0=

Screen: 40 Screen: 43
0 (valDDSs [WRITE 3) 0 (valDOS: CRDB3
1 1

TC r\ r-. \ /2 IF 2 : <RDB> (fl# —
DROP DSKFUL DOSERR T DUP TO FL#

4 ENDIF 4 1 < FL# MAXFL > OR
5 DUP 1+ 255 AND 5 NOT BADFL# 7D0SERR
6 OVER 1+ 32767 AND 256 6 FL.INFO FLNOF'N 7D0SERR
7 / 4 PICK 2+ C3 1- 4* 7 FLINFO 7 +
8 >R R OR 4 PICK 10 - C! 8 DUP CS) OVER 8 - C3 =
9 3PICK 9 - C! 1 SPICK 9 IF

10 3 + C! FL# FLFLS OVER 10 DUP 10 - DUP
1

1

135- 128 ERASE R> 1

1

CS> 3 AND 256*
12 SPICK 10 - C! OVER 6 - 12 SWAP 1+ CS> + -DUP 0:

13 DUP 3 1+ 32768 OR SWAP ! 13 IF
14 14 DROP EOFERR DOSERI
15 — > 15 END I

F

icrieeri: 41 Screen: 44
0 (val DOS: L WRITE 3) 0 (val DOS: CRDB1
1 1

2 ELSE r-1 1- FL# FLFLS
FL# FLFLS 1- OVER 3 OVER 135- OVER

4 135- OVER 4 PICK 4 4 PICK 1+ C5> 720* +
5 1+ C3 720 * + 1 R/W 5 1 R/W
6 ENDIF 6 OVER 2- ! 0 OVER C!
7 OVER 2- ! 0 OVER C! 7 ENDIF
8 ENDIF 8 DUP C3 SWAP
9 125 OVER CS> - 9 OVER 1+ OVER Cl

1 0 #UNTRN OVER U< 10 1 OVER 7 + +1
11 IF DROP ttlJNTRN ENDIF 1 1 135- + C3 1 ;

12 DUP 3PICK 7 + DUP 12
13 0 ROT i SWAP * 13
14 OVER 135- SPICK CS> + 14 FORTH DEFINITIONS
15 15

Sereien : 42 Screen: 45
0 (val DOS: [WRITE! CWRB1 > 0
1 1

2 TADR DUP 4 PICK + TO TADR 21

3 SWAP 3PICK CMOVE 3
4 OVER CS> OVER + DUP 4
5 4 PICK Cl 3PICK 8 - 5
6 DUP CD ROT MAX SWAP C

1

6
7 #UNTRN SWAP - TO #UNTRM 7
8 1 SWAP 3 + Cl 8
9 #UNTRN 0= 9

10 UNTIL 1 ; 10
1

1

1

1

12 : (WRB) (b fl# — f) 12
13 SWAP WRKSPC Cl 13
14 WRKSPC 1 ROT < WRITE) ; 14
15 — > 15

ere
0
1

4
5
6
7
B
9
10
11

12
13
14
15

icre

0
1

4
5
6
7

8
9

10
1 1

12
13
14
15

icr (

0
1

4

5
6
7
8
9
10
11
12
13
14
15

46 49Screen

:

0
1

9
y.

4
5
6
7
S
9
10
11

12
13
14
15

47 Screen: 50
0 < valDQSs CWIND1 >

1 ’ (DOS DOS) (>

2 ' (FNFl-D) (10 LOAD)

4 DOS DEFINITIONS
5
6 : (WIND) < f fl# — + >

7 TO FL# TO DOSTMP
B FL.# 1 < FL# MAXFL > OR
9 NOT BADFL# 7D0SERR RDMWND

10 FLINFO -DUP FLNOPN 7D0BERR
1 1 DOSTMP
12 IF (rewinding)

13 FL# FLFLS DUP 3 + ® 1-

14 DUP SPICK 5 + 3 <>
15 —

>

Screen : 51
0 (

1

n
jt-

val DOS: CWIND1

IF
7; DUP SPICK 5 + ! OVER 8

4 CS> 720* + OVER 128-

5 SWAP 1 R/W
6
7

ELSE DROP END IF
0 OVER 7 + C!

8 0 SWAP 14 + !

9 ELSE (to end of file)

10 DROP
1

1

BEGIN
12 WRKSPC 128 FL# (READ)

13 UNTIL
14 DSKERR EOFERR = ?DSKERR
15 END IF 1 ;

C ENTER 1 [SPACE]

Screen

:

0
1

4
5
6
7

a
9

10
1

1

12
13
14
15

val DDSs

(ENTER) (* —
FNCON 7DSKERR
7WILD NOT AMBNME 7D0SERR
CHKDIR 0= FLEXST 7D0SERR
#FREE DIRFIJL 7DQSERR
UNIT ALTSEC DSKFUL 7DOSERR
DUP 1+ TO FNSEC
WRKSPC 128 ERASE
DIRFRE 1- 4* WRKSPC
125 + C! WRKSPC
SWAP UNIT 720* + 0 R/W
UNIT DIRFRE ENTRY
66 OVER C! 1+ 1 OVER ! 2+

)

f)

Screen: 55
0 < val DOS:
1

2 IF
3 DROP DSKERR DOSERR
4 ENDIF
5 ELSE
6 ROT DROP SWAP DUP
7 C$> MINUS OVER 7 + +!
8 0 SWAP C!
9 ENDIF

1 0 END I

F

11 128 /MOD
12 BEGIN DUP (space forward)

13 WHILE
14 WRKSPC 128 FL# (READ) 0=
15

Screen: 53
0 (val DOS: CENTER])

1

2 FNSEC OVER ! 2+
3 FNFLD SWAP 11 CMQVE
4 DIRUP FSMUP 1 ;

5
6
7
8
9

10
1 1

12
13
1

4

Screen: 54
0 (val DOS; [SPACE])

1

2 ; (SPACE) (cnt -f 1 # — +)

3 TO FL#
4 FL# 1 < FL# MAXFL > OR
5 IF DROP BADFL# DOSERR ENDIF
6 FL1NFO 0=
7 IF DROP FLNOPN DOSERR ENDIF
8 RDMSF'C DUP 0< (backwards)

9 IF
10 FLINFO 7 + DUP CS)

1 1 3P I CK + DUP 0<
12 IF
13 DROP 7 + a +
14 0 MAX 1 FL# (WIND) 0=
15 — >

Screen: 56
0 (val DOS: [SPACE]
1

2 IF
3 2DR0P DSKERR DOSERR
4 ENDIF
5 1-
6 REPEAT
7 DROP WRKSPC SWAP
8 FL# (READ) 7DSKERR
9 1 ;

10
11

12
13
14
15

Screen; 57
0 (val DOS: [70PEN

]

1

2 ; (70PEN) (if - [f l]/0)

3 FNCON 7DSKERR
4 7WILD NOT AMBNME 7D0SERR
5 CHKDIR FLDNE 7D0SERR
6 UNIT DIRTBL CS> 256* +

7 0 MAXFL 1+ 1

8 DO
9 I FL.BUF3 -DUP

10 IF 8 + 3 3PICK =
11 IF 1+ LEAVE ENDIF
12 ENDIF
13 LOOP
14 SWAP DROP 1 ;

1

5

Screen: 58
0 (val DOS: CREN3 >

1

2 : (REN) < *n *o — i)

3 TO Ni* TO N2*
4 N2* FNCON 7DSKERR
5 7WILD NOT AMBNME 7D0SERR
6 CHKDIR 0= FLEX ST 7D0SERR
7 FNFLD WRKSF'C 11 CMQVE
8 UNIT TO DOSTMP
9 Nl$ FNCON 7DSKERR
10 7WILD NOT AMBNME 7D0SERR

11 DOSTMP UNIT = BADUNT 7D0SERR

12 CHKDIR FLDNE 7D0SERR
13 UNIT DIRTBL C® ENTRY C,®

14 32 AND 0= FLWF'RT 7D0SERR
15 5

Screen: 59
0 (val DOS: IREN 3 II KILL 3

1

2 WRKSF'C UNIT
3 DIRTBL C® ENTRY 5 +

4 11 CMQVE DIRUP 1 S

5
6 : (KILL) (* — "

7 (70PEN) 7DSKERR
8 NOT FLOPN 7DDSERR
9 UNIT DIRTBL C® ENTRY

10 DUP C® 32 AND
11 IF DROP FLWF'RT DOSERR END IF

12 DUP 3 + 3 1-

13 BEGIN
14 WRKSF'C OVER
15 UNIT 720* + 1 R/W

Screen: 60
0 (valDOS: CKILLJ
1

2 UNIT SWAP RELSEC
3 WRKSPC 125 + DUP
4 1+ C® DUP ROT C®
5 3 AND DUP <ROT
6 256* + 1- < ROT OR 0=

7 UNTIL
8 DROP 128 SWAP C!

9 DIRUP 1 ;

10
11

12
13
14
15

Screen: 61
0 (val DOS: CLOCK 3 C UNLOCK

3

1

2 : (DOLCK) < * opt — f

3 TO DOSTMP (70PEN) 7DSKERR
4 NOT FLOPN 7D0SERR
5 DOSTMP UNIT DIRTBL C®
6 ENTRY DUP C® ROT
7 IF 32 OR ELSE 223 AND END IF

8 SWAP C! DIRUP 1 ;

9
10 : (LOCK) < * — i

11 1 (DOLCK) 7DSKERR 1 S

12
13 : (UNLOCK) < * “ f

14 0 (DOLCK) 7DSKERR 1 ;

15

Screen: 62
0 (valDOS: CENDF3
1

2 ; (ENDF) < * 1 # — f

3 TO F'L#

4 FL# 1 < FL# MAXFL. > OR

5 NOT BADFL# 7D0SERR
6 FLINFO -DUP FLNDF'N ?DOSERR

7 DUF' C® 32 AND
8 IF DROP FLWF'RT DOSERR END IF

9 DUP 7 + C® OVER 1- C!

10 DUP 2- DUP C® OVER 1- C®

11 3 AND ROT DUP 11 + C®

12 1-4* SWAP 1-114
13 PICK 10 + C!

14 ROT 8 + C® < ROT
15

Screen: 63
0 (valDOS: C ENDF

3

1

2 BEGIN
3 2DUP OR
4 WHILE
5 256* + 1- OVER 720*
6 OVER + WRKSPC SWAP 1 R/W

7 OVER SWAP RELSEC
8 WRKSPC 126 + DUP C®

9 SWAP 1- C® 3 AND
10 FLINFO 1+ DUP ®

11 1- 32768 OR SWAP !

