ATARI® PROGRAM EXCHANGE

SOURCE CODE FOR EASTERN FRONT (1941)

Chris Crawford

| APX-20095

User-Written Software for ATARI Home Computers

Chris Crawford

SOURCE CODE FOR EASTERN FRONT (1941)

APX-20095

SODOURCE CODE FOR EaoaSTERS FRORT ¢ 4S54 D
by

Chris Crawford

Frogram and Marual Contents © 1981 Chris Crawford

Copyright and right to make backup copies. On receipt of this computer program and
associated documentation (the software), the author grants you a nonexclusive license to
execute the enclosed software and to make backup or archival copies of the computer program
for your personal use only, and only on the condition that all copies are conspicuously marked
with the same copyright notices that appear on the original. This software is copyrighted. You
are prohibited from reproducing, translating, or distributing this software in any
unauthorized manner.,

TRADEMARKS OF aATaAaRI
The following are trademarks of Atari, Inc,

ATARI

ATARI 400 Home Computer
ATARI 200 Home Computer
ATARI 410 Program Recorder
ATARI 310 Disk Drive

ATARI 220 40-Column Printer
ATARI 222 Thermal Printer
ATARI 225 20-Column Printer
ATARI 230 Acoustic Modem
ATARI 350 Interface Module

R Ty Rt e e TR T TR R R R SRR S R R ST T R
Distributed by

The ATARI Program Exchange
P, O, Box 427
155 Moffett Park Drive, B-1
Sunnyvale, CA 24024

To request an APX Software Catalog, write to the address abave, ar call toll-free!

200/925-13842 (outside California)
200/672-1350 (within California)l

Or call our Sales number, 405/745-5525

SR PP

F R I H IR E R F R F R HE I E R E R LR F R R R RH AR R T LR RERREEFR

EASTERN FRONT DOCUMENTATION PACKAGE

This package contains material of value to any programmer attempting to
study the program EASTERN FRONT (1941). My purpose in making these materials
available 1s to provide programmers with an Instructive lesson in designing
and programming a major game. This program demonstrates many aspects of the
game designer's art: high-level design concepts, aigorithms for wargames,
programming structure and technique, and specific applications of the special
capabilitles of the ATAR! Home Computer™. | cannot claim that the program is
of textbook clarity; indeed, [t is fraught with clumsy Inanities. | made no
efforts to conceal or correct the mistakes in the program. | believe that
most programmers |ive by a double standard. They expect all code to be
clean, tight, and elegant, yet they are seldom able to achieve this goal. |
wanted to show this program "warts and all". | am not proud of the warts; |
simply won't deny +thelir exlistence. Furthermore, they are themselves
Instructive. By studying them, the programmer can see how mistakes are made
and can better avoid them.

My hope Is that people will study these materials to become better
programmers with the ATAR! Home Computer. There wlll also be smaller-minded
Indlviduals who see them not as Instructional materials but as sources of
profit. |'m sure some yokel will perform some trivial modifications to the
code and start selling WESTERN FRONT 1944 or some similar rip~off. Modifying
an exlisting program Iis a useful exercise for the beginning programmer.
Selling such a program wlthout proper authorization Is not legally secure,
economically realistic, or professionally respectable. |f you are seriously
Interested in modifying EASTERN FRONT 1941 for commercial reasons, +then
contact me before you begin work. | will entertain proposals for extensions
which do not sully the original product.

This Is a very complex program; to explain completely all aspects of the

program would take far too much space. | have *fried to Include in this
package all the key Items that a programmer would need to understand the
program. | assume that the user of this package is already a competent
programmer who Is familiar with assembly language and the structure of the
ATAR! Home Computer. | also assume that you have played the game and
understand 1its functions. This makes my task shorter. I1f you are a
beginning programmer, you will not be able to understand what is In here.
Even the competent programmer will find some of the quirks of this program
mystifying. A few of these strange quirks are brilliant strokes of

programming genius; the majority are simple mistakes.

Ol lafed

The following items are included In this package:

Program structure overview 3
Data moduie explanation 4
Interrupt module explanation 10
Mainline module explanation 17
Combat module explanation 24
Thinking module explanation 30
Narrative history of development cycle 42
Character set descriptions 51
Memory map 54
Terrain map 55
Unit characteristics charts 56
DLI sequence chart 59
Point system for artificial Intelligence 60
Tumblechart for artificial Intelligence 62
Terrain values table 63
Data module source code listing 64
Interrupt module source code |isting 154
Mainline module source code |isting 179
Combat module source code |isting 197
Thinking module source code |isting 207-225

Source code on diskette

N

EASTERN FRONT STRUCTURE

EASTERN FRONT 1941 is divided into six modules. The program was
developed with the Atari Assembler/Editor cartridge, which has no linking
facility. Therefore, the modules were |inked by hand. This makes the
program more difficult to understand and modify.

The six modules and their functions are as follows:

FONTS.DAT a data module containing character fonts for the map
EFT18D.ASM Data module: display list, map and ftroop data

EFT181 .ASM Interrupt routines: joystick, scrolling, orders
EFT18M.ASM Mainline: initialization, movement, seasons
EFT18C.ASM Combat: combat and logistics routines

EFT18T.ASM Thinking: artificial Intelligence routines

The sequence above is the historical sequence In which the modules were
developed. The later modules are structurally higher than the earlier ones.
They frequently make use of subroutines and tables In the earlier ones while
the reverse is rare.

The program was designed to run In a 16K machine with a cassette only.
To achieve this goal | had to scrunch the program very tightly. The lack of
good linking facllitlies made scrunching a difficult task. | was forced to
take some subroutines and data tables out of one module and insert them Into
another module. Many times the positioning of a subroutine or table was
decided not by logic or structure but rather by the fortuitous discovery of
a chunk of spece in one module that was precisely the right size +to
accommodate the homeless code.

Virtually all of the memory space avallable to the 16K system is used.
There are a few unused chunks of RAM, but they are rather small. I did
preserve the 1K region used by the Operating System for I+s Mode O display
l1st and display data. This RAM could be stolen by a desperate programmer,
but the Mode 0 display shown while loading the program would go wild,
possibly frightening the user into unfortunate recourse to the SYSTEM RESET
key. The programmer should study the global memory map on page 54 very
ciosely before appropriating any memory. You should also refer to the

appropriate source code listing. | repeat, there is very little available
memory .

DATA MODULE

This Is the simplest of the modules. It is nothing more than a
collection of data bytes. Many inexperienced programmers think of a program
in terms of the executable code. The code is only one portion of the entire
program. The data is +the other major component. Both components are
necessary, but many programmers neglect the data. Don't make this mistake.
The data needs as much attention as the code.

MILITARY STATE VARIABLES

The first data tables are the values for the military units. These are
presented in a more orderly fashion in the Unit Characteristics Chart on
pages 56-58. There are 159 different units recognized in this game. Of
these, 54 are German and 105 are Russian. These numbers are critical; you
will see them often in the code In one form or another.

The first two data tables are CORPSX and CORPSY (lines 30-330). These
tables specify the initial map coordinates for the military units, corps for
the Germans and armles for the Russians. The coordinate system is the same
one used for the map; see the map reproduced on page 55.

The next two data tables are MSTRNG and CSTRNG (lines 340-570). These
tables store +he muster and combat strength of the units. The combat

strength is Initiallzed at the beginning of the game to equal the muster
strength.

Next comes the SWAP table (lines 580-790), This table serves two
purposes. It contalins the character type of the unit (infantry or armor) for
use when the unit Is put onto the map. The same table alsc acts as a buffer
to store the ferrain underneath the unit. The unit's image is swapped with
the terrain image, hence the label.

The table called ARRIVE (lines 800-1000) tells the turn on which each
unit first arrives on the map. It Is a reinforcement schedule. Note that
some units are set to arrive on tfurn 255, As in the real worid, it is
sometimes more convenient +o postpone beyond reasonable |imits some
commitment that we cannot actually refuse but no longer wish to honor. This
table is frequently used to determine If a unit is on the map. Many sections
of code begin with LDA ARRIVE, X/CMP #$FF/BEQ NEXT to weed out units that are
elther already dead or not yet on the map.

CORPT (lines 1180-1380) specifles the type of unit. There are many
different types of units in this game, but only three types are recognized In
the mechanics of the game: Infantry, armor, and militia. | do recognize
different types of units for identification purposes. There are
panzergrenadier, mountain, paratroop, and SS units for the Germans and
Guards, tank and shock armies for the Russians, among others. There are also
the different nationalities. All these factors are encoded In the single
CORPT constant.

CORPNO (lines 1390-1590) specifies the milltary unit number, as in the
48th Panzer Corps. This Is another quantity that has no significance to the

operation of the game but is included for the unit description when a unit is
examined. Such nonfunctional elements in a game are referred to as "color".

| call them "dirt". My bad manners are exceeded only by my hypocrisy, for |
still use such elements in my own games. Oilnk.

These eight parameters completely determine the state of a milltary
unit. They were the first items | defined when | set about designing the
game. By defining them at the outset, | fixed what the game would and would
not be able to do. This lent focus to the design. Before doing any
simulation, you must declare precisely what you know before you attempt to do
anything with It.

WORDS TABLE

Another chunk of this module s devoted to the WORDS table (lines
1010-1170), which gives the text strings used in the text windows. | decided
to use a fixed field size of eight characters rather than a variable field
size. There are only a few cases where the words | need are too long to fit:
SEPTEMBR, HUNGARAN, PARATRP, PZRGRNDR. The decision to use eight characters
per field was a good one. The code to put text on the screen is fast and
simple, and the data tables required are short.

CONVERTING BYTES TO DIGITS

Line 1600 begins one of the strangest ideas | have ever implemented In a
program. It is also one of the stupidest. | was worried about the
conversion of hexadecimal byte values in my tables Into numeral strings on
the screen. Whenever the player presses the button to raise a unit in the
cursor, the Iinterrupt routine must put a considerable amount of Iinformation
info the text window. I+ must first find out which unit is In the cursor,
then look up the unit's CORPNO, CORPT, MSTRNG, and CSTRNG. ¥ must then
translate all these quantities into readable text and place that text onto
the text window. Furthermore, the entire operation must be completed during
the 2000 machine cycles available in the vertical blank interrupt routine.
These requirements Impose severe time constraints on any code.

My solution was pretty ruthless. | created three tables in memory, one
for the hundreds digit of a byte, one for the tens digit, and one for the
ones dligit. With these tables the task of hexadecimal to decimal text
conversion became simple. | put the byte to be converted into the X register
and LDA HDIGIT,X. That one Instruction produces the hundreds digit. Simllar
operations with TDIGIT and ODIGIT give the other digits. The total time for
conversion is 12 cycles. That's extremely fast! Unfortunately, It is also
extremely RAM=-expensive. Those three tables require 768 bytes.

The alternative is to calculate the conversion value rather than look i+
up. The following routine Is a standard way to solve the problem:

;start with byte to be converted in accumuliator

LDX #$FF
SEC

LOOP1 INX
SBC #%64
BCS LOOP1
STX HDIGIT
ADC #%64
LDX #S$FF
SEC

LOOP2Z iINX
SBC #%0A
BCS LOOP2
STX TDIGIT
ADC #350A
STA ODIGIT

This code will require at most 108 cycles to execute. Now, 108 cycles

Is not much machine time, but the conversion has to be done three +times
during vertical blank Interrupt. Thus the method | chose to use saves me
nearly 300 machine cycles out of 2000 available. That is why | chose a
memory-wasteful algorithm.

Did | make the right decision? It Is very difficuit to calculiate how
many cycles my routine needs. | know that it consumes at least 1700 cycles
in the worst case. Without a logic analyzer it Is very difficult to say
anything more. | might have gotten away with the standard algorithm. This

discussion Illustrates the nature of the guesswork that a designer must use.
When you are in the early stages of writing a program, you have no way of
knowing how big or how slow your code wiil be. You must rely on hunches.

My hunch toid me to trade memory for time. Such conservatism Is very
Important in the early stages of the programming phase. Once a problem Is
built into a program, it is extremely difficult to expunge. Problems should

be prevented before you have exhausted vour reserves of memory and execution
time.

MORE MISCELLANEOUS TABLES

The next table in the data module is called TXTTBL (lines 2450-2500).
I+ is a table of long text messages. | chose a fixed fleld length of 32
bytes for these messages. There are only three messages here.

MONLEN (lines 2510-2520) is a table giving the lengths in days of the
months. MONLEN is 13 bytes long. More astute readers may recall that this
does not quite correspond with the number of months in a year. This is an
example of lazy coding. I chose to number my months from 1 rather than
zero. I+ made more sense to me. | was unwilling fto hassle with the

redefinition problem arising from my Inappropriate numbering system. Rather
than think the problem through | decided on a brazen solution. "What the
helll", | cried, "Let's waste a byte! I've got plenty to spare!" I'm a
devil-may-care rascal.

The next two tables, HMORDS and WHORDS (1lines 2530-2540), keep track of
the orders glven to the units during the course of the game. They are
Initialized to zero at the beginning of the game. HMORDS tells how many
valid orders are In storage, and WHORDS tells what the orders are. This
game uses a rectangular grid, so each unit can move In any of four
directions. |t takes two bits to specify one of four orders. Thus, the two
bytes of WHORDS allocated for each unit can store up to eight orders.

There Is an interesting bug in EASTERN FRONT 1941 associated with these
two tables. Under certain conditions HMORDS can get a value greater than
eight. When this happens the arrow showing the future path of the unit
keeps moving right off the edge of the map. | have never found the cause of

the bug. The bug is rare and nondestructive, so | never bothered expending
the time to track It down.

BEEPTB (line 2550) Iis a table of frequencies used to give feedback when
the joystick Is used to give orders.

ERRMSG (lines 2560-2630) Is a table of error messages. Like the other
text messages, | use a fixed fleld length of 32 bytes. Only four error
messages are supported, yet together they consume 128 bytes of RAM. This
demonstrates why textual error messages are so rare in personal computers.

The number and type of error messages are a revealing indication of the
quality of human engineering In the program. The ideal program has no error
messages, because It would make errors inconceivable. The four errors
generated by this program could have been avoided with sufficient effort on
my part. All four concern the entry of orders. The "only eight orders
allowed" error could have been prevented by the simple expedient of using
more bytes for storing orders. Of course, there has to be some kind of
limi+, and | think eight Is a reasonable |imit, so | can rest easy with this
one. The "please wait for Maltakreuze" error was purely a matter of
programmer convenience; | had problems Implementing the code necessary to
allow orders to be entered immediatly, so | hid behind the excuse that the
user should walit to see what he has already entered before he adds new
orders. Again, this is a reasonable defense. | now think that | should
have sped up the arrow so that it moves faster. This would have made the
error less common. The error "That is a Russian unit" could have been
dispensed with. |1+ might have been better to ignore orders given to Russian
units. | don't know about this one. The last error, "no diagonal moves
allowed", bothers me greatly. | could have allowed diagonal moves, simply
interpreting a diagonal move as a combination of horizontal and vertical
moves. However, the resolution on the joystick is so poor that many people
can mistakenly enter a diagonal move when they intended to enter only a
horizontal or vertical move. | am torn between protecting my user and
accommodating him.

The tables In lines 2640-2680 are used for logical manipulation of the
joystick entries and for unit motion.

TRTAB (lines 2690-2700) is a table of monthly colors for trees. It Is
the table that allows me to change the color of the frees as the seasons go
by. I+ is only 13 bytes long. The extra byte can be attributed to my
wanton disregard for the requirements of tight coding.

MLTKRZ (line 2710) Is a bit map of the maltese cross.

The RAM from $6000-$63FF is reserved for the two graphics character
sets. They are contained In file FONTS.DAT.

The display list comes next (lines 2780-2830). I+ Is rather long
because | reload the memory scan counter on each ANTIC mode 7 line. This Is
necessary for proper fine scroliing. Note also the biank lines Inserted
Iinto the display |ist.

ARRTAB (line 2840) is a bit map of the arrows used to display existing
orders. One shape is used for each of the four cardinal directions.

The screen data for the text window comes next. An interesting oddity
of the text window arises from the history of the program. | originally put
the date window in the main text window at the bottom of the screen. Later
on | decided for aesthetic reasons to move the date window to the top of the
screen. This was accomplished with a simple change In the display |lst.
The upshot of this Is that the screen data area for the date window comes
after the screen data area for the text window at the bottom of the screen.

Lines 2950-5400 contain the map data. This huge chunk contains all of
the terrain. |t acts both as display data and as terraln behavior data. |
had no need to keep separate images of the map, one for display and one for
computations. The same 2K chunk fills both needs. The numbers stored here
are the character codes for the ANTIC mode 7 display. The 127 code is a
border character used to Indicate the edge of +the map. For a fuller

understanding of how the map works, consult the map Image fligure and the
character set definition.