12 REPEAT
13 2DR0P DROP RDMENDF 1 ;

14
15 FORTH DEFINITIONS

64 Screen
0
1

67Screen

:

0
1

4
*3

6
7
5
9

10
1 1

12
13
14
15

4
5
6
7

8
9

1

0

11

12
13
14
15

(

Screen

™

0
1

6 cj Screen: 68
0
1

*7

4

5
o
7

s
9

1

0

1

1

12

14
15

4

5
6
/

8

9
1

0

J 1

1 2
1

3

14

1

5

o

Screen: 66

J

Screens 69
0
1

4 4

6

8
9

10
1 1

12
13
14

i a

8
9

10
1

1

12
13
14
15

c

error routines
Screen: 70

0 (val DOS: quems and vects)

1 ' (DOS DOS) ()

2 ((WIND)) (50 LOAD)

3 ’ < *. > < : #. COUNT TYPE ;)

4 ' < +Y/N) (142 LOAD)

5
6 GUAM FL.FL# QUAN FLCNT
7 QUAN ED# IN 0 TO ED# IN

8 LABEL FLNME 16 ALLOT
9 VECT *ECHO
10 ASSIGN DROP TO *ECHO
11

12 : ECHO < f —)

13 IF ASSIGN EMIT
14 ELSE ASSIGN DROP
15 END IF TO *ECHO ;

—

>

Screen: 73
0 (val DOS

:

1

2 : CMDERR DOS (err —
3 CR DUP TO DSKERR 4 /MOD
4 696 + WRKSPC SWAP 1 R/W
5 32 * WRKSPC + 32 --TRAILING
6 TYPE CR SP! DSKFLS QUIT ;

7
8 : 7CMDERR < f err —
9 SWAP 0= IF CMDERR END IF DROP
10
11 : 7WRGARG DOS (-f —
12 WRGARG 7CMDERR ;

13
14 : 7SYSERR DOS (f —
15 DSKERR 7CMDERR ;

Screen: 71
0 (val DOS: argument evaluation)

1

2 : GETVAL DOS (* — v)

3 WRKSPC 34 BLANKS
4 WRKSPC OVER C3 1+ CMQVE
5 WRKSPC LATEST (FIND)
6 IF
7 DROP CFA EXECUTE
8 ELSE
9 WRKSPC NUMBER DROP

1 0 END I F |i

1

1

12 : GETARBS (-- *)

13 32 WORD HERE 1 OVER 3 1 =

14 IF 2DR0P 0 END IF 0 84 C3>

15 40 Y 85 3 + 88 3 -1- C! ; —

>

Screen: 74
0 (val DOS: CONFN
1

2 LABEL FNAME 16 ALLOT

4 : CONFN DOS (a u — *

5 FNAME 1+ 68 OVER C!

6 1+ SWAP 49 + OVER C!

7 1+ 58 OVER C!

8 1+ OVER 8 -TRAILING
9 >R OVER R CMOVE R > +

10 46 OVER C! 1+ SWAP 8 +

11 3 -TRAILING >R OVER R
12 CMOVE R + R> 0= -

13 FNAME 1+ - FNAME
14 >R R C! R5 i

15

screen: fz
0 < val. DOS;

7
8
9
10
1

1

12
13
14
15

argument

GETARG (delm ~
DOS OVER COUNT
BEGIN

evaluation)

- $ 11/0)

DUP 0#
5 PICK

WHILE 1-

REPEAT
ROT DROP -DUP
IF
DUP 1- 3PI.CK
DUP C3 ROT -

ELSE
DROP 0 END IF ;

3PICK C3
<> AND
SWAP 1+ SWAP

C! ROT
OVER C!

Screen: 75
0 < val DOS: FLOAD support
1

2 : (SKIP) DOS (n fl# —
3 FNSWCH 67 ("C"> =

4 IF
5 ED# IN OVER (SPACE) 7SYSERR
6 END IF
7 SWAP
8 BEGIN -DUP
9 WHILE 1-

10 BEGIN
11 OVER (RDB) 7SYSERR
12 155 =

13 UNTIL
14 REPEAT
15 DROP ;

FLOAD support l-LOAD

Screen: 76
0 (valDO!
1

2 : NXTCHR DOS (— Cc 11/0 >

3 7TERMINAL 0= STATE 3 0#
4 OR EOFERR 7D0SERR
5 FLFL# (RDE) 7DSKERR
6 1 AT FLCNT +| DUP *ECHD
7 DUP 155 =

8 IF
9 DROP BL.

10 FLCNT 0 TO FLCNT 39 =

1

1 IF
12 DROP r. LATEST F'FA CFA , 3

13 7DSKERR
14 END IF
15 END IF 1 ;

—

>

Screen: 79
0 (val DOS:
1

2 ’ WORD !
' FWORD ' WORD 2+ -

3 ' WORD 2+ ! BLK 3 >R
4 FLCNT >R 0 BLK !

5 DUP FLNME 16 CMOVE
6 (OPEN) 7SYSERR
7 TO FLFL# DROP
8 FLFL# (SKIP) OR INTERPRET
9 FLFL# (CLOSE) DIRFLS

10 R > TO FLCNT R> BLK !

11 ’ WORD R> OVER
12 2+ I R> SWAP I

13 R> TO FLFL# ;

14
15

Screen: 77 Screen: 80
0 (

2

val DOS: FLOAD support) 0 (

1

val DOS: LOAD rede-fined

FWORD DOS (c —)

J.

F I XWORD DOS
3 HERE 34 BLANKS HERE 1+ DUP 3 0 ' BLK CFA ’ WORD !

4 BEGIN 4 ’ 3 CFA ’ WORD 2+
! ;

5 DROP NXTCHR DUP 5
6 DSKERR EOFERR = OR 7SYSERR 6 ? FIXWORD CFA ' QUIT !

-7 0= IF 0 END IF 7
3 DUP 4 PICK < > 8 : LOAD DOS (n —
9 UNTIL 9 ’ WORD D3 >R >R FIXWORD DROP
10 BEG I

N

10 LOAD R;- R > ? WORD D! ;

1 1 OVER C ! 1 + 1

1

12 TOPOM 32 - OVER U> 12 : (7L0AD I NG

)

13 FLTBG 7CMDERR 13 0= ’ WORD 3 ' BRANCH CFA <>
14 NXTCHR DUP 14 AND ;

’ (7L0ADING) CFA
15 — > 15 •’ 7L0ADING 4 + 1 —

Screen: 78
0 (val DOS: FLOAD)

1

2 DSKERR EOFERR = OR 7SYSERR
3 0= IF 0 END IF
4 DUP 4 PICK = OVER 0= OR
5 UNTIL
6 ROT 2DR0P
7 HERE 1+ - HERE C! ;

8
9 : FLOAD DOS (—)

10 GETARGS 7WRBARG 44 6ETARG
11 IF SWAP GETVAL 1- 0 MAX
12 ELSE 0 END IF
13 SWAP FLFL# >R
14 ’ WORD DUP 3 >R 2+ 3 >R
15 C ’ BRANCH CFA 1 LITERAL —

>

Screen: 81
0 (val DOS: DIR
1

2 : DIR DOS (
•

3 DFLUNT 49 + ALLNMS 2+ C!
4 GETARGS 0= IF ALLNMS END IF
5 DUP 1+ C3 243 AND 48 =
6 IF
7 1+ C3 15 AND 48 + ALLNMS
8 2+ C! ALLNMS
9 END IF

10 FNCON 7SYSERR UNIT FSMGET
11 OR CR . " Files on: "

12 FSMAP 104 +

13 BEGIN
14 DUP C3 -DUP
15 WH I LE

Screen: 82
@ (val DOS: DIR >

1 EMIT 1+

2 REPEAT
3 DROP CR CR
4 NAME EXT SIZE S

5 EC ATTR " CR
£ _

ti .4 4 .(4 4 4 1 1 4 1 1 1 4-

7

] 4. 1 4 4- "

8 CR CR CHKDIR DUP
9 BEGIN
10 DUP 0# 7TERMINAL 0= AND
1 1 WH I LE
12 2DUP - UNIT SWAP DIRTBL +

13 C3 ENTRY SPACE DUP 5+8
14 TYPE DUP 13 + C3 32 <>
15 IF' 46 EMIT —

>

Screen: 85
0 C val DOS: COPY
1

2 : COPY DOS <
“

3 6ETARSS 7WRBARB
4 61 BETAR6 7WR6ARB
5 DUP (ENTER) 0=
6 IF

7 DSKERR FLEXBT = 7SYSERR
8 END IF
9 DUP (70PEN) 7SYSERR
10 NOT FLQPN 7CMDERR
11 (OPEN) 7SYSERR
12 <ROT DROP OVER
13 FLBUF3 C3 32 AND
14 0= FLWPRT 7CMDERR
15

Screen: 83
0 (val DOS: DIR >

1

2 ELSE SPACE END IF

3 DUP 13 + 3 TYPE
4 DUP 1+ 3 7 .

R

5 DUP 3 + 3 6 .

R

6 4 SPACES C3 DUP 32 AND
7 IF 76 ("L") EMIT ENDIF
8 16 AND IF 82 < "R"

>

EMIT
9 ENDIF 1- CR

10 REPEAT
11 CR FSMAP 3 + 3 .

12 sectors free." CR CR
13 DSKF'LS 2DR0P ;

14

Screen: 86
0 (val DOS: COPY
1

2 FNSWCH 65 < "A") =

3 IF

4 0 3PICK (WIND) 7SYSERR
5 ENDIF
6 BE6 IN
7 0 >R 44 ("

,
"

)

GETARB 0=

8 IF DUP R> 1+ >R ENDIF
9 (OPEN) 7SYSERR SWAP DROP

1 0 BEG 1

N

11 WRKSPC 128 3PICK (READ)

12 DROP ttlJNTRN 128 <>
13 WHILE
14 WRKSPC 128 #UNTRN -

15

Screen: 84
0 (val DOS: OPEN? >

1

2 : OPEN? DOS < — >

3 CR 0 OUT ’ MAXFL 1+ 1

4 DO I FLBUF3 -DUP
5 IF 8 + DUP C3
6 SWAP 1+ C3
7 I 0 <# # # #> TYPE
B OVER TO UNIT ENTRY
9 5 + UNIT CONFN
10 2 SPACES $. CR
11 ENDIF
1 2 LOOP
13 DIRFLS OUT 3 0=
14 IF No files open" CR ENDIF
15 CR ;

— •-

Screen: 87
0 (val DOS: COPY RENAME
1

2 5 PICK (WRITE) 7SYSERR
3 REPEAT
4 (CLOSE) R>
5 UNTIL
6 CR CR DROP DUP
7 (ENDF) 7SYSERR
8 (CLOSE) DSKFLS ;

9
10 : RENAME DOS <

1 1 GETARBS 7WRSARB
12 61 BETARB 7WRBARB
13 SWAP (REN) ?SYSEF:R
14 CR File renamed" CR CR
15 DSKFLS s

Screen: 88
0 (valDQSs system words)

1

2 BLIAN WLDFLG KUAN SWITCH
3 VECT DISKOP VECT -fcOUT
4 EUAN TEMP
5
6 : (CMDPAR) DOS (—)

7 GETARGS 7WRGARG
8 BEGIN
9 0 >R 44 ("

,
") GETARG 0=

10 IF DUP R> 1+ >R END IF
11 DUP TO Nl* FNCON FNSWCH
12 TO SWITCH 7WILD TO WLDFLG
13 IF CUR'D I R DUP DUP 0=
14 IF
15 FNFLD UNIT CONFN

Screen : 89 Screen: 92
0 (

1

valDOSs system words) 0 < valDOS: KILL LOCK

CR 0 OUT !

1

o .
jL SKILL . " kill"

18 OUT ® - SPACES 3
A is non~e>: i stent "

4 : KILL DOS
5 ENDIF 5 ASSIGN (KILL) TO DISK
6 BEGIN -DUP 6 ASSIGN SKILL TO $OUT
7 WHILE 7 (CMDPAR)

;

S DIRTBL OVER - 3PICK + 8
9 C® UNIT SWAP ENTRY 5 + 9
10 UNIT CONFN 1 WLDFLG 10 : SLOCK ." lock" .

1 1. SWITCH 78 < "N") <> * 1

1

12 IF DROP CR *OUT SPACE 12 : LOCK DOS
13 DUP " 7 " +Y/N 13 ASSIGN (LOCK) TO DISKi
14 END I

F

14 ASSIGN SLOCK TO *OUT
1

5

0 OUT ! —

>

15 (CMDPAR) ;

Screen: 90 Screen : 93
0 (val DOS
1

: system words) 0
i

(val DOS: UNLOCK SETUN!

o IF DUP DISKOP 0= SWAP CR
J.