Line 5410 gives a table called STKTAB. This table is used in decoding
Joystick values. You may have noticed that | use tables rather heavily. In
general, table-driven solutions to programming problems are frequently more
desirable than solutions implemented directly In code. They offer far
greater flexibillty and are normally simpler to program. Furthermore,
table-driven routines normally execute faster than code-intensive routines.
This polnt Is discussed further in the comments on the interrupt module.

The TRNTAB (1lines 5440-5490) specifies the number of subturns expended
fo enter a gliven type of square under given weather condltions. A wargamer
would call 1t a movement point costs chart. An entry of 128 indicates that
the square in question can never be entered. The operation of this table Is
a little messy. There are ten terrain types supported, with different
values for each of three seasons and two unit types. Thus, there are sixty

entries In this table. Ten entries for infanftry alternate with ten entries
for armor. Twenty entrlies for summer are followed by twenty for mud and
twenty for snow. The SSNCOD table on line 5430 gives an Index Into TRNTAB
as a function of month. The terrain table is on page 63.

The four following tables (BHX1 through BHY2---1ines 5500-5570) specify
biocked movement paths. One of the worst problems | encountered in
designing the movement algorithms of this game involved blocked movement.
It is a simple matter to determine whether motion into a particular type of
square, say an ocean square or a border square, Iis forbidden. Just look at
the terrain type and you know that no unit can enter the square. However,
there are unfortunate circumstances in which fwo legltimate squares can be
Inaccessible to each other. For example, consider the coast!ine squares of
southern Finland and northern Estonia. These squares are adjacent to each
other and are all land squares, so a simple-minded program would allow units
to move freely from one square to the other. The only probliem with this Is
that the Gulf of Bothnia lies between the two coastlines. Armies cannot
walk on water. How can the program detect this condition?

| wrestled with a number of possible algorithms. Most of my early
attempts focused on devising an Intellligence that would perceive the nature
of the situation and act accordingly. | tried all sorts of clever
algorithms. All were big and slow. None worked rellably. The scheme |
finally chose is remarkably stupid. | found only 11 pairs of squares on the
map that caused this problem. | created a table of these square palirs.
During movement, the program tests if the unit is attempting to move between
a forbidden pair. |f so, movement is denied. The table labels stand for

Bad Hex X coordinate 1, Bad Hex Y coordinate 1, etc. I'm an old time
wargamer and | stiil think in terms of hexes even though the game uses
squares.

This case is an excellent example of the usefulness of table-driven
solutions. Logic=driven solutions did not work acceptably, yet the
t+able~driven sclution was simple and easy to Implement.

The last chunk of RAM reserved by the module Is EXEC. This table holds
the execution times of the units. The number stored here specifies the
subturn in which the unit's next order will be executed.

INTERRUPT MODULE

This module handles all of the 1/0 for the game. It consists of two
routines: a vertical blank interrupt routine which is executed at the
beginning of each frame, and a display list interrupt routine which is
executed several times during each frame. |+ Is not possible for these two
routines to operate together, or for one routine to interrupt the other. The
vertical blank Interrupt routine reads and responds to the joystick. 1t
performs the scrolling, picks up unifts and displays the unit data, accepts
orders 1inputs, and displays existing orders. The entire vertical blank
Interrupt routine must operate under tight timing requirements, as there are
only 2000 machine cycles available during vertical blank.

COORD INATE SYSTEMS

The coordinate systems used by this module will drive you nuts. | must
admit that | didn't quite know what | was doing as | wrote this module, so
whenever | encountered a problem | simply spawned a new coordinate system to
deal with It. The result is a maddening plethora of systems and units of
measurement. To some extent | can blame the problems on the complexity of
handling a constant space that must be addressed in several different ways
and can also scroll across the screen. When player-missile graphics, with
- their independent coordinate system, are thrown In, the situation gets
messier.

The first coordinate system keeps track of the cursor against the
background of the map. This coordinate system is measured in units of color
clocks and pairs of scan |lines. Its basic unit [s the smallest visual
increment on the screen. Thls coordinate system sees the map as a gridwork
304 pixels high and 360 pixels wide. The position of the cursor in this
system Is recorded in zero-page addresses CURSXL, CURSXH, CURSYL, and CURSYH.
This system Is used for managing the scrolling functions.

The second coordinate system Is a character-level version of the first
system. This system measures the map as a gridwork 38 characters high and 45
characters wide. This system is useful for ascertaining the unit or terrain
that the cursor is over. I+ Is maintained with the zero-page variables
CHUNKX and CHUNKY .

The third coordinate system maintalns player-missile screen coordinates.
It uses SHPOSPO (shadow of horizontal position of player 0) and SCY (shadow
of cursor Y=-coordinate). This coordinate system 1Iis critical for all
player-missile manipulations, for it is the only link between the scrolling
map and the player coordinates.

The fourth and final coordinate system identifies the position of the
map relative to the screen. It Is useful for calculations involving the
relationship between the map as a whole and the subset that the user sees.
|t uses the variables XPOSL, YPOSL, and YPOSH.

-10=-

DATABASE

There are three primary database regions used by the interrupt service
routines. The first is the data area on page zero In locations $BO-$BF. |
allocated a good portion of my avallable page zero space for the interrupt
routines because they are so time-critical. Most of the values stored here
are coordinates. The second database region is the variable storage area on
page six. This Is used for single-byte variables (not tables) that have
lower priority. Most of these values are also coordinates for the various
graphics critters that run around on the screen. There are also a variety of
counters and miscellaneous varlables. The third database area for these
routines Is the database established by the data module. This consists of
tables.

PERSONAL PROGRAMMING STYLE AND CONVENTIONS

A word on my personal programming practices 1Iis In order. Every
programmer has |ittie conventions about writing code and assigning labels.
My conventions are simple. Labelled points that are merely the destinations
of branches that skip over code are given meaningless labels. These points
are typically not significant entry or exit points, but rather simple highway
markers. | have found that trying to cook up descriptive labels for every
destination point taxed my |imited creative powers too heavily. | therefore
adopted the simple expedient of labelling them In sequence X1, X2, X3, etc.
up to X99. When | ran out of X's | went to Y, then Z, then A. This does not
mean that | used 400 such labels. | wrote many sections of code that | later
discardecd; | discarded old labels along with old code.

Looping points were always assigned the label LOOPXX, where XX I[s a
two-digit number. When | reached LOOP99, | went to LOOPA, LOOPB, etc. Only
major entry points or truly significant program points received meaningful
|abels.

Variables are usually assigned meaningful names, although sometimes the
references are obscure. | prefer to use defining suffixes rather than
prefixes. Thus, coordinates will have an X or a Y suffixed to indicate thelr
dimension. The suffixes LO and Hl Indicate the low order and high order
bytes of a 16 bit number such as an address. CNT or NDX normally indicate
some type of counter or index. FLG indicates a flag which is set to Indicate
a condition being met and cleared to indicate the condition not being met.

| always set aside several temporary variables called TEMPthis or
TEMPthat. My rule for such variables Is absolute: such a variable Is always
usable for very short-term storage and may never be used for storage
exceeding one-half page of source code. | have a short memory.

VERTICAL BLANK INTERRUPT CODE

The VB! routine begins at $7400. |t begins with a now-defunct break
routine that | used for debugging purposes. This is a valuable tool for any
serious programmer. I+ 1s prudent to build diagnostic tools Into the
software to facllitate debugging. This tool is keyed to the joystick in
controller jack #2. You can Jump out of the program and back into the
Assembler/Editor cartridge by plugging a joystick into controller jack #2 and
pressing the trigger button. | masked out the code by brute force in the
final version. | bellieve so strongly In the Importance of good debugging
tools that | did not mask out the routine until the very last minute.

The next section of code handles the handicap option. |t reads the
console tfo see [f the OPTION key is pressed. |f so, It sets the handicap
flag and changes the color in the text window. The change is effected by a
rather sorry example of self-modifying code. I'm getting finicky about
self-modifying code. To be worthwhile It really should do something
surprising. This particular application accomplished nothing more than to
save me a few minutes of programmer time and destroy any last shreds of
respectabil| ity the program may have had.