: ^UNLOCK »" unlock"
;3 *. 18 OUT ® - SPACES 3

4 IF 4 : UNLOCK DOB
5 DSKERR FLQPN = 5 ASSIGN (UNLOCK) TO D I SI-
6 IF 6 ASSIGN ^UNLOCK TO $OUT~7 is open" “7

(CMDPAR)
;

8 ELSE 8
9 DSKERR FLWPRT = 9

10 IF 10 : SETUNIT DOS
1

1

is locked" 1 1 GETARGS 7WRGARG GETVAL
12 ELSE is 77?" 12 DUP 1 >= OVER 4 <= AND
13 ENDIF 13 BADUNT 7CMDERR
1 4 ENDIF 14 1 TO DFLUNT CR

;15 ELSE —

>

15

Screen: 91
0 (val DOS; system words;
1

2 ."is" $OUT .

3 ENDIF
4 ELSE
5 DROP
6 ENDIF 1-
7 REPEAT
8 DROP
9 ELSE

1® CR 0 OUT ! Nl$
11 18 OUT ® - SPACES
12 . " is ill egal

"

13 ENDIF R>
14 UNTIL
15 DROP CR CR DSKFLS ;

PRINT) READ)

Screen: 94
0 < v a I DOS:

^ 1

(2 : PRINT DOS < — >

3 GETARGS 7WRGARG 44 GETARG
4 IF SWAP GETVAL 1- 0 MAX
5 ELSE 0 END IF SWAP
6 (OPEN) 7SYSERR SWAP DROP
7 DUF' < ROT OVER TO TEMP (SKIP)

8 FNFLD UNIT CONFN
9 OR OR .

" File: " $. OR OR
10 FNSWCIH 78 <> DUP TO FNSWCH
11 TEMP 1+ * TO TEMP
12 BEGIN
13 0 7TERMINAL FNSWCH * 0=

.14 IF DROP DUP (RDB) END IF

15 —

Screen: 95
0
1

(val DOS: PRINT

2 WHILE
3 FNSWCH 1 =

4 IF 0 TO FNSWCH TEMP
5 IF

6 TEMP 0
7 <# # # # # #> TYPE
8 SPACE 1 AT TEMP +!

9 END IF
10 ENDIF
1

1

DUP EMIT 155 = TO FNSWCH
12 REPEAT
13 (CLOSE)
14
15

CR DSKFLS 5

Screen: 97
0 (val DOS:
1

2 : READ DOS < “ >

3 65535 GETARGS 7WRGARG
4 44 GETARG 7WRGARG
5 SWAP 44 GETARG
6 IF
7 SWAP 4 ROLL DROP
8 GETVAL <ROT
9 END I

F

10 GETVAL <ROT
11 1 TO TEMP FLOPEN (READ)
12 0= DSKERR EQFERR <>
13 AND NOT 7SYSERR
14 TEMP IF FL# (CLOSE) END IF

15 CR DSKFLS ;
—

>

Screen: 98
0 (val DOS: WRITE >

1

2 : WRITE DOS < — >

3 GETARGS 7WRGARG
4 44 GETARG 7WRGARG
5 SWAP 44 GETARG 7WRGARG
6 GETVAL SWAP GETVAL ROT
7 2 TO TEMP FLOPEN (WRITE) 0=

8 IF
9 DSKERR FLWPRT = 7SYSERR

10 FL# (CLOSE) FLWPRT CMDERR
11 END IF

12 TEMP IF
13 FL# (ENDF) 7SYSERR
14 FL# (CLOSE)
15 END IF' CR DSKFLS s

Screen: 96 Screen : 99

0
1

(valDOS: read/write utility) 0 (

1

val DOS: CLOSE

xi : FLOPEN DOS ($ — > jC. u CLOSE DOS

3 DUP 1+ CS> DUP 240 AND 48 = 3 0 GETARGS
4 IF 4 IF

5 15 AND SWAP DROP 0 TO TEMP 5 SWAP DROP GETVAL

6 ELSE 6 ENDIF
7 DROP TEMP 2 AND 7 (CLOSE) CR DSKFLS

8 IF DUP (ENTER) 0= 8

9 IF 9

10 DSKERR FLEXST = 7SYSERR 10

1 1 ENDIF 11

12 ENDIF 12

13 (OPEN) 7SYSERR SWAP DROP 13

14 ENDIF ;
14

15 — > 15

Screen; 100
In

1

4

6

8
9

10
1

1

1
'*»

J. ,l~

14
1

5

Screen; 103
0
1

2

4
5
6
7

8
9

10
1

1

12
13
14
15

C

Screen; 101
0
.1.

Screen

:

0
1

104

4

&
7
8
9

10
1 1

12
13
1 4

1

5

4

b
6
7
8

9

10
1 1

12
13
1

4

15

o

:reen

;

0
1

102 Screen: 105
0
1

4

7
8
9

10
1

1

12
13
14
15

4
5
6
7

8
9

1

0

1 1

12
13
14
15

(

Screens 106
0

4
5
6
7
8
9
10
11

12
13
14
15

Screens 109
0
1

4
5
6
7
8
9
10
1

1

12
13
14
15

Screens 107
0
1

Screens 110
0 (Utiles OPEN ENTER >

1

2 *
< FLFL#) (70 LOAD)

4
5
6

9

10
1

1

12
13
14
15

4 s OPEN DOS < —)

5 6ETARGS 7WRGARG
6 (OPEN) 7SYSERR
7 CR . " Fi le access #" .

8 DROP CR DSKFLS ;

9
10 s ENTER DOS < — >

1 1 GETARGS 7WRGARG
12 (ENTER) 7SYSERR
13 CR DSKFLS ;

14
15 -->

Screens 108 Screens 111

0 0 (Util ss FSPACE ENDFIL)

1 1

2 2 s FSPACE DOS (—)

.3 3 GETARGS 7WRGARG
4 4 44 GETARG 7WRGARG
5 5 GETVAL SWAP GETVAL
6 6 SWAP (SPACE) 7SYSERR
7 7 CR DSKFLS ;

8 8
9 9 s ENDFIL DOS (—)

10 10 GETARGS 7WRGAR6
11 1

1

GETVAL (ENDF) 7SYSERR
12 12 CR DSKFLS ;

13 13

14 14

15 15 y

Screei-i : 11

2

Screen: 115
0 (Utils: FDUMP system words) 0 (Utils: FDUMP
l 1

2 ; PSF'ACE (—) 2 IF
3 PFLAG 3 DUP 254 AND 3 FNSWCH 16 = 24
4 PFLAG ! SPACE PFLAG

! 5 4 OUT 3 - SPACES
Cr

i 5 DUP TEMP - TEMP
<b 5 P. (c —) 6 DO DUP I + C3 P
7 127 AND DUP 7 LOOP DROP
8 32 OVER (Ctrl?) 8 ENDIF
9 124 > OR (clear. . . 7) 9 REPEAT

10 IF 10 2DROP R> NOT
1

1

DROP 46 <
"

1

1

7TERMINAL OR
12 END I

F

12 UNTIL
13 EMIT ; 13 DROP (CLOSE)
14 14 CR BASE ! DSKFLS ;

15 15

Screen: 113 Screen; 116
0 (Utils: FDUMP) 0 (Utils: REWIND EOF
1 1

o « FDUMP DOS (—) 2 : REWIND DOS
GETARGS 7WRGARG 3 GETARGS 7WRGARG

4 (OPEN) 7SYSERR 4 GETVAL 1 SWAP (WIND)
5 FNFLD UNIT CONFN 5 7SYSERR CR DSKFLS

;

6 CR CR . " File; " $. CR 6
7 8 FNSWCH 87 = 1+ * 7 : EOF DOS
8 TO FNSWCH SWAP DROP 8 GETARGS 7WRGARG
9 BASE 3 HEX SWAP 0 9 GETVAL 0 SWAP (WIND)

1 0 BEGIN 10 7SYSERR CR DSKFLS ;

1

1

WRKSPC 12B 4 PICK (READ) 1

1

12 >R 128 ttUNTRN - WRKSPC 12
13 BEG I

N

13
14 OVER 0> 7TERMINAL 0= AND 14
15 — > 15

50 +

Screens 114
0 < Utils: FDUMP)

1

2 WH I LE
3 3 PICK FNSWCH MOD 0=
4 IF
5 CR 0 TO TEMP
6 0 OUT ! 3 PICK 0
7 <######>
8 TYPE SPACE PSF'ACE
9 END I

F

10 DIJF' C3 0 <# # # #> TYPE
1J SPACE 1+ ROT 1+
12 ROT 1- ROT 1 AT TEMP +!
13 OVER 0= 4 PICK
14 FNSWCH MOD 0= OR
15

Screen: 117
0 < Utils: NAMED I SK
1

2 : NAMED I SK DOS (

3 DFLUNT 1 + GETARGS
4 IF SWAP DROP GETVAL. END IF
5 DUP 1 < OVER 4 > OR
6 NOT BADUNT 7CMDERR
7 1- FSMGET FSMAP 104 +
S CR ."Old: " DUP
9 BEGIN DUP CS> -DUP

10 WHILE EMIT 1+
1 1 REPEAT
12 DROP DUP 20 ERASE CR
13 . " New: " 20 EXPECT CR CR
14 1 TO 7FSMUP DSKFL.S ;

15

Screens 118
0
1

4
KSJ

6
7
a
9
10
1

1

12
13
14
15

Screens 121
0 (Fmtrss FMOVE
1

2 : FMQVE DOS <
—

3 GETARGS 7WRGARG
4 61 GETARG 7WR6ARG
5 0 (CLOSE) SWAP I NS IN

6 (OPEN) 7SYSERR <ROT DROP
7 DSKFLS INSDST DUP (ENTER) 0=

8 IF
9 DSKERR FLEXST = 7SYSERR
10 ENDIF
1

1

(OPEN) 7'SYSERR SWAP DROP
12 BEGIN
13 INSIN PAD DUP 1 AND +

14 TOPOM OVER ~ 4 PICK
15 (READ) INSDST PAD DUP

Screens 119
0
1

4
5
6
7
8
9

10
1

1

12
13
14
15

Screens 122
0 (Fmtrss FMQVE
1

2 1 AND + TADR OVER -

3 4 PICK (WRITE) DSKFLS 0=
4 IF DROP (CLOSE.) (CLOSE)
5 DSKERR CMDERR
6 END IF 0=
7 UNTIL
8 DUP (ENDF) < ROT (CLOSE)
9 (CLOSE) 7SYSERR CR CR DSKFLS

10
11 s GETNUM (— n

12 HERE 1+ 10 EXPECT HERE 1+

13 BEGIN DUP C3 WHILE 1+ REPEAT
14 BL SWAP C! HERE NUMBER DROP ;

15

Screens 120
0 (Fmtrss system words)

1 ’ (FLFL#) (70 LOAD)

3 s INSIN CR
4 . " Insert sources <START> "

5 BEG I

N

6 7TERMINAL 1 =

7 UNTIL
8 46 EMIT

;

9
10 s INSDST CR
11 Insert dests <SELECT> "

12 BEGIN
13 7TERMINAL 2 =

1 4 LINT I

L

15 46 EMIT 5
—

>

Screens 123
0 (Fmtrss system words
1

2 s LOCKOUT DOS (u s cnt —
3 ROT FSMGET O+S
4 DO
5 11+8 /MOD FSMAP 10 + +

6 SWAP 128
7 BEGIN OVER
8 WHILE 2/ SWAP 1- SWAP
9 REPEAT
10 SWAP DROP DUP 255 XOR SWAP
11 3PICK C3 AND 0# FSMAP 3 +

12 DUP 3 ROT - SWAP !

13 OVER C3 AND SWAP Cl

14 LOOP
15 1 TO 7FSMUP ;

FORMAT system words)

Screen: 1 24
0 < Fmtrs
1

2 s FORMAT DOS (—)

3 DFLUNT 1+ GETARBS
4 IF GETVAL SWAP DROP END IF
5 DUP DUP 1- TO UNIT OR OR
6 Format unit. " . . " ? " +Y/N
7 IF
8 DUP WRKSPC 772 ! (FMT)
9 DROP WRKSPC 128 ERASE

10 2 WRKSPC C!

11 WRKSPC 1+ 707 OVER ! 716
12 SWAP 2+ ! 15 WRKSPC 10 + C!

13 WRKSPC 11+89 255 FILL
14 1- 720* 357 +

15 WRKSPC OVER 0 R/W —

>

Screens 127
0 < Fmtrs:

2 0 VARIABLE SEC/PAS
(

3 0 VARIABLE SECNT
4
5 : AXLN DOB < system)

6 4 PICK 0
7 DO 3PICK I 128 * +

8 3PICK I + 3 PICK R/W
9 LOOP 2DR0F' 2DR0P ;

10
11 s DCSTP DOS (—)

12 DSKFLS TOF’OM PAD DUP 1 AND
13 - - 0 128 U/ SWAP DROP
14 SEC/PAS ! 0 SECNT ! ;

15 —

>

Screens 125
0 (Fmtrs: FORMAT)

1

2 UNIT 359 9 LOCKOUT CR CR
3 Diskname: "

4 FSMAP 104 + 20 EXPECT CR CR
5 . " Lock out error screens? "

6 +Y/N
7 IF
8 UNIT 695 24 LOCKOUT
9 END IF
10 BEGIN CR CR
11 Lock out sectors'7' "

12 +Y/N DUP
1 3 I

F

14 UNIT CR
15 ."First sector: " —

>

Screen: 128
0 (Fmtrs: DISKCOPY1)

1

2 : D ISKCOPY 1 (—)

3 DCSTP
4 BEGIN
5 CR I NS IN
6 720 SECNT 3 - SEC/PAS 3 MIN
7 DUP >R PAD DUP 1 AND - SECNTV"
8 3 2DUP 5 PICK <ROT 1 AXLN '

9 INSDST 0 AXLN CF<

10 R > SECNT + ! SECNT 3 DUP .

11 sectors copied" 720 =
12 UNTIL
13 MTB CR ;

14

Screen : 126 Screen: 129
0 (Fmtrs: FORMAT) 0 (Fmtrs: DISKC0PY2)

1 1

2 BET NUM CR 2 : DISKC0PY2 (— j

3 # to lock out: ‘ 3 DCSTP
4 6ETNUM LOCKOUT- 4 CR . " Insert source in drive 1

5 END IF 5 " CR Insert dest. in drive 2
6 0= UNTIL 6 " CR " Press START to copy"
7 END IF 7 WAIT
8 DROP DSKFLS CR CR

5
8 BEGIN

9 9 720 SECNT 3 - SEC/PAS 3 MIN
10 10 DUP >R PAD DUP 1 AND - SECNT
1

1

11 3 2DUP 5 PICK < ROT
12 12 1 AXLN 720 + 0 AXLN
13 13 R > SECNT +! SECNT 3 720 =

(

14 14 UNTIL
V

15 > 15 MTB CR ;

Screen

c

Screens 130
0
1

4
5
6
7
8
9
10
1 1

12
13
14
15

0
1

2

4
5
6
7
8
9
10
11

12
13
14
15

Screen

:

0
1

131

4
5
6

o i
9

10
1

1

12
13
14
15

Screen
0
1

4
5
6
7
a
9

10
1

1

12
13
14
15

Screen

s

0
13; Screen

0
1

6
7
3
9
10
11

c 13
14
1

5

4

5
6
7
8
9
10
11

12
13
14
15

Screens 136
0
1

4
5
6
7
8
9

10
11

12
13
14
15

Screen: 139
0
1

4
5
6
7

8
9

10
1

1

12
13
14
15

(

Screens 137

1

Screens 140
0
1

4

6
7
8
9

4

5
6

7
8
C)

o
10
1

1

.1 7
13
14
15

10
1

1

12
13
14
15

Screen

:

0
1

1 38 Screen: 141
0
1

4
5
6
7
8
9

10
1

1

12
13
14
1 £"j

4
5
6
7

8
9

10
1 1

12
13
14
15

(J

Screen : 14'2 Screen:

0 < +Y/N routine > ®

1 (This Y/N routine accepts upper 1

2 or lower case and echos it.) 2

4 BASE 3 HEX 4

5
6 : +Y/N < — f > 6

7 KEY DUP DF AND 7

8 DUP 59 <> B

9 0BRANCH C 0014 , 3 9

10 DUP 4E < > 1®

11 0BRANCH C 0008 ,3 H
12 2DR0P BRANCH C FFDA ,3 12

13 SWAP EMIT 59 = ;
13

14 14

15 BASE !
15

Screen

:

0
1

143 Screen

:

0
1

4
5
6
7
8
9

10
11

12
13
14
15

4
5
6
~7

8
9

10
11
12
13
14
15

Screen: 144
0
1

Screen

:

0
1

4
5
6
7
a

9
10
11

12
13
14
1

5

4

5
6
7
8
9
10
11
12
13
14
15

145

146

147

TO AT
Screen: .MS

0
1

4
5
6
7

8
9

10
1

1

12
13
14
15

Screen: 151
0 (Quan:
1

2 : TO
3 -FIND 0~ 0 TERROR DROP
4 STATE 3
5 IF ,

6 ELSE EXECUTE
7 END IF ; IMMEDIATE
8
9 : AT

10 -FIND 0= 0 TERROR DROP
11 2+ STATE 3
12 IF ,

13 ELSE EXECUTE
14 END IF ; IMMEDIATE
15 < corrected)

Screen: 149
0
1

4
5
6

8
9

10
1

1

12
13
14
15

Screen: 150
0 (Quart: ASSIGN)

1

4 ’ (CFALIT
5 : ASSIGN [COMPILE] CFALIT ;

6 IMMEDIATE — >) ()

8 : ASSIGN < — c-fa)

9 STATE 3
10 [COMPILE] [

11 [COMPILE] ' CFA SWAP
12 IF]

13 END IF [COMPILE] LITERAL ;

14 IMMEDIATE
15

Screen: 152
0 < Quan: [236] [2!4]
1

2 ASSEMBLER HEX

4 LABEL (236)
5 A0 C, 06 C, B 1 C„ w C, 48 C
6 C8 C, B1 C, W C, 4C c, PUSH
7
8 LABEL (2 ! 4

)

9 A0 C, 04 c, B5 C

,

00 c, 91 C
10 w c, CB c, B5 C

,

01 c, 91 C
1

1

w c, 4C c, POP ,

12
13
14
15

Screen: 153
0 (Quan: [2V6]
1

2 LABEL (2V6)
3 A0 C, 07 C, B 1 C, W C, 48 C,
4 88 C, B1 C, w C, 85 c, W C,
5 68 C, 85 c, W 1 + C,
6 A0 C, 00 c <, 4C C, W 1 - ,

7
8
9

10
1

1

12
13
14
15

Screens 154
0 < Quan: patch for CREATE)

1

2 OCX

4 : (PTCH) (system)

5 SWAP >R R = 251 R = 249 R> =

6 OR OR ;

7
8 : PTCH (system >

9 IF [’ (PTCH) CFA 3 LITERAL
10 ELSE L

’ = CFA 3 LITERAL
11 END IF
12 T ' CREATE 63 + 1 LITERAL ! ;

13
14
15 —

>

Screens 157
0
1

4

5
6
7
8
9
10
1

1

12
13
14
15

o

Screen: 155
0 (Quan: QUAN VECT
1

2 : GUAM
3 ON PTCH LABEL -2 ALLOT
4 (236) , (214) ,

5 C ’ VARIABLE 4 + 1 LITERAL
6 2 ALLOT OFF PTCH ;

7
8 s VECT
9 ON PTCH LABEL -2 ALLOT

10 (2V6
) „ (2! 4) ,

11 C VARIABLE 4 + 3 LITERAL
12 i

’ NOOP CFA 3 LITERAL ,

13 OFF PTCH
;

14
1

5

Screen: 158
0
1

2
3
4
5
6
7

8
9

10
1

1

12
13
14
15

Screen: 156
0
1

Screens 159
0
1

4
5
6
7
8
9
10
1

1

12

15

4

5
6
7

8
9
10
1

1

12
13
14
15

Screen: 160
0 (Utils: CARRAY ARRAY >

1 BASE 3 HEX
2 ; CARRAY (cccc, n — >

3 CREATE SMUDGE (cccc: n — a)

4 ALLOT
5 sCODE CA C, CA C, 18 c,

6 AS C. W C, 69 C, 02 C, 95 c,

7 00 C, 98 C, 65 C, W 1+ C,

8 95 C, 01 C, 4C C,

9 ' + (CFA 3) j
C |S

10
1 1 : ARRAY (cccc, n —)

12 CREATE SMUDGE (cccc: n — a)

13 2* ALLOT
14 5 CODE 16 C, 00 C, 36 C, 01 c,

15 4C C, ’ CARRAY 08 +
, C; — >

Screen: 163
0 (Utils: XC! X! >

1

2 : XC! (n0. . .nm cnt addr —)(
3 OVER 1- + >R 0
4 DO J I - C!
5 LOOP R > DROP ;

6
7 : X! (n0...nm cnt addr —)

B OVER 1- 2* + >R 0
9 DO J I 2* -

!

10

LOOP R> DROP ;

.1

1

12 (Caution: Remember limitation
13 (on stack size of 30 values
14 (because of OS conflict.)

15 —

>

Screen: 161
0 (Uti Is: CTABLE TABLE)

1

CITABLE (cccc, —)

3 CREATE SMUDGE (cccc: n — a)

4
5

; CODE
4C C, ’ CARRAY 08 + ,

C 5

6
7 s TABLE (cccc, —)

a CREATE SMUDGE (cccc: n — a)

9 ; CODE
10 4C C, ’ ARRAY 0fi + , C;

1 1

12
13
14
15

Screen: 164
0 (Utils: CVECTOR VECTOR)

1

2 : CVECTOR < cccc,
3 CREATE SMUDGE (cccc:
4 HERE OVER ALLOT XC

!

5 ; CODE
6 4C C, ’ CARRAY 08 + ,

7
B : VECTOR < cccc,
9 CREATE SMUDGE < cccc:
10 HERE OVER 2* ALLOT X!

1 1 ; CODE
12 4C C, ’ ARRAY 0A + ,

13
1 4 BASE !

15

cnt — >

n — a)

C;

cnt — >C.

n — a)

c;

Screen: 162
0 < Utils: 2CARRAY 2ARRAY)

1

2 : 2CARRAY i. cccc, n n —)

3 < BUILDS < cccc: n n — a >

4 SWAP DUP , * ALLOT
5 DOES

>

6 DUP >R <3 * + R > + 2+ ?

7
8 : 2ARRAY (cccc, n n —)

9 < BUILDS (cccc: n n — a)

10 SWAP DUP ,
* 2* ALLOT

11 DOES>
12 DUP >R 3 * + 2* R> + 2+ ;

13
14
15 —

>

Screen: 165
0
1

4
5
6
7
8
9

10
11

12
13
14
15

c

Screen: 166
0
1

4
5
6

7
8
9
10
1 1

12
13
14
15

Screen: 169
0
1

4
5
6
7

8
9
10
1

1

12
13
14
15

Screen: 167
0
1

4
5
6
7
8
9

10
1

1

12
13
14
15

Screen: 170
0 CONTENTS OF THIS DISK:
1

2 Disk Operating System: 10 LOAD
3 DOS system extensions: 50 LOAD
4 BASIC DOS COMMANDS: 70 LOAD
5 DOS COMMAND EXTENSIONS: 110 LOAD
6
7 (note the packages lower on the
8 screen will load all packages
9 listed above themselves.)