The code beginning at |ine 2000 determines the state of the button and
responds to it. It is tricked by the variable BUTMSK, a button mask set or
cleared by the mainline routine to prevent the vertical blank interrupt
routine from responding to the button. There are actually two conditions
that must be tested. The first condition Is the current state of the button,
and the second is the state of the button in the Immediately preceding VBI.
The previous state of the button is recorded in BUTFLG. |f both are false
(neither the button is down nor was it down earlier) then we immediately
proceed to test the joystick. Recall that the button-down condition is
signalled by the critical bit being zero. |f the button was down but Isn't
now down, then it was just released, and we must clear the text window and
clear any flags and sounds that had been set. We must also unswap any unift
in the cursor (more on this later). Finally, we clear out the maltakreuze
and the arrow In case they were being displayed.

|f the button was down and is still down, (BUTHLD) we must test the
Joystick for orders. First we check for a space bar being pressed; this
would cause the orders to be cleared. Then we move the arrow (lines
2660-3330) until it reaches the maltakreuze. The task of moving the arrow Is
Involved. The unit's orders must be retrieved and the relevant order must be
stripped out of the byte. The arrow must be positioned and moved according
to the order stored. Furthermore, the display Is not done In a single pass
of the vertical blank interrupt but In several. The speed of the arrow Is
set with the operand of the instruction in line 2630, The display of the
maltakreuze Is a somewhat simpler task (lines 3370-3590). The critical
values for this routine are (BASEX, BASEY) which give the player-missile
coordinates of +the dlisplayed unit, and (STEPX, STEPY) which give the
player-missile coordinates of the arrow along its path.

The next button response routine is called FBUTPS and is the response to
the first pushing of the bufton. This one does a lot of work. First it
calculates (CHUNKX, CHUNKY) from the cursor coordinates. Then it attempts to
find the unit (if any) underneath the cursor. This search alone can consume

-12=-

1700 machine cycles. |f It falls fo find a match, the routine terminates.
If 1t finds a unit under the cursor, then i+ must display the Information on
t+he unit.

The display routine is long (lines 4430-5350) but straightforward. The
Y-register acts as an Index Iinto the text window for all display
computations. As the characters are put Into the +Yext window, Y s
Incremented. The Important coordinates BASEX, BASEY are computed in lines
5070-5240. These coordinates are exressed in the player-missile coordinate
system. They are computed from the cursor coordinates SHPOSO and SCY.
Unllke the cursor, which can straddle mep gridlines, they must be properly
registered in the map grldwork. The computations in these |ines center
BASEX, BASEY on the unit.

The HMORDS and WHORDS values are shadowed out of their tables and into
special locations on page six (HOWMNY and ORD1, ORD2). This Is done In lines
5280-5340; its purpose Is to make the orders processing simpler.

The orders Input routine follows (lines 5390-6570). |t is only entered
when the button is held down and has been held down for at least one previous
VBlI. There are several error conditions which are tested before orders are
entered (lines 5410-5660). These include giving orders to Russlan units,
exceeding elight orders, fallure to wait for the maltakreuze, and entering
dlagonal orders. All errors result In a jump to SQUAWK, the nasty noisemaker
routine which displays an error message.

This code also includes a debounce test. Simple switches bounce when
first opened or closed, generating a sequence of on-off pulses spanning
several milliseconds. A sufficiently rapid polling routine would read this
sequence as many switch presses, and would enter multiple presses where the
user had only pressed once. A common solution is fto set a debounce timer
that delays response to the entry for a period of time exceeding the bounce
t1me., Such debouncing Is automatically provided by the VB! routine's 16
miilisecond polling period, but | inserted a very long debounce (160
milliseconds) anyway. | did this partly out of conservatism (never trust the
machine to work properly) and partly to provide some protection against minor
mistakes with the joystick. The delay of 1/6th second 1is not readily
noticeable and gives some extra protection against errors.

The next chunk of code (lines 5700-5750) generate a feedback beep in
response to the order. Next the new order must be folded Into the exlisting
orders. The task Is to Iinsert the two-bit order code specified by the
Jjoystick into the current orders byte. This requires some bit-twiddling.
First we determine which of four bit pairs in the byte to use; the bit pair
number is put into the Y-register and saved in TEMPI (lines 5810-5870). Next
we determine which of the two orders bytes should be twiddled. This byte
index Is either a 1 or a 0 and is put into the X-register (lines 5880-5930).
Next, we shift the joystick entry bit pair upward in the byte to correspond
to its desired position In the orders byte (lines 5940-6000). Lastly we fold
our new order Into the orders byte with a flendishly clever bit of code that
| learned from the fellows at Coin-Op (lines 6010-6050). Thanks, Mike and
Ed.

The next routine repositions the maltakreuze (lines 6140-6360). This
routine is a trivial memory move which moves bytes from the bit map table
into the player RAM. It is of |ittle Interest.

The scrolling routine comes next. This routine Is an adaptation of the
routine | first distributed as SCRL19.ASM. I1f you are Interested In the
scrolling function of +the game, | suggest +that you purchase the
Graphics/Sound Demo diskette containing SCRL19.ASM from the Atarl Program
Exchange, for it presents a far more general and better commented program for
scrolling than this one. This scrolling routine differs from SCRL19.ASM in
several ways. First, scrolling does not occur until the cursor bumps into an
invisible wall near the edge of the screen. This Is accomplished with some
rather simple ad hoc tests in lines 7110, 7440, 7740, and 8220. The values
tested were derived by trial and error. Second, the cursor motion Is not
uniform; It accelerates In the first second of motion. The purpose of the
acceleration is to allow fine positioning without sacrificing speed. The
acceleration feature is achieved with a very simple bit of code using
variables called TIMSCL (t+ime to scroll) and DELAY (delay between scrolls).
By comparing TIMSCL with RTCLKL (real-time clock, low byte), the routine can
determine when to move the cursor.

Fine scrolling Is implemented by storing numbers directly into the fine
scrolling registers. Coarse scrolling Is implemented by accumulating a value
called (OFFLO, OFFHI) and adding it to the LMS operands in the display |ist.
This is done In lines 8650-8770. The final operation of the VBl routine Is
the preparation for the DLI routine. More on this later.

TABLES AND SUBROUTINES

The table JSTP is used by the artificial Intelligence routine. DEFNC is
used by the combat routine to figure the defensive value of a terrain type.
DWORDS displays a fixed text message pointed to by an 1index 1In the
accumu |l ator.

SWITCH Is an Important subroutine. |Its Iinputs are the coordinates of a
square CHUNKX, CHUNKY and the identity of a unit CORPS. The subroutine then
looks up the character code in the map and switches I+ with the value stored
In the buffer table SWAP. This switches the unit character with a terrain
character. The subroutine Is used to bring units onto the map. At the
beginning of the game there are no units on the map. Each one Is brought in
by subroutine SWITCH. Whenever the button is pressed and a unit is picked
up, the subroutine is called o replace the unit with the terrain character.
When the button is released, SWITCH is called again to put the unit back.
SWITCH is also used to move units; they are switched off the map, theilr
coordinates are changed, and they are switched back onto the map. SWITCH
does not distinguish whether it is placing or removing a unit. A single call
switches the unit character with the contents of its SWAP buffer; two calls
in a row switch It twice.

The internal operation of SWITCH Is simple enough. I+ computes an

-14-

indirect pointer (MAPLO, MAPHI) that points fto the beginning of the map row
containing the square. The Y-register provides the index tfo select the
proper map byte. The computation of MAPLO, MAPHI Is made simple by the fact
that there are 48 bytes per map row. Multiplication by 48 is easy: four left
shifts, a store, another left shift, and an add.

Subroutines CLRP1, CLRP2, and ERRCLR (lines 9900-10310) are
uninteresting routines which merely clear out a player or an error condition
and the text window. Nothing very fancy. BITTAB Is used to select pairs of
bits in a byte. ROTARR is a table used by the artificial Iintelligence
routines to rotate an array. OBJX is a data table used by the artificial
Intelligence routine.

DISPLAY LIST INTERRUPT SERVICE ROUTINES

The display list Interrupt routines are in Iines 10450-11340. They are
short, but very Important. They are a curious mixture of cleverness and
stupidity. The stupidity lies in the bucket brigade structure of the DLI
execution. There are seven different DLIs serviced by this routine; the
proper way to handle this many DLIs Is to have each DL| rewrite +the DLI
vector to point to the next DLI service routine. The technique Is described
In Section 5 of DE RE ATARI. Instead, | used a DLI counter which is tested,
bucket brigade fashion, until control finally reaches the proper DLI service
routine. The time wasted by the technique Is shameful.

The clever aspect of the code Is the way that a DLI is applied to the
map, even though the map is scrolled through the screen area. There are two
character sets for the map. The switch from the northern character set to
the southern one Is made at CHUNKY=15, Unfortunately, we cannot simply set a
DLI to hit on a specific mode line of the display, for there Is no way of
knowing 1f the map will be llned up with the screen properly. Indeed, with
vertical scrolling taking place, the point where the transition should take
place can be above, below, or on the screen. Obviously some cleverness is
required.