10
11 DISK FORMATTER/COPIERS: 120 LOAD
12 00AM STRUCTURES: 150 LOAD
13 ARRAYS & THEIR COUSINS: 160 LOAD
14
15 val DOS FILE EDITOR: valDOS II

Screen: 168
0
1

Screen: 171
0
1

4
5
6
7
8
9
10
1

1

12
13
14
15

4
5
6
7
8
9
10
1

1

12
13
14
15

(

Screen: 172
0
1

4
5
6
7
8
9

10
1 1

12
13
14
15

Screen: 175
0 File is too big
1 File is random
2 File is not random
3 No room For random map
4 Random map is bad
5 File is a device file
6 File is not a device file
7 Illegal access to device file
8
9

10
1

1

12
13
14
15

Screen

:

0
1

173

4

7
8
9
10
1

1

12
13
1 4

15

Screen: 176
0 < Error messages
1

2 Stack empty

4 Dictionary full
5
6 Wrong addressing mode
7

8 Is not unique
9
10 Value error
1

1

12 Disk address error
13
14 Stack full
15

o

Screen: 174
0 (valDQS error messages
1 Illegal filename
2 Bad/Mismatched unit.(s)
3 Bad free space map
4 File already exists
5 Directory is full
6 D i s k is full
7 Filename is ambiguous
8 File does not exist.
9 No room for buffer

10 End of file encountered
11 File is not open
12 Illegal file number
13 File is locked
14 Bad argument list
15 File is open

Screen: 177
0 Disk Error

!

1

2 Dictionary too big

4
5
6
7
B
9

10
1

1

12
13
14
15

c

)

Screen: 178
0 (Error messages
1

2 Use only in Definitions

4 Execution only
5
6 Conditionals not paired
7
8 Definition not finished
9

10 In protected dictionary
1

1

12 Use only when loading
13
14 Off current screen
15

Screen: 179
0 Declare VOCABULARY
1

4
5
6
7
B
9
10
11

12
13
14
15

p

o

c

val DOS II

Supplied Source Listing

o
LXVI

.

(

o

o

o

Screen: 50 Screen: 53
0 (Case Statements: CASE) 0 (Case statements: SEL
1 BASE 3 DCX 1

2
n .
J~ a NOSEL

3 ' (PERMANENT PERMANENT) <) 3 8 7PAIRS [COMPILE] ' CFA
4 : (CASE) 4 OVER 1+ ! 8 ;

IMMEDIATE
5 R C3 MIN -1 MAX 2* 5
6 R 3 + + 3EX 6 :

_ \

7 R C3 2* 5 + R> + >R ;
7 SWAF 8 7PAIRS , DUP C3 1 +

8 8 OVER C! [COMPILE] ’

9 ’
(TRANSIENT TRANSIENT)

(

) 9 CFA , 8 ;
IMMEDIATE

10 : CASE 10

1

1

7C0MP COMPILE (CASE) 1

1

; SELEND
12 HERE 0 C, 12 8 7PAIRS
13 COMPILE NOOP 6 ;

IMMEDIATE 13 DROP [COMPILE]] ; IMMEDIATE
14 14

15 ’ (PERMANENT PERMANENT)

(

) > 15 —

Screen: 51
Case statements: CASE)

NOC-ASE

6

7PAIRS 7 5
IMMEDIATE

CASEND
DUP 6 ==

IF DROP COMPILE NOOP
ELSE 7 7PAIRS
END IF
HERE 2- 3 OVER 1+ !

HERE OVER -

5 - 2/ SWAP C! ; IMMEDIATE-

PERMANENT PERMANENT > (>

Screen: 54
0 (Case statements: CQND)

1

2 ’
(TRANSIENT TRANSIENT) ()

4 : COND
5 0 COMPILE DUP ;

IMMEDIATE
6
7 : <<
8 1+ C COMPILE] IF
9 COMPILE DROP ;

IMMEDIATE
10

11

: >>
12 C COMPILE] ELSE COMPILE
13 DUP ROT 5

IMMEDIATE
14
15 ’ (PERMANENT PERMANENT) (> —

>

0 (

o
6
7
8
9

10
1

1

12
13
14
15

0 (Case statements; SEL)

1

2 : (SEL)
3 R 1+ DUP 2+ DUP R CS>

4 2* 2* + R> DROP DUP >R SWAP
5 DO I 3 3 PICK =

6 IF I 2+ SWAP DROP LEAVE THEN
7 4 /LOOP SWAP DROP 3EX ;

8
9 * (TRANSIENT TRANSIENT) ()

10 : SEL 7C0MP
11 7L0ADING COMPILE (SEL) HERE
12. 0 C. COMPILE NOOP C COMPILE] L

13 8 ; IMMEDIATE

(
I

14
15 ’ (PERMANENT PERMANENT) <) —

>

Screen; 55
0 (Case statements:
1

2 : NOCOND
3 COMPILE 2DROP ;

4
5 : CONDEND
6 0 DO
7 [COMPILE] END IF
8 LOOP s

9
10
1

1

12
13
14
15

COND)

IMMEDIATE

IMMEDIATE

59Screens 56 Screen:
0 (Case statements: CASE:) 0
1 1

2 < PERMANENT PERMANENT > <) 2
3 3
4 : CASE: 4
5 < BUILDS 5
6 5MUD6E ! CSP 6
7 rCOMPILEH 3 7
8 DOES > B
9 SWAP 2* + SEX ; 9

1 0 1

0

:L1 11
12 BASE ! 12
13 13
14 14
15 15

Screens 57 Screen: 60
!;l 0 < Screen code conversion words '

1 1

2 2 BASE 3 HEX

4
5
6
~7

8
9
10
1 1

12
13
14
15

4 CODE >BSCD (a a n —)

5 A9 0, 03 C, 20 c. SETUP
6 HERE C4 C, C2 c, D0 c, 07 C,
7 C6 C, C3 C, 10 c, 03 c. 4c c, r

48 C, V8 NEXT B

1

C, 06 C,
9 29 C, 7F C, C9 C, 60 C, B0 C.
10 0D C, C9 C, 20 C,, B0 c. 06 C,
11 IB 0, 69 C, 40 C, 4C c, HERE
12 2 ALLOT 38 C, E9 C, 20 C, HERE
13 SWAP ! 91 C, C4 c, 68 c, 29 C,
14
15

80 C, 1

1

C, C4 C, 91 c, C4 C,

Screen

:

0
1

5S

4
5
6
~7

3
9

10
1 1

12
13
14
15

Screen: 61
0 < Screen code conversion words)

1

2 C8 C, D0 0, D3 C, E6 C, C7 C,
t; E6 C, C5 C, 4C C, n

4 Cs
5
6 CODE BSCD> (a a n —
7 A9 C, 03 C, 20 C, SETUP

.
*1

8 HERE C4 C, 02 C, D0 c, 07 C,
9 C6 C, C3 C f 10 c. 03 c. 4C C,

10 NEXT B1 c. C6 c. 48 C,
1

1

29 C, 7F C„ C9 C, 60 C, B0 C,
12 0D C, C9 C, 40 C, B0 c. 06 C,
13 IS c. 69 C, 20 c, 4C C, HERE
14 2 ALLOT 38 C, E9 0 , 40 c, HERE
15

o
6
7
8
9
10
1

1

12
13
14
15

:»en : 62
(Screen code conversion words)

SWAP ! 91 C, C4 C, 6B C, 29 C,

80 C, 11 C, C4 C, 91 C, C4 C,

C8 C, D0 C, D3 C, E6 C, C7 C,

E6 C, C5 C, 4C C, ,

C;

>SCD
SP® DUP 1 >BSCD i

SCD>
SP® DUP 1 BSCD> ;

(c sc)

(sc — c)

BASE

Screen: 65
0
1

4

5
6
7
B
9
10
11

12
13
14
15

Screen

:

0
1

63 Screen: 66
0
1

4
5
6

9

10
1

1

12
13
14
15

4
5
6
7
8
9

10
11

12
13
14
15

Screen

:

0
1

64 Screen: 67
0
1

4 4

c

6
7
8
9
10
1

1

12
13
14
15

6
~7

8
9
10
1

1

12
13
14
15

INKEY*
Screens 68

0
1

4
5
6
7
8
9

10
11

12
13
14
15

Screen: 71
0 (Utils:
1

2 : (INKEY*) <

3 702 C! NOKEY 0 :

4
5 : INKEY* (

6 764 C3
7 COND
8 252 = << 128 (INKEY*)
9 191 > << 0 >>

10 188 = << 0 > >

1

1

124 = << 64 (INKEY*)
12 60 = << 0 (INKEY*)
13 39 = << 0 NOKEY
14 NOCOND KEY
15 CONDEND 5

c
— c)

Screen: 69
0
1

4
5
6

8
9
10
1 1

12
13
1

4

15

Screen: 72
0 < Utils: -Y/N
1

2 (This Y/N routine accepts
3 or lower case.)

4 HEX
5
6 : -Y/N (

7 KEY DF AND
8 DUP 59 <>
9 0BRANCH I 0014 , 1

10 DUP 4E <>
11 0BRANCH C 0008 , 3

12 2DR0P BRANCH C FFDA , 3

13 59 = ;

14
15 DCX

)

upper

- f)

o

Screens 70
0 (Utils: HIDCHR NOKEY CURSOR)
1

n
jL BASE 3 DCX

4 ’ (CASE) (50 LOAD)

5
6 : HIDCHR (—)

7 65535 94 ! ;

8
9 : NOKEY (—)

10 255 764 C! ;

1 1

12 : CURSOR < f —)

13 0= 752 C!

14 28 EMIT 29 EMIT ;

15 — >

Screen: 73
0 (Utils: Y/N -RETURN RETURN)

1

: Y/N (— f)

3 . “ < Y/N> " -Y/N DUP
4 IF 89 ELSE 78 ENDIF
5 EMIT SPACE ;

6
7 : -RETURN (—)

8 BEGIN
9 KEY 155 =

10 UNTIL ;

11

12 : RETURN (— >

13 . " < RETURN

>

" -RETURN ;

14
15 BASE !

Screen: 100 Screen: 103
0 (valDOS file editor 1.0) 0 (valDOS file editor 1.0)

1

o
’ (FLFL#) (160 LOAD ;S) 1

r-l

HEX
it.