The solution | used was to calculate during vertical biank the mode line
on which the transition should take place. This value I[s calculated In lines
8790-8990 and 1s called CNT1. DLIs are set to hit on each and every mode
line in the scrolling window. The DLI code will not be executed until the
value of CNT!1 Indicates that the proper time has arrived. An alternative
solution would have been to rewrite the display list every time a scroll is
executed. There would then be at most one DLI bit set in the map window.
The technique would have saved a great deal of execution time, and so It was
the first technique | considered. As it happened, | encountered some
difficult problems making the code work properly, so | gave it up and went to
the present scheme using multiple DLI's only one of which does the work. The
former method should be practicable; | don't know why | couldn't get it
working. There's a lesson here: don't hold out for the elegant solution
which eludes your grasp when an Inelegant but workable solution Is
accessible. Readers of this document, a few score strong, will know what 2
klutz | am, but the thousands of happy users are none the wiser.

Another clever trick about these routines is in the timing. You may
notice that they do not appear fo be Iin a logical order. They have been
carefully ordered to ensure that the most time-critical routines are at the
front of the bucket-brigade, and the less critical routines are at the back
of the bucket brigade. There is also a careful distribution of labor In the

DLIs. Some graphics changes are made several lines before their effects are
visible on the screen. This is one way of dealing with the shortage of
execution time during a DLI. | make full use of the blank scan llnes to

perform some DLI chores. Blank lines are Ideal for DLI's because no ANTIC
DMA occurs during a blank line display; this leaves a full 55 machine cycles
for Phase One DL| execution.

Finally, there is a strange example of tight timing In the last service
routine. This routine is reached so late that it has almost no time before
horizontal blank. | found that the STA WSYNC instruction sometimes produced
skipped lines. This Indicates that the Insftruction was being executed Just
as horizontal blank occurred. Rather than *fry to force horizontal blank
synchrony, | decided to wait [t out with a few +ime-killing Instructions. It
works.

On page 59 Is a diagram depicting the sequence of changes made by the
display list Interrupts.

FINAL SUBROUTINES AND TABLES

Subroutine DNUMBR (lines 11390-11590) displays a number. I+ uses the
table-driven method described in the notes on the data module. You can see
that the code is certainly very clean and fast. Note that | was too lazy to
properly encode the screen values properly, so | must perform a CLC/ADC #3$10
which should have been done in the data itself. This waste of time In a very

time-critical routine is not very consistent with my motivations which led to
the use of this method.

NDX Is a table used by the artificial Intelligence routines to access
bytes in an array.

XINC and YINC are tables used for motion. They tell how much to add to
the X~ or Y=-coordinate given a step in any of four directions. | puiled an
Interesting stunt with YINC that shows how desperate | became for space.
YINC is really a table 4 bytes long. The last 3 bytes of YINC just happen to
be identical to the flrst 3 bytes of XINC. So | simply put the two together
and cut out three bytes. This Is a very dangerous way to save three bytes.
If for some reason the two are separated, the program will malfunction in
ways almost Impossible to debug. Somewhere in the innards of my computer is
an ugly green bug chuckling fo himseif. Someday he'll get me with that one.

OFFNC is a table of values used by the combat routines to evaluate
attacks.

-16=-

MAINLINE MODULE

This module handles the Initialization of the game and game turn logic.
It brings in reinforcements, figures the dates, seasons, and movement. The
combat and thinking modules are subroutines called by this module.

| went through the module stripping out unnecessary equates to make the
module somewhat smaller. This was necessary to make all of the source code
fit ontfo a single diskette. You may wonder why | had so many unneccesary
equates in the module in the first place. The five modules In this program
must communicate with each other, and they do so through the veriables In the
database. This Is impossible if the variables have not been declared in one
of the modules. Furthermore, you can waste a great deal of time on bad
assemblies discovering that some critical variable has not been declared.
The ATAR| Assembler/Editor cartridge is slow, and the printer slows things
down even more. | solved this problem with a simple scheme. | wrote the
modules in sequence. First the data and Interrupt modules, then the mainline
module, then the combat, and finally the thinking module. Each time
started a new module | created it by taking the previous module and stripping
away all the code, leaving only the equates. This insured that each module
inherited the complete database equate flle.

There were two problems with this technique. First, | had to make
certain that changes in an early flle such as the interrupt module were
properly transferred to all the succeeding modules. Also, equates In later
modules sometimes needed to be included In the earlier ones. This problem
plagued me throughout the development of the program.

The second problem with the ali-inclusive database equate file is that
the equate file eventually gets too large. The original equate file for the
mainline module was four pages long. By stripping out some (but not all) of
the unnecessary equates | was able to reduce It to only two and one-half
pages. As you can see, there was a lot of fat. So If you see unused equates
In the module equate files, don't get excited.

INITIALIZATION

The malnline routine begins with the Initialization routines. The
beginning of the mainline routine ($6E00) Is the address fto which the machine
Jjumps after the program Is fully loaded. The mainline routine must first
initialize all of the hardware registers and database values. The first
segment of code shows a common way to handle initiallzation of database
variables. A table of Initial values Is kept with the main program. These
values are then moved into the database reglon at the outset of the program.
There is one danger in this technique: if for some reason you come along
later and rearrange any of the database variables, the Initialization code
will put the numbers Into the wrong places. This code forces you to keep all
of your variables that require initialization together. I+'s not a bad idea
to keep all such varlables together, but it can be painful when you forget
and make changes.

There will always be miscellaneous initializations necessary; with these
you have no choice but to write a long string of LDA this, STA there,

-17-

instructions. The code Is simpie but you can waste a lot of bytes this way.
One trick for reducing the size of this type of code Is to group common
initial values together. This 1Is done in lines 1410-1460. Five very
different locations all needed to be Initialized to zero. Load once and then
store five times. A simllar method Is used for several tables in llines
1480-1570.

The initiallzations in lines 1620-2060 are ali quite straightforward.

MAIN GAME TURN LOOP

The outermost program iocop begins on |ine 2080. The variabie TURN is a
simple furn counter telling which turn we are on.

First come the calendar calculations. These are simple enough. | add
seven to the day, compare with the length of the month to see if a new month
has arrived, and correct If it has. There is even a provision for the leap
year In 1944 provided in lines 2190-2250. (At the time | wrote this routine
| was planning to have the game cover the entire campaign.) With just a
I1++!le effort the routine could be generalized to handle any leap year.

The tree color trick is executed In |lnes 2340-2350. Only two lines of
code (6 bytes) and 13 bytes of table are required to Iimplement the trick.
Color register Indirection can be powerfui Indeed, no?

Lines 2370-2670 put the date information onto the screen. They are
simple data move routines with no Interesting techniques.

The code in lines 2710-3080 is certainly the most obscure and clumsy
code | have written in a long time. The purpose of the code is to figure out
what season is in effect and perform any necessary changes related to the
season. Unfortunately, | did not take the time to think the problem through.
Instead, | just bulled Into it, making up code on the fly and patching It
together until it worked. The result is a gory mess.

There are four different variables (SEASN1, SEASN2, SEASN3, and EARTH)
to tell the state of the season. SEASN1 Is used to set the color of rivers
and swamps. It holds a $40 for unfrozen water and a $80 for frozen water.
SEASN2 tells 1f we are iIn fall or spring. This Indicates whether the
Ilce=line should move to the south or to the north. It holds a $00 +to
indicate spring and a $FF to Indicate fall. SEASN3 is loglically identical to
SEASN2 but contains a different value becuase It Is used In a different way.
It holds a $01 in spring and a $FF in fall. EARTH Is the color of the
ground, brown for summer, grey for mud, and white for winter.

The code In lines 3130~-3700 freezes the rivers and swamps. The
algorithm here is Interesting and Instructive. The critical variabies are
{CELAT and OLDLAT. ICELAT defines the ice-line, that Is, the latitude north
of which everything Is frozen. OLDLAT is the last turn's vaiue of ICELAT.

Everything between the two must be frozen. During spring, everthing between
the two must be thawed.

-18-

The routine begins by calculating the new value of ICELAT. Notice that
there is a random element in the determination of ICELAT. This randomness is
leavened by cutting down the size of the random number (AND #3$07) and adding
a constant (ADC #3%07). The result is a number ranging between $07 and $OE.

The code now prepares for the main loop which begins at LOOP40. It
initializes LAT and LONG, which are input parameters for subroutine TERR.
Then the loop begins. There are actually ftwo loops beginning at LOOP40. The
fundamental function of the loop is fto sweep through all the map squares in
the zone between OLDLAT and ICELAT, checking if they contain water. If so,
they are then frozen or thawed, depending on the season. A complication is
Introduced by the presence of military units. The program must pick up each
unit and look underneath to see what terrain Is there, modify the terrain if
necessary, and put the unit back down. This is gonna get messy, so hang on.

We begin LOOP40 by JSRing to subroutine TERR, an Important routine that
tells what type of terrain Is in a given square. We speclify the square's
coordinates in LONG and LAT, and it returns the contents of that square in
the accumulator. We then examine the terrain type. |If It Is the wrong type
of terrain (mountains, for instance), we skip ahead to NOTCH (as in "no
toucha da moichendize, ehl!"), which proceeds to the next square in the row.
If the square Is touchable, we freeze or thaw It with the single instruction
ORA SEASN1. Actually, we had already thawed it with the AND #$3F instruction
in Iine 3390; the ORA Instruction will freeze or ignore the byte depending on
the value of SEASN1. In line 3540 we store the results of our crime. MAPPTR
Just happens to point to the right place because It Is set up by subroutine
TERR. Convenient, no?

As | said before, NOTCH moves us on to the next square. This Is done by
the simple expedient of Incrementing CHUNKX. Of course, we must test to see
1f we have run off the edge of the map. This Is done in Iline 3580. If we
have reached the west edge of the map, we must reset CHUNKX and LONG to point
back to the east edge of the map. Then we must go one step to the north or
south depending on the season. This |s done by adding SEASN3, which is
either +1 or -1, to the latitude LAT. |f we have not reached the vertical
edge of the Iice region, we loop back to LOOP40; otherwise, we exit the
routine.

This Is a big, slow routine. You can tell how slow it is by watching
the freezing process In the game. You can actually see the iceline moving
southward In November. Note that the routine Is general enough that It can
operate through many different years.

The next routine (lines 3720-3960) brings in reinforcements---units that
have not been on the map up to now. This would be a simple routine if it
weren't for one small problem: what If the unit comes in on top of another
unit? We can't have that, so before we place the unit we have to see If
anybody else is already there. This Is all done In lines 3760-3840. Lines
3850-3880 notify the player of the arrival of reinforcements. If a unit was
not allowed entry onto the board, |ines 3910-3940 make sure that he'll get
another chance next turn by modifying his value of ARRIVE.

-19-

Logistics is handled in |ines 3980-4030. It is a simple loop with a
subroutine call. The subroutine Is inside the combat module; it Is discussed
in the essay on that module.

POINTS CALCULATION

Lines 4070-4760 calculate the current point score of the player. The
algorithm used is Involved. There are three factors used In calculating
points: 1) how many German muster strength points have been projected how far
east, 2) how many Russian combat strength points have been projected how far
west, and 3) how many special cities have been captured by the Germans. |
feel that this routine Is Instructive as a good example of a fast, short, and
simple routine that imposes reasonable and realistic demands on the player.
The Iimportance of the routine Is the algorithm, not the coding. The
algorithm 1Is optimized for +the strengths and weaknesses of the 8-bit
processor. Let's look at the implementation closely.

The routine starts by zeroing ACCHI and ACCLO, as these together
constitute the point counter, which is sixteen bits wide. I+ then enters a
loop that calculates the points for moving German units east. The longitude
of each German unit (CORPSX) is subtracted from a constant value of $§30.
This value is multiplied by MSTRNG/2 in |ines 4190-4280. The multiplication
is the stupidest kind: a simple repetitive addition. For single-byte
quantities the technique is not too expensive in time. Unfortunately, | did
not analyze the problem carefully and so | got the looping backwards. The
value of MSTRNG/2 is the loop counter In Y and the value of $30-CORPSX is the
added constant. The former value will almost always be larger than the
latter, so | should have used the latter as the loop counter. It's always
faster to add, say, 50 to itself 3 times than to add 3 to itself 50 times.
Oops.

After German points are calculated | begin calculating the effect of
Russian points. These will be subtracted from the points accumulated by the
Germans in the first loop. For the Russian units, a slightly different
algorithm Is used. Flrst, the combat strength, not the muster strength, Iis
used. Why? | didn't want to penalize the Germans for moving to the east.
Remember, during winter the Germans have a harder time getting supplies as
they move further east. So | had to use thelr muster strength. | also
wanted to reward the Germans for Russian units that were still on the board
but out of supply. So | used combat strength for the Russlians.

The sum of the Russian score s subtracted from the German score in
ITnes 4550-4590. Lines 4600-4680 award point bonuses for capturing cities.
A simple loop is used. Two tables drive this routine. One, MOSCOW, is a
simple set of flags that tell If the clities have been captured. The other,
MPTS, holds the point values for each of the cities. |f MOSCOW is set, the
number of points assigned for that clity are added to the point score.

The final operation associated with point evaluation is to halve the
total points if the handicap was used. The operation takes three |ines

-20-

(4700-4720) .

Once the points have been calculated, they must be displayed. This Is
done in lines 4730-4760 in an operation which by now shouid be famillar to
the reader. Next comes a test for end of game. The termination is not
particularly elegant. | simply put an endgame message onto the screen and
hang the game up In a loop. | am sure a more elegant termination could have
been arranged but | was too lazy to Impiement one.

Lines 4850-4930 deal with the artificial intelligence routine. They
allow the player to use the joystick button (by clearing BUTMSK) and put a
prompting message on the screen. Then +they jump to +the artificial
Intfei!lligence routine. The program spends most of Its time there. It does
not return until the player presses the START button. Then the joystick
button is masked out by setting BUTMSK and an appropriate message ("figuring
move---no orders allowed") is put onto the screen.

MOVEMENT EXECUTION

Lines 4970-5030 prepare the way for movement execution. They initialize
the subturn counter TICK and calculate the first execution time of each unit.
As mentioned in the player's manual, each turn Is broken into 32 subturns.
The movement cost to enter a square is expressed in terms of the number of
subturns necessary to walt before entering the square. Subroutine DINGO does
this calculation. The name DINGO Is absolutely meaningless. You should see
some of the labels | have used Iin other programs. When | was an
undergraduate doing physics programs | had a penchant for obscene labels. It
made sessions with the consulting programmer (especially lady programmers)
Interesting. The only problem with the Idea Is that there are a |imited
number of four-letter words, and | was forced to recycle each word in many
different incarnations. Later on | took to using names of animals, fruits,
foods, anything. | can't stand acronymic gibberish. | prefer creative
glibberish.

Lines 5050-6180 perform the movement. The outer loop beginning with
LOOP33 sweeps through all of the subturns. The Inner |loop beginning with
LOOP32 sweeps through all of the units. The Inner loop begins by performing
the combat strength recovery function. |f the combat strength Is less than
+he muster strength, It is Incremented. |[f the difference between the two Is
large, the combat strength may be incremented again. This ensures that large
units will recover combat strength faster than small units.

The most heavlily used test is at lines 5180-5190. This determines If
tThe execution time of the unit has arrived yet. If not, the loop proceeds to
the next unit.

An interesting stunt is pulled here. Program flow goes through Iline
5500, which is merely a jump instruction. You may wonder why | didn't insert

a jump at the original branch point. | did it to save a few bytes of memory.
Any big loop will have a variety of tests that call for abortion of the main
loop and Iimmediate procession +to +the next Iiteration. If +the loop is

considerably longer than 128 bytes, the 6502 branch instructions will not
work. The standard response to this problem is to replace the branch with
its logical inverse (e.g., BCS with BCC or BNE with BEQ) and follow it with a
JMP instruction. This costs three extra bytes. The waste can be reduced by
placing a JMP instruction halfway through the loop and having the local test
points branch to It. It acts rather |ike a collecting station for loop
abortions. Three bytes are saved for each abortlion path.

The remainder of the movement code retrieves the unit's orders, examines
t+he terrain in the destination square, and checks if it Is occupied. If It
Is occupied by a friendly unit, the moving unit must wait two subturns (lines
5450-5490). If It Is occupied by an enemy unit, combat occurs and Is
referred to the combat subroutine at $4ED8. |If the unit is allowed to enter
tThe square, either because It was victorious In combat or the square was
unoccupied, the code at DOMOVE, |ines 5550-6060, Is executed.

One last test must be made before actual motion happens. Zones of
control are tested in lines 5550-5740. |f zones of control do not Interfere,
the unit Is moved by SWITCHing it off +the map, substituting the new
coordinates as parameters for SWITCH, and SWITCHIng it back onto the map.
The now-executed order 1is deleted from the unit's orders queue (linss
5850-5920). A test Is made to see If the unit has entered a victory city.
If so, the flag for that city is set or cleared depending on the nationallity
of the moving unit. This Is done in lines 5930-6060. Lastly, the execution
time until the next order Is calculated by DINGO. Then the loop goes to the
next unit. When the last unit has had i+s chance to move, the subturn
counter TICK is incremented; when TICK reaches 32 a new turn begins. With
this the majo~ loop terminates.