3 BASE S) OCX
J—

yt LABEL T0S1+
4 4 F6 C, 00 C, D0 C. 02 C, F6 C,
5 VOCABULARY 1EDITOR IMMEDIATE 5 01 C, 60 C,

6 EDITOR DEFINITIONS 6
7 7 LABEL TOS 1

—

8 ’
(>BSCD) (60 LOAD) 8 B5 C, 00 C, D0 C, 02 C, D6 C,

9 ' < HIDCHR) (70 LOAD) 9 01 C, D6 C, 00 C, 60 C,

10 10
1

1

QUAN XLOC 0 TO XLOC 11 CODE PRVLN (a — a)

12 QUAN YL.OC 0 TO YLOC 12 20 C, TOS1- , A 1 C, 00 C, F0 C,

13 QUAN INSRT 0 TO INSRT 13 09 C, 20 C, T0S1-
, A1 C, 00 C,

14 QUAN LSTCHR 0 TO LSTCHR 14 C9 C, 9B C, D0 C, F3 C, 20 C,

15 QUAN 7BUFSM 0 TO 7BUFSM — > 15 TOS 1 + , 4C C, NEXT . L :

Screen

:

.101 Screen; 104
0
1

(valDOS file editor 1.0) 0
1

(valDOS file editor 1.0)

X

o QUAN 2PADSM 0 TO 7PADSM CODE NXTLN (a — a)

3 QUAN 7MULTI 0 TO 7MULT

I

3 A 1 C, 00 C, F0 C, 07 C, 20 C,

4 QUAN 7MARK 0 TO '.’MARK 4 TOS1 +
, C9 C. 9B C, D0 C, F5 C.

5 QUAN 7UPDAT 0 TO 7UPDAT 5 4C C, NEXT , C;s

6 GUAM TXTBOT 0 TO TXTBOT 6
7 QUAN TXTEND 0 TO TXTEND 7 CODE CRAM (A A — L)

8 QUAN DSPTOP 0 TO DSPTOP 8 A9 C, 02 C, 20 C, SETUP ,

9 QUAN DSF'BOT 0 TO DSF'BOT 9 A0 C, 26 C, 88 C, F0 C, 04 C,

10 QUAN LNCNT 0 TO LNCNT 10 B1 C, N 2+ C, F0 C, -7 C,

1

1

QUAN CURLN 0 TO CURLN 11 C8 C, 84 C, XBAVE C, A9 C,

12 QUAN EDFL.# 0 TO EDFL# 12 DB C. 91 C, N C, 88 C, 30 C,

13 QUAN MEMTOP 0 TO MEMTOP 13 07 C, B 1 C, N 2+ C, 91 C,
14 QUAN PTFLG 0 TO PTFLG 14 N C, 4C C, HERE 8 -

,
A 4 C,

15 QUAN 72BIG 0 TO 72B I

G

> 15 — >

Screen: 102
0 (valDOS file editor 1.0)

1

2 LABEL OOPSLN 38 ALLOT
3 OOPSLN 38 ERASE
4 LABEL EDN1$ 16 ALLOT
5 LABEL EDN2$ 16 ALLOT
6 LABEL SRCI-I* 34 ALLOT 0 SRCH$ C!

7 LABEL EBWRK 40 ALLOT
8 LABEL TABS 4 ALLOT 32 C,
9 TABS 4 68 FILL
10 36 TABS 4 + C!

11

12 37 CONSTANT 37
13 16 CONSTANT ttLNS
14 40 CONSTANT LLEN
15 5 LLEN * CONSTANT BLEN —

>

Screen: 105
0 (valDOS file editor 1.0)

1

2 XSAVE C, C8 C, 98 C,

3 4C c, PUSH0A ,

4 C;

5
6 CODE UNCRAM < a a --

7 A9 C, 02 C, 20 C, SETUP
8 B

1

c, N 2+ C, F0 C, 0D C,

9 B1 C, N 2+ C, C9 C, 9B C,
10 F0 c, 06 C, 91 C, N C,

1

1

C8 C, 4C C, HERE 0A -
,

12 C8 c:, 18 C, 98 C, 65 C,
13 N 2+ C, 48 C, A9 C, 00 C,
14 65 c. N 3 H- C, 4C C, PUSH
15 C:

)

Screen: 106
0 (valDOS file editor 1.0
1
r-\

A. CODE 7ENUF (a — a cnt)

3 84 C, N C, A

1

C, 00 0, 09 0,
4 9B C, D0 c, 0A c, E6 C, N 0,
5 A9 C, 10 C, 05 C, N 0, F0 0,
6 0E C, D0 C, 03 c, 0A C, F0 0,
~7 09 C, F6 c, 00 c. D0 0, 02 C,

Q F6 0, 01 Cji 40 0, ' 7ENUF 2+ ,

9 A5 C, N c. 40 C, PUSH0A ,

10 C;
11

12 DCX
13
14
15

Screen: 109
0 (valDOS file editor 1.0)

2 : CBLANK (— f
3 CURLOC DUP C3
4 127 AND SWAP C! ;

5
6 : NQRPT 0 TO 7MULTI : < —)

7
8 : CRWT (—)

9 CR . " C/R to continue"
10 253 EMIT
11 BEGIN
12 KEY 155 =

13 UNTIL
14 88 3 40 + 640 ERASE ;

15 — >

Screen: 107 Screen: 110
0 (valDOS file editor 1.0) 0 (valDOS file editor 1.65)

J. 1
n y LMOVE (f t) 2 : OOPSV (—)

3 40 CMOVE ; 3 BOL QOF'SLN 38 CMOVE
;

4 4
5 : BOL (

— a) 5
6 88 3 YLOC 1+ LLEN # + 2+ ; 6 : 7FULL (—)

7 7 MEMTOP 1- TXTEND U< G8 : SBL <
— a > 8 DUP TO 72BIG

9 88 3 LLEN #LNS 1+ * + ; 9 IF
10 10 1500 0
1 1 : PEL (

— a) 1

1

DO
12 PAD 128 + ; 12 0 53279 C!
13 1

3

LOOP
14 : F'BLL C

— a) 14 ENDIF ;

15 F'BL BLEN + LLEN -
;

— > 15 — >

Screen: 108 Screen: 111
0 (valDOS file editor 1 .

0

) 0 < valDOS file editor 1.0
1 1

A. K TOF’LN (— a)
a SAVLN (

-
3 88 3 LLEN + 2+ ; 3 7MARK 72BIB NOT AND
4 4 IF 0 TO 7MARK BOL PAD CRAM
5 : BOTLN (— a) 5 DUP LNCNT <>
6 88 3 #LNS LLEN * + 74- "X-T-

JJ
6 IF CURLN NXTLN DUP 3 PICK

7 7 LNCNT - DUP >R 4
8 : CURLOC (— a) 8 TXTEND 3 PICK - R>
9 BOL XLOC + ; 9 DUP AT TXTEND +! 0<

10 10 IF CMOVE
1 1 : CSHOW < — a) 1 1 ELSE < CMOVE ENDIF 7FULL
12 CURLOC DUP C3 12 ENDIF
13 128 OR SWAP C! ; 13 PAD CURLN ROT BSCD>
14 14 ENDIF ;

15 — > 15

))

Screen: 112
0 (val DOS file editor 1.0
1

2 : DISPLAY (—)

3 TDPLM 2- DSPTOP
4 1 6 0
5 DO
6 PAD 40 BLANKS DUP
7 PAD 2+ UNCRAM DUP ROT =

S IF
9 OVER 40 64 FI LI-

10 ELSE
11 PAD 3 PICK LLEN >BSCD
12 END IF
13 SWAP 40 + SWAP
14 LOOP
15 2DR0F 1 752 C! ;

—

>

Screen: 113
0 (val DOS file editor 1.0)

1

2 : GETLN < —)

3 CI.JRLN DUP NXTLN
4 SWAP - TO LNCN'f ;

5
6 : GC GETLN CSHOW ; (—)

7
8 : DC DISPLAY CSHOW ; (—)

9
10 : CS CBLANK SAVLN ;

(—)

1

1

12 : HOME < dtop —)

13 DUP TO DSPTOP TO CURLN
14 0 TO XLOC 0 TO YLQC
15 DISPLAY GC ;

—

>

Screen: 114
0 < val DOS file editor 1.0)

1

2 : ROLLDN (—)

3 DSPTOP DUP
4 7ENUF 2DR OF' 2- 3
5 IF
6 CS DSPTOP PRVLN
7 DUP TO DSPTOP
8 FAD 40 BLANKS PAD 2+
9 UNCRAM DROP PAD
10 TQPL.N 2- DUP DUP 40 +

11 600 CCMOVE LLEN >BSCD
12 CURLN PRVLN TO CURLN GC
13 ELSE
14 NORPT
15 END IF ;

—

>

Screen; 115
0 (val DOS file editor 1.0
1

2 : ROLLUP < —)

3 DSPTOP CS
4 7ENUF SWAP 1+ TO DSPBOT
5 16 <> DSPBOT C3 0= OR NOT
6 IF
7 CURLN NXTLN TO CURLN
8 TOF'LN 2- DUP 40 + SWAP 600
9 CMOVE PAD 40 BLANKS
10 DSPBOT PAD 2+ UNCRAM DROP
11 PAD BOTLN 2- LLEN >BBCD
12 DSPTOP NXTLN TO DSPTOP
13 ELSE
14 NORPT
15 END I F GC ;

—

>

Screen: 116
0 (val DOS file editor 1.0)

1

2 : UF'CUR (—)

3 7MULTI 0= YLOC OR
4 IF YLOC
5 IF
6 CS CURLN PRVLN TO CURLN
7 -1 AT YLOC +! GC
8 ELSE
9 ROLLDN

10 END IF
1 1 ELBE
12 NORPT
13 END IF ;

14
15 —

>

Screen: 117
0 < val DOS file editor 1.0)

1

2 : DNCUR (—)

3 7MULTI 0= YLOC 15 <> OR
4 IF YLOC #LNS 1- =
5 IF
6 ROLLUP
7 ELSE
8 CURLOC 40 + C3 64 <>
9 IF
10 CS CURLN NXTLN TO CURLN
11 1 AT YLOC +! GETLN
12 ENDIF
13 ENDIF
14 ELSE NORPT
15 ENDIF CSHOW ;

—

>

Screen: 118 Screen; 121

0 (val DOS -file editor 1.0) 0 (

1

val DOS tile editor 1.

1

jL- u LFCUR (—)

i.

2 5 BYTDEL
3 XLOC 1-- DUP 0< 3 BLANK
4 IF UPCUR DROP 37 END IF 4 XLOC 37 <

5 BLANK TO XLOC CSHOW 7MULTI 5 IF

IF XLOC TO 7MULTI END IF 6 CURLOC DUP 1+ SWAP
7 7 37 XLOC - CMOVE
8 : RTCUR (—) 8 END IF

9 XLOC 1+ DUP 37 > 9 0 CURLOC
10 IF DROP 0 DNCUR END IF 10 37 XLOC - + C!

1 1 BLANK TO XLOC CSHOW 7MULTI 1

1

CSHOW EDMRK 5

12 IF XLOC 37 <> TO 7MULTI THEN ; 12
1

3

1

3

14 : EDMRK 14

15 1 TO 7MARK 1 TO 7UPDAT 5 15

Screen; 119 Screen : 122

0 < val DOS tile ed i tor 1.0) 0 <

I

val DOS tile editor 1.0

1

: INTEL (— >

.1.

o , LNINS <
-

3 INSRT NOT TOi INSRT NORPT 5
.3 72BIB NOT

4 4 IF
isr

(: CLREOL (— > 5 CS YLOC 15 <

6 BLANK OOPSV CURLOC 38 XLOC - 6 IF BOL 2- DUP LLEN + #LN5

7 ERASE CSHOW EDMRK NORPT 5 7 YLOC - LLEN * < CMOVE
8 8 END IF
9 HEX 9 BOL 2- 40 ERASE CURLN
10 CODE 2'- < n -- 2 ‘"n) 10 DUP TXTEND OVER - 1+

11 B4 C, 00 C, C8 C, A9 C, 00 C, 1

1

OVER 1+ SWAP < CMOVE 155

12 95 C, 00 C, 95 C, 01 C„ 38 C, 12 SWAP C! 1 AT TXTEND +!