The remainder of the module Is devoted to subroutines and tables. STALL
is a delay loop that kills time to slow down the action during movement. The
debugging routine that follows (lines 6420-6610) |inks with the debugging
routine first mentioned in the interrupt discussion.

TERR is a major subroutine. It sets up a pointer to the map (MAPPTR) on
page zero and retrleves the contents of the map at the coordinates LAT and
LONG. I|f the square contains a mllitary unit, It determines the Identity of
that unit as well as the terrain underneath the unit. Note that TERR returns
a terrain code identifler in the accumulator and unit identity (UNITNO). It
also returns the terrain identifying code in TRNTYP. It also returns the Z
flag of the 6502 processor status register set if the square was Indeed
occupied. Many calls to TERR are immediately followed by a BEQ or BNE
instruction; such calls are attempting to determine if a square is occupied.

TERR does contain an Interesting tidbi+. Lines 7220-7230 are strictly
error flag lines. They put an asterisk onto the screen. |f these lines are
ever executed a program error has occurred. The error arises when TERR finds
a unit character in a square but is unable to find a unit whose coordinates

match those of the square. I+ turned out that this condition could arise
from a iarge number of bugs created by other sections of code. | would never
find out about the problem during testing until it was too late to track the

bug down. So | put this code in to warn myself. As it happens, there is

another symptom of the bug that Is more interesting. The program becomes
confused and starts mixing terrain codes with unit codes. The next thing you
know, trees, clities, and rivers are marching around the map, fighting
batties, retreating, and carrying on In very unterrainlike ways. | tracked
down this bug diligently; | believe that It Is now quite dead.

Subroutine DINGO 1s the next subroutine In sequence. |t looks up a
unit's orders, finds out the terrain In the destination square, determines
the delay Imposed by that terrain, and stores the delay in the unit's EXEC
storage.

Subroutine TERRTY determines the type of terrain in a square, given its
character code (TRNCOD). There are several different character types for
each terrain type, so some logical analysis of character types Is necessary
to determine terrain types. I+ Is done with a simple bucket brigade of
logical tests. Somehow | am sure that there is a neater way to do this.

ZPVAL Is a table of inltlal values for page zero locations. PSXVAL is a
similar table of initial values for page six locations. COLTAB is the tabie
that specifles tfree colors for each month of the year. MPTS gives the point
scores allocated for each captured city. MOSCX and MOSCY glive +the
coordinates of citles that earn points., TXTMSG is a very simple subroutine
that puts a 32-byte text message onto the screen.

COMBAT MODULE

This module handles combat resolution and logistics for the mainline
routines. It is nothing more than a set of subroutines called by the
mainline routines as needed. Hence, Its layout and structure are simple.

The fundamental design of the combat system is not obvious. All combat
systems have as their Inputs the strengths of the opposing units and the
environmental condi*lons under which they fight. All such systems attempt to
determine outcomes as functions of these Input conditions. The normal
outcomes are reductions In strength and retreats. This game has two types of
strength to reduce, which adds some richness to the possibllities.

The unique aspect of this combat system lies In the I[terative nature of
the combat results system. Instead of trying to compute the outcome of the
battle with a single formula, this routine breaks a week-long battle up into
many tiny battles which are resolved by simple rules. Each mini-battle can
kill only a small number of muster and combat strength points on each side.
Thus it is the aggregate effect of many such battles that determines the
overall outcome of the battle. The sensitivity and power of the combat
results system arises from the statistical behavior of this ensemble of many
small battles.

This raises a very Important point in game or simulation design: many
very advanced functions can be generated using Iterative methods with very
simple arithmetic. Many people claim that good simulations cannot be done on
microcomputers because 8-bit arlthmetic is not good enough. While It Is
certalnly frue that eight bits are hard to work with, we must remember that
eight bits of resofution give better than one percent accuracy In stating a
properly normalized number. WIith imaginative programming these machines can
do a great deal of Impressive simuiation.

SOUND AND GRAPHICS EFFECTS

The module begins with the combat resolution routine at $4ED8. [t first
clears the flag VICTRY, which is used to tell the mainline routine if the
attack was successful. |If so, the attacking unit will be allowed to enter
the square it attacked. It then checks the attacking unit (ARMY) ‘o make
sure that it is not a Finnish unit. Finnish units are not allowed to attack.

The next step (lines 1270-1400) is to create the combat graphic iIn which
the defending unit flashes In solid color. This Is done by replacing the
unit's original representation on the map with a solld square of color.
There must be some logic to determine the nationality of the defending unit
(red for Russians, white for Germans). The character used Is simply the
solid character used for the borders of the map and the open seas. We'll
replace the original character later on.

Now we must make the machine gun sound. This Is done 1In lines
1410-1520. My original intention was to create a deep explosion sound,
rather |lke artillery. The result was not at all what | expected, but |
Iltked It so much | fleft it as It was. The loop in lines 1430-1520 changes
the frequency and the volume of the sound produced. The sound is stretched

-24-

out with subroutine STALL from the mainline module.

A great deal of time Is killed in this loop, deliberately so. When |
first ran these routines with no delays the motion and combat happened so
fast that | had no chance to observe what was happening. | pushed the START
button and saw pieces flying all over the screen I|ike banshees. |t was all
over in less than a second. | decided that the player would enjoy sweating
his turn out, so | put In longer and longer delays until I+ seemed right.

In lines 1560-1590 | put the defending unit's piece back on the map.
The rest of the routine will execute very quickly.

COMBAT RESOLUTION

In lines 1620-1760 | evaluate the factors affecting the defender's
strength. There are three: the defender's combat strength (CSTRNG), the
terraln that the defender Ilies in, and the motion of the defender. Terrain
evaluation 1Is simple. Terrain can halve, double, or not affect the
defender's strength. Notice the test on lines 1690-1700. This protects
against overflow. |f a large number Is doubled too much I+ can overflow and
produce a small number---an unfortunate inaccuracy. | guard against this by
monitoring the Carry bit and reloading an $FF If It strikes.

In lines 1740-1760 | implement a very simple rule: defenders who are
moving at the time they are attacked have thelr defensive strength halved.
The implementation is about as clean and simple as you can get. This makes
an important point about designing with a microcomputer. Some things are
trivially simple to do; this operation requires six bytes of code and nine
cycles of execution time. Other operations, such as logistics evaluation,
are painfully difficult to execute. A designer needs a feeling for what can
be done easily and tries whenever possible to work with the grain of his
machine rather than against it. Of course, If he/she Is to produce anything
interesting, he/she must eventually cut across the grain. Doling It well Is
t+he hallmark of brilliant design.

In lines 1800-1900 the defender gets to make a first strike against the
attacker. The defender's adjusted combat strength in the accumulator Is
compared with a random number. If It Is less than the random number, the
defender's pre-emptive strike fails and the attacker makes his strike. If It
Is greater, the strike succeeds. The attacker suffers the standard loss: he
loses one point of muster strength and five points of combat strength. A
test Is then made to see If the attacker dies or breaks. More on death and
breakage later.

On line 1940 we begin the main point of the whole routine, indeed of the
whole game. ("The decision by arms Is for all operations In war what cash
settiement is In trade"---Clausewitz). We figure the attack. The only
ad justment made on the attacker's combat strength is the halving of attack
strength [f the attacker is on a river square. Then we compare the
attacker's strength with a random number just as we did with the defender.
|f the attacker's adjusted combat strength is less than the random number,

-25-

the attack fails and the combat routine terminates. |I|f it is greater, then
the attack succeeds and many things must happen. First, the defender loses
one muster strength point and five combat strength points. That's easy
enough to execute (lines 2100-2140).

Next, we must check If the defender dies. |f so, we jump to subroutine
DEAD, which handles all +he paperwork for killing wunits. This s
surprisingly extensive. His combat strength, muster strength, and orders
must be zeroed. His execution time and arrival times on the map must be set
To nonsense values to preclude his relincarnation. Finally, the body must be
removed from the map with subroutine SWITCH.