1 3 36 C, 00 C, 36 C, 01 C, 18 C, 13 <3C 1 TO 7UPDAT
14 88 C, D0 C, F8 C, 4C C, NEXT ,

14 END IF
15 C; DCX > 15 7FULL ;

Screeni: 120 Screen: 123

0 < valDOS tile editor 1.0) 0 (val DOS tile editor 1.0

1 1

XU n BYTINS (— >
O BON XT <

-

CBLANK XLOC 37 < t; CS 0 TO XLOC
4 IF 4 CURLN NXTLN C3 0= PTFL8 OR

5 CURLOC DUP 1+ 5 72BIG NOT AND
6 37 XLOC -- < CMOVE 6 IF

7 ENDIF 7 CURLN NXTLN
8 0 CURLOC C! 8 DUP DUP 1+ TXTEND 3 PICK

9 CSHOW EDMRK 5
9 - 2+ < CMOVE 155 SWAP C!

10 10 1 AT TXTEND +!

11 1

1

DISPLAY 7FULL.

12 12 1 TO 71JPDAT

13 13 END I

F

14 14 DNCUR
15 — > 15 0 TO PTFLG ;

))

Screens 124
0 (valDOS file editor 1.0
1

2 : LNDEL (—)

3 YLQC CLJRLOC 40 + C3
4 64 <> OR
5 IF CBLANK OOPSV
6 CURLN DUP NXTLN 2DUP
7 SWAP IX TEND 3 PICK - 2+
8 CMOVE - AT TXTEND +!

9 0 TO ?MARK BETLN DISPLAY
10 CURLOC 03 -64 =

11 IF IJF'CUR NORPT END IF
12 CSHOW 1 TO 7UPDAT
13 ELSE
14 NORPT
1 5 END I F 5

Screen: 127
0 < valDOS file editor 1.0
1

2 : >BFNXT BFCPY DNCLJR ; (—)

3
4 : >BFLN BFCPY LNDEL ; < —)

5
6 : BFRPL (—)

7 CBLANK OOPSV
8 PBLL 2+ BOL 38 CMOVE EDMRK
9 < BFROT CSHOW EDMRK ;

10
11 : TABSTP < —)

12 XLOC 8 /MOD TABS +
13 SWAP 2-- OVER C3) OR
14 SWAP C! NORPT ;

13 —

>

o

Screen: 125
0 (valDOS file editor 1.0)

1

2 : BFSHW (—)

3 PBLL L.LEN 2# 2* --

4 SBL L.LEN 5 * CMOVE ;

5
6 : BFROT (—)

7 PEL. DUP BLEN + L..MOVE

8 PBL DUP LLEN + SWAP
9 BLEN LLEN - CMOVE

10 PBLL LLEN + PBLL LMOVE
1 1 BFSHW ;

12
13 : BFCPY < —)

14 CBLANK BFROT BOL PBLL 2+
15 38 CMOVE BFSHW CSHOW ;

—

>

Screen: 128
0 (valDOS file editor 1,0)

1

4
5
6
7
8
9

10
1 1

12
13
14
15

TABCLR (—)

XLOC 8 /MOD TABS +
SWAP 2~ 255 XOR OVER
03 AND SWAP C! NORPT ;

TAB CBLANK < —)

38
BEGIN

1- 1 AT XLOC +! XLOC
38 MOD 8 /MOD TABS +

C3 SWAP 2 '" AND OVER 0= OR
UNTIL DROP XLOC
38 /MOD SWAP TO XLOC
IF DNCUR END IF CSHOW ;

—

>

Screen: 126
0 <

1

valDOS file editor 1.0)

i

2.
* < BFROT (—)

T PBLL DUP LLEN + 1..M0VE

4 PBL DUP LLEN +

5 BLEN LLEN - < CMOVE
6 PBL DUP BLEN +

7 SWAP LMOVE BFSHW ;

8
9 : BFCLR < —)

1

0

PBLL LLEN ERASE
1

1

< BFROT 5

12
13 : BFL.N> (—)

14 LNINS PBLL 2+ BOL 3;s CMOVE
15 CSHOW < BFROT EDMRK 5

•'*"

Screen: 129
0 < valDOS file editor 1.0)

1

2 : RUB < —)

3 XLOC
4 IF LFCUR 0 CURLOC C!
5 CSHOW EDMRK
6 END IF
7 INSRT IF BYTDEL END IF NORPT ;

8
9 : BOTSCR (—)

10 15 XLOC - -DUP
11 IF 0 DO DNCUR LOOP END IF ;

12
13 : OOPS (— >

14 LNINS OOF'SLN BOL 38 CMOVE
15 EDMRK CSHOW NORPT r,

—

>

)

Screen: 130
0 (valDOS -file editor 1.0
1

2 : PTCHR < — >

3 LSTCHR 13 = 7MULTI 1 <> AND
4 IF
5 1 TO PTFLG BONXT
6 ELSE EDMRK
7 INSRT IF BYTINS END IF
B LSTCHR >SCD CURLOC C!

9 XL.OC 37 =

10 IF 1 TO PTFLG BONXT
1

1

12
1 T

ELSE
ENDIF 5

RTCUR ENDIF CSHOW

.1 .

14 :;
F'RVSCR ()

15 #LN5 0 DO ROLL.DN LOOP 5
>

reen : 131
0 (

1

valDOS file editor 1.0)

NXTSCR (—)

3 #LNS 0 DO ROLLUP LOOP ;

4

5 : SPLCHR C —)

6 0 7MULTI 0=
7 IF 1+ 37 88 3 25 + C! ENDIF
8 TO 7MULTI ;

9
10 : MULTI (— >

11 0 7MULTI 0=
12 IF 2+ 57 88 3 25 + C ! ENDIF
13 TO 7MULTI ;

14
15 — >

Screen: 133
0 (valDOS file editor 1.0)

1

2 FORTH DEFINITIONS
(

3
4 : .INFO EDITOR (— >

5 CR File start addr: "

6 TXTBOT DUP U.
7 CR . " Fi le end addr: "

8 TXTEND 2- DUP U.
9 CR File count: "

10 SWAP - U.

11 CR . " Bytes -free: "

12 MEMTOP TXTEND -

13 0 MAX U. CR ;

14
15 EDITOR DEFINITIONS —

>

Screen: 134
0 < valDOS file editor 1.0)

1

2 : WIFEIT < — >

3 88 3 40 + 640 ERASE
4 12 84 C! 0 752 C ! CR ;

5
6 : FLFL (—)

7 TXTBOT HOME ;

8

9

: FLLL (— >

10 TXTEND 2-- 15 0
11 DO F'RVLN LOOP HOME BOTSCR ;

12
13 : FLEN (—)

14 CURLN NXTLN DUP
15 2+ TO TXTEND 0 SWAP ! DC ;

—

>

Screen: 132
0 (valDOS file editor 1.0)

1 : SPLT < —)

2 CBLANK BOL EDWRK 38 CMOVE
3 XLOC CLREOL 1 TO PTFL6 BONXT
4 CBLANK TO XLOC EDWRK XLOC +

5 BOL XLOC + 38 XLOC - CMOVE
6 EDMRK CSHOW ;

7
8 : -SPLT < — >

9 CURLN TXTBOT <>
10 IF CBLANK BOL EDWRK 38 CMOVE
11 LNDEL UPCLIR CBLANK OOF'SV

12 EDWRK XLOC + BOL XLOC +

13 38 XLOC - CMOVE CSHOW EDMRK
14 EDWRK OOPSLN XLOC CMOVE
15 ENDIF NORPT ;

—

>

Screen: 135
0 (valDOS file editor 1.0 >

1

4
5
6
7
8
9

10
1

1

12
13
14
15

SRCH
SRC FIT C3
IF CS CURLN XLOC + 1+ TXTEND
OVER - SRCH* COUNT MATCH SWAP
IF CURLN XLOC + + DUP

F'RVLN DUP TO CURLN -

TO XLOC 0 TO YLDC CURLN
6 0 DO

DUP PRVLN SWAP OVER
<> AT YLOC +!

LOOP TO DSPTOP GETLN DC
ELSE DROP WIPE IT CR

. " Not found" CRWT FLFL
ENDIF

ENDIF ;

Screen: 136
0 (valDDS -file editor 1.0
1

2 : GET* (del m —
3 >R PAD 2+
4 BE6IN DUP C5> R =

5 WHILE 1+ REPEAT DUP

Screen: 139
) 0 < valDOS file editor 1.0

1

* > 2 : SUBCMD
3 CS WIPE IT
4 . " : " PAD 32 ERASE
5 PAD 31 EXPECT CR PAD 3

6 BEGIN DUP CS DUP R < 6 SEL (ST) 21587 ~> FLST
7 SWAP 0# AND 7 (EN) 20037 ™> FLEN
8 WHILE 1+ REPEAT OVER - OVER a (FL) 19526 --> FLFL
9 1- C! 1- R > DROP ; 9 (LL) 19532 ~> FLLL
10 10 (IF) 17993 -> I NFL
1 1 : STSRCH (—) 1

1

(PS) 21328 -> STSRCH
12 . " 7 " PAD 31 EXPECT 12 (RT) 21586 — > TABRST
13 CR 88 0 564 + SRCH* 1+ CRAM 13 0 ~> DC
14 1-- SRCH* C! SRCH* 1 + DUP 14 NOSEL BADSUB
15 33 BSCD> SRCH |l

— > 15 SELEND s

tier

0
1

r>

eens 137
(valDOS file editor 1, 0)

(—)I NFL DOS
3 INERT 0 TO INSRT
4 BL GET* (OPEN)
5 IF DC LNINS
6 BEGIN
7 7TERMINAL 72BIG OR NOT DUP
8 IF DROP DUP (RDB) END IF
9 WHILE

10 DUP 155 =

11 IF DROP 13 END IF
12 TO LSTCHR PTCHR
13 REPEAT (CLOSE) DROP
1 4 ELSE CR
15 ." Unable to load file" —

>

1 .

0

Screen: 140
0 (valDOS file editor
1

2 : EDTABT (—)

3 CS WIPE IT . " Abort? "

4 +Y/N 19 * DUP TO LSTCHR 0=
5 IF DC ELSE 7UPDAT 0=
6 IF CURL.N TXTBDT - TO ED# IN
7 ELSE TXTBOT DUP TO DSF'TOP
8 TO CURLN 0 TO XLDC 0 TO YL..QC

9 END IF END IF NORF'T ;

10
11 : EXIT DOS (— >

12 CS WIPE IT 8 84 C!
13 .INFO CR ." Save
14 EDN2* COUNT TYPE ." " 7 "

15 +Y/N 19 * DUP TO LSTCHR —

>

Screen: 138

6
7
8
9
10
1

1

12
13
14
15

(valDOS file editor 1.0)

CRWT WIPE I T DC
END IF TO INSRT ;

: FL3T (— >

CURLN TXTBOT 2DUP
TXTEND CURLN - 1+ CMOVE
- MINUS AT TXTEND +! FLFL :

TABRST
TABS 4 68 FILL
36 TABS 4 + C! DC ;

BADSUB
CR ." Bad subcommand'
CRWT WIPE IT DC :

(

Screen: 141
0 (valDOS file editor 1.0
1 IF EDN2* (OPEN) 0=
2 IF 0 DSKERR FLDNE =

3 IF DROP EDN2* (ENTER)
4 DROP EDN2* (OPEN)
5 ENDIF
6 0= IF DC ; S ENDIF
7 ENDIF
8 SWAP DROP TO EDFL#
9 TXTBOT TXTEND 2- OVER -

10 EDFL# (WRITE) DROP EDFL#
11 (ENDF) DROP EDFL# (CLOSE)
12 CURLN TXTBOT - TO ED# IN
13 ELSE
14 DC
15 ENDIF ;

)

Screen a 142
0 (val DOS file editor 1 .

1

n CONTROL (n —
3 SEL
4 19 ~> EXIT 17 -> EDTABT

5 28 -> UPCUR 29 -> DNCUR

6 30 — > LFCUR 31 -> RTCUR

7 126 -> RUB 127 -> TAB

B 9 — > INTGL 155 -> BONXT

9 255 — '>• BYTINS 254 -> BYTDEL

10 157 -> LNINS 156 -> LNDEL

11 18 -> BFROT 2 -> < BFROT

12 3 -> BFCLR 11 -> JBFNXT

13 20 — y >BFL.N 6 -> BFLN>
14 16 -O F'RVSCR 14 ~> NXTSCR

15 15 ~
> OOPS —

Screen : 143
0 (

1

val DOS file editor 1,. 0

27 --> SF'LCHR 8 > CLREOL

3 21 -> BFRPL 25 > MULTI

4 24 -> ROLLDN 5 - > ROLLUP

5 22 -> SUBCMD 12 > SRCH

6 10 -> SPLT 7 - > -SPLT

7 159 -> TABSTP 158 > TABCLR
0
o

NOSEL PTCHR SELEND s

7

10 : 2STRQKE (
—

1

1

7MULTI 1 =

12 IF DROP PTCHR
13 EL.SE

14 7MULTI 2 =

15 IF

Screen: 144
0 (val DOS file editor 1.0 >

1

2 BEGIN
3 8 53279 C! DUF CONTROL
4 7MIJLTI NOT 7TERMINAL OR

5 UNTIL
6 DROP END IF

7 END IF

S 0 TO LSTCHR NORPT
9 0 38 3 25 + C

! ;

10
11 : EDTSTP DOS < *i — >

12 DECIMAL 1 PFLAG !

13 F'BL BLEN + LL.EN + 2+

14 TO TXTBOT
15 EDN1* (OPEN) 7SYSERR

Screen: 145
0 (val DOS file editor 1.0

1

2 SWAP DROP TO EDFL#
3 0 TXTBOT 2- ! 155 TXTBOT C!

4 TXTBOT MEMTOF OVER - DUP
5 <ROT EDFL# (READ)

6 IF EDFL# (CLOSE)

7 FLTBG CMDERR
8 ENDIF
9 DSKERR EOFERR = 7SYSERR

10 EDFL# (CLOSE)
11 #UNTRN - DUF 0= + TXTBOT +

12 DUP 2+ TO TXTEND 0 SWAP !

13 0 TO ED# IN 0 TO 7UPDAT ;

14
15

Screen: 146
0 (val DOS file editor 1.0

1

2 : PROCESS DOS <
~

3
4 0 GR. 1 752 C! CLS
5 112 560 3 6 + C!

6 112 560 3 23 + C

!

7 . " File: " EDN2* *.

8 28 85 !

9 #Buf s: " BLEN L.LEN / .

10 GETLN DC
1

1

12 PAD 7PADSM OVER TO 7PADSM =

13 PEL 3 7BUFSM = AMD NOT
14 IF PEL BLEN ERASE ENDIF

1 5 BFSHW

Screen: 147
0 (val DOS file editor 1.0

1

2 BEGIN
3 INKEY* DUF TO LSTCHR -DUF

4 IF

5 7MULTI
6 IF 2STR0KE
7 ELSE CONTROL ENDIF

Q ELSE
9 INSRT

10 IF CBLANK (PAUSE)

11 2DUP DROP DROP CSHOW

12 ENDIF
13 ENDIF
14 LSTCHR 19 =

15 UNTIL

)

Screen: 148
0 (val DOS file editor 1.0
1

2 0 767 C! 0 752 C!

3 2 560 5) 6 + C

!

4 2 560 3 23 + C!

5 CLS CR
6 Last edit in: " EDN2*
7 *. CR .INFO CR
8 PEL. 3 TO 7BUFSM
9 DSKFLS ;

1.0

1

1

12
13
14
15

Screen: 149
0 (val DOS file editor 1.0)

1

2

FORTH DEFINITIONS

4 s EDIT DOS (—)

5 6ETAR6S 7WRGARG
6 TOPOM 40 -- EDITOR TO MENTOR
7 DOS 44 ("

,,

"
> GETARB 0=

8 IF DIJP END IF TO Nl* TO N2*
9 0 (CLOSE) N 1 $ (?OPEN)

1 0 I

F

1 1 0= FLOPN 7CMDERR
12 ELSE
13 DSKERR FLDNE = 7SYSERR
14
15 —

Screen: 150
0 (val DOS file editor 1.0)

1

2 CR Ml* *.

3 . " does not exist, create? "

4 +Y/N NOT CR IF ;S END IF

5 Nl$ (ENTER) 7SYSERR
6 END IF
7 UNIT DIRTBL C® ENTRY 1+ ®

8 N2* (70PEN)
9 IF
10 0= FLOPN 7CMDERR
11 UNIT DIRTBL C® ENTRY 1+ ®
12 ELSE
13 DSKERR FLDNE = 7SYSERR 0

14 END IF -

15

Screen: 151
0 (valDOS file editor 1.0)

1

2 UNIT FSMBET
3 FSMAP 3 + ® SWAP - DUP 20 <

4 IF CR
5 . " Warning, disk space " 0>
6 IF . " low'"'

7 ELSE ." empty" END IF
8 . " , edit?"
9 +Y/N NOT CR IF ;S END IF
10 ELSE DROP END IF
11 UNIT DIRTBL C® ENTRY C® 32 AND
12 IF CR
13 . " File is locked, edit? "

14 +Y/N NOT CR IF ; S END IF
15 END IF —

>

Screen: 152
0 (val DOS file editor 1.0)

1

2 Nl* EDITOR EDN1 * OVER
3 C® 1+ 16 MIN CMOVE
4 DOS N2$ EDITOR EDN2* OVER
5 C® 1+ 16 MIN CMOVE
6 EDTSTP 0 TO INSRT
7 TXTBOT DUP TO DSPTOF TO CURLN
8 0 TO XLOC 0 TO YLOC GETLN
9 CR . INFO CRWT PROCESS ;

10
11 FORTH
12
13
14
15 — >

Screen: 153
0 (val DOS file editor 1.0)

1

2 : LL. EDITOR < — >

3 EBN2S EDN1* 16 CMOVE
4 PAD 7PADSM <>
5 IF 0 TO XLOC 0 TO YLOC F'BL.

6 BLEN + LLEN + 2+ DUP TO TXTBOT
7 DUP TO DSF'TOP TO CURLN
8 BETLN END IF EDTSTP PROCESS ;

9
10 : WHERE DOS (— >

11 FLF'L# FLBUF® -DUP 0=
12 IF
13 CR No error on record..."
14 CR QUIT
15 END IF —

>

Screens 154 Screens
0 (val DOS file editor 1.0) 0
1

0 (CLOSE) 14 + 3
1

o
FLNME EDITOR EDN1* 16 CMOVE 3

4 DOS FLNME: EDITOR EDN2H 4
5 16 CMOVE EDTSTP 5
6 1- TXTBOT + DUP PRVLN 6
7 SWAP OVER - 1- TO XLOC 7
8 DIJP TO CURLN 0 TO YLOC 6 0 8
9 DO 9

10 DUP PRVLN 10
1

1

SWAP OVER < > AT YLOC +

!

11
12 LOOP 12
15 TO DSPTOP 13
14 1 TO INSRT 14
15 PROCESS ; —

>

15

Screens 155 Screen
0 (valDOS file editor 1.0) 0
1 1

2 s #BUFS EDITOR < n —)

3 5 MAX 320 MIN LLEN * 3
4 7 BLEM ! 0 TO 7PADSM 4
5 PEL BLEN + LLEN + 2+ 5
6 DUF TO TXTBOT DUP 6
7 TO DSPTOP TO CURLN 7
8 0 TO XLOC 0 TO YLOC f 8
9 9
10 FORTH 10
1 1 11
12 BASE 1 12
13 13
14 14
15 15

157

158

Screens 156
0

Screen

1

0
1

2 n
X-

3 t;

4 4
5 5
6 6
7 7
8 8
9 9

10 10
1

1

1

1

12 12
13 13
14 14

Screens 160 ocreen:

0 < file editor load message) 0

1 1

2 CLS 2

3 CR CR CR 3

4 . " valDOS and the basic DOS" CR 4

5 . " commands must be loaded" CR 5

6 before the file editor" CR 6

7 ,
" is compiled." CR

B C,R 8

9 . " Insert the valDOS I disk" CR 9

10 . " and load the necessary" CR 10

11 ." routines." CR 11

12 CR CR 12

13 FLUSH 13

14 14

15 15

Screen: 161 Screen:
0 0

1 1

4
5
6
7

8
9

10
1 1 .

12
13
14
15

4
5
6
7
8
9

10
1

1

12
13
14
15

Screen: 162
0
1

Screen

:

0
1

4
ej

6
7
8
9
10
1

1

12
13
14
15

4
5
6

7
8
9
10
11

12
13
14
1

5

163

164

1 65

Screen; 166
0
1

4
5
6

7
a
9
10
1

1

12
13
14
15

Screen: 169
0
1

4
5
6

7
B
9
10
1

1

12
13
14
15

o

Screen: 167
0
1

4

5
6
7
8
9

10
1 1

12
13
14
15

Screen; 170
0 CONTENTS OF THIS DISK:
1

2 CASE STATEMENTS:
3 SCREEN CODE CONVERSION:
4 KEYSTROKE WORDS:
5 DOS FILE EDITOR 1.0:
6

50 LOAD
60 LOAD
70 LOAD
100 LOAD

7
B
9

10

**** CAUTION **## CAUTION #*##

This is a DOS -format disk
with screens 50-79 and 100-179

o

11 locked out for FORTH source
12 code. Do not store FORTH
13 code on screens that are not
14 locked out!
15

Screen: 168
0
1

Screen

:

0
1

171

4
5
6
7
S
9

10
1 1

12
13
14
15

4
5
6
7
8
9
10
1

1

12
13
14
15

(

Screen: 172
0
1

4
5
6
7
8
9

10
1

1

12
13
14
15

Screen: 173
0
1

4
5
6
7
8
9
10
1

1

12
13
14
15

Screen: 174
0 (valDQS error messages)

1 Illegal filename
2 Bad/Mi smatched unit(s)
3 E-iad free space map
4 File already exists
5 Directory is full
6 Disk is full
7 Filename is ambiguous
8 File does not exist.
9 No room for buffer-

10 End of file encountered
11 File is not open
12 Illegal file number
13 File is locked
14 Bad argument list
15 File is open

Screen: 175
0 File is too big
1 File is random
2 File is not random
3 No room for random map
4 Random map is bad
5 File is a device file
6 File is not a device file
7 Illegal access to device file
8
9

10
11

12
13
14
15

Screen: 176
0 (Error messages
1

2 Stack empty
3
4 Dictionary full
5
6 Wrong addressing mode
7
8 Is not unique
9
10 Value error
1

1

12 Disk address error
13
14 Stack full
1

5

Screen: 177
0 Disk Error!
1

2 Dictionary too big

4
5
6
7

8
9

10
1

1

12
13
14
15

)

Screen: 178
0 (Error messages
1

2 Use only in Definitions

4 Execution only
5
6 Conditionals not paired
7

8 Definition not finished
9

10 In protected dictionary
1

1

12 Use only when loading
13
14 Off current screen
15

Screen: 179
0 Declare VOCABULARY
1

A

5
6
7
8
9

10
1

1

12
13
14
15

	valForth (cover)
	valForth 1.1
	General Utilities & Video Editor
	Player Missile Graphics
	Display Formatter
	Turtle & valGraphics & Advanced Floating Point
	Text Compression & Auto Text Formatting
	valDOS