If the defender did not die, we then test for breakage. This Is an
important concept in the game. A unit will stand and fight up to a point.
At some point morale will break and the unit will collapse and run. Research
has shown that this most often happens when some fraction of the unit's
strength is destroyed. | chose to measure the Iintensity of a unit's
casualtlies by comparing the unit's combat strength with its muster strength.
If the combat strength falls below some set fraction of the muster strength,
the unit breaks. The fraction used depends on the nationality of the unit.
German and Finnish units were fairly tough; they don't break until their
combat strength falls below one-half of their muster strength. All other
units break when thelir combat strength falls below seven-eighths of their
muster strength. The calculations for this are carried out In subroutine
BRKCHK, |ines 4980-5200. Any unit that breaks forgets any orders that had
been assigned to it. Your priorities change when you're on the run.

If the defender does not break, the combat routine terminates. If he
does break, he must retreat. This Is a complex procedure; It Is executed in
lines 2210-2750. The basic Idea of this code is that the defender attempts
to retreat in various directions, but can find his retreat path blocked by
zones of control, enemy or friendly units, or open ocean. |f any of these
events occurs, the unit suffers a penalty and attempts another route. |f no
retreat path Is avallable the unit suffers heavy losses and remains in place.

An important subroutine for this retreat process is RETRET (lines
2850-3410), which checks for the various conditions that block retreats and
exacts the penalty for blocked retreat paths.

|f the defender can retreat, the retreat is executed In |ines 2500-2630.
The victory flag is set to tell the mainline routine that the attacker may

Indeed move into the defender's square regardless of the presence of enemy
zones of control.

The combat routine terminates by incrementing the execution time of the
attacking unit,

LOGISTICS

The supply evaluation routine Is the next major routine In the module.
The basic Idea of the routine is to start at the location of each unit and

-26-

trace a line from that unit to +the appropriate edge of the map without
encountering a blocking square. A blocking square Is a square contalning an
enemy unit, a square in an enemy zone of control (unless occupied by a
friendly unit), or an open sea square if the unit Is Russian. If a blocking
square is encountered, the routine must fry to trace the l|ine In another
direction. |t Is very easy in such circumstances for a routine to hang up in
an infinite loop bouncing between two blocked squares. | precluded this by
the clumsy solution of counting the number of blocked squares encountered and
declaring the line blocked when the count exceeded a critical value. This
critical value depends on the nationality of the unit and the season. There
are also seasonal effects on German units. During mud, they receive no
supplies at all. During winter, the probability that a German unit will
receive suppllies depends on how far east the unit has gone. The further
east, the smaller the probability. Let's see how all this Is done.

The first thing to do is skip units which have not yet arrived on the
map (lines 3450-3490). |In line 3510 | determine the nationality of the unit.
If 1+ Is Russian, | skip the weather determination section. Notice the
redundant code on line 3530. | blew It+. | determine the season in lines
3540-3550 by examining the color of the ground. That's the simplest way to
find out the season. If [t Is mud, there is no supply, perlod. |If It Is

winter, then | perform a rather odd calculation. | quadruple the unit's
longitude and add $4A. This guarantees that the resulting number in the
accumulator will |ie between 74 and 254. This number becomes the probability
(measured against 255) that the unit will receive supplies. Thus, Germans on

the west edge of the map have about a 99 percent chance of getting supplies
while Germans on the east edge of the map have only a 30 percent chance.

There are two major loops in the logistics routine. The inner loop,
labelled LOOP90, attempts to choose a safe direction in which to move from
the current square. The outer loop, LOOP91, performs the jump to the chosen
square. The inner loop always attempts to jump towards the home map edge
(HOMEDR). |f that fails, 1t attempts random directions until It finds a way
out or it runs out of tries.

After supplies have been figured, any Russian units In supply have two
points added to their muster strength. This Is a Russian advantage.

ZONE OF CONTROL

The next routine tests for zones of control. Specifically, It answers
the question, "Is there an enemy zone of control extending Into square (LAT,
LONG) for a German/Russian unit?" The algorithm used Is as follows: Examine
the square in question to see If it is occupied by an enemy unit. |If so, the
square Is automatically considered in a zone of control. |f It Is occupied
by a friendly unit other than the unit In question, then the square Iis
automatically out of any zones of control. |f the square Is unoccupied, then
we examine all surrounding squares to determine [f they are occupied by enemy
units. Units 1in corner squares add one to the ZOC counter. Units In
directly adjacent squares add two to the ZOC counter. If the ZOC counter
equals or exceeds two, a zone of control Is cast into the square.

-27-

The routine begins by zeroing the ZOC counter. Then it sets the TEMPR
register with a value that Identifies the original unit's enemy as either
Russian ($40) or German ($C0). Then it examines the contents of the square
by calling TERRB. If the square is unoccupied, it branches ahead to A74. |f
it Is occupied, It compares the nationality of the occupying unit (AND #$CO)
with that of the original unit (CMP TEMPR). |f they are equal, It Is an
enemy unit and the routine immediately sets the ZOC counter and terminates.
I they are unequal, It Is a friendly unit and the routine must find out If
it is the same as the friendly unit. This Is done by comparing coordinates
(l1ines 4410-4460).

If fthe square Iis unoccupied, the surrounding squares are examined by a
sneaky scheme. There is a table In memory called JSTP+16 that holds jump
vectors for a walk around a square. The system works |ike this:

8 1—2
by
7 X 3
4 }
6a—5e—14

Starting at X, and proceeding In sequence around X as indicated by the
numbers, the sequence of steps is:

(O=north 1=east 2=south 3=west)
0,1, 2,2,3 3,0,0

These are +he values seen in the JSTP+16 table, backwards for the 6502's
countdown capability. Thus, to execute a walk around the square X, we
execute jumps In the directions specified in the JSTP+16 tabie. The complete
walk around the square is executed In |ines 4510-4740.

THE IMPORTANCE OF ALGORITHMS

This routine demonstrates a very Important principle of software design:
the best way to Improve performance Is to re-examine your algorithms very
closely. When | first wrote this routine 1t was very large and slow. The
original aigorithm was simple and obvious, but much too slow. I+ examlned
each and every unit In turn, subtracting its coordinates from those of the
square in question. |If the difference of both sets of coordinates was one,
the two units were diagonal to each other and | Incremented the ZOC counter.
If the difference of one pair of coordinates was zero and the other
difference was one, then | added two to the ZOC counter. The algorithm is
fairly obvious but It required over 200 bytes of code and a very long time +o

-28=

execute. | tried many of the standard means of speeding it up, but they made

it even bigger. | finally grew desperate enough to carefully rethink the
entire algorithm. After much brainstorming | came up with the current
algorithm, which 1is subtler but much more efficient. | saved nearly a

hundred bytes of code and cut the execution time for typical operations to a
third of I+s previous value. The moral of the story Is, rethinking your
algorithms will frequently net you far more performance than any amount of
clever codling.

-29=-

THINKING MODULE

This module handles but one task: the artificlial Intelligence for the
Russian player. It has one entry point at $4700 and one exit point at $4C22.
I+ includes several subroutines and data tables for its own use. Thus, this
is the most direct and stralghtforward routine of the entire program.
Unfortunately, it is also the most involved routine of the program. It Is
also the biggest, including about 1.5K of code. To make matters worse, it is
almost devoid of comments. This module was one of the best-planned modules
In the entire program. For this reason | felt |ittle need to comment on It
as | was writing the code. That just makes the task more difficult now.

The basic goal of this routine is to plan the moves of the units. This
translates into the specific task of producing values of WHORDS and HMORDS
for each Russian unit. Many factors must be considered in computing the
orders for each wunit. The routine must determine the overall strategic
situation as well as the local situation that the unit finds itself In. This
wifl tell whether the unit should think In terms of attack or defense. The
overall situation s determined by computing the danger vector. The danger
vector tells how much danger is coming from each of the four directions.

The unit must evaluate the four possible directions it can move In.
Each direction must be evaluated in terms of the danger vector, the nature of
the terralin, the impact of the move on the Integrity of the Russian line, the
possibility of traffic jams, and the presence of German units. All of the
surrounding squares must be evaluated and the best one chosen.

The really difficult aspect of the decislon-making process is the
necessity of coordinating the moves of all Russian units. The problem Is
made vastly more difficult by the fact that we must coordinate each unit's
possible move with +the possible moves of all the other units. The
possibilities multiply in a tfruly mind-boggling manner. My solution was
rather esoteric. Imagine the Russian army lying In its positions at the
beginning of a <urn. Imagine now a ghost army of virtual Russian units,
inittally springing from the real army, but with each ghost army plotting a
path of its own across the map. Each ghost plans its path based on the
assumption that the other ghost armies represent the concrete reality that
must be conformed to. Thus, each ghost in turn says, "Well, if you guys are
gonna move there, |'m gonna move here." One at a time, the ghost army
ad justs Iitself Into new positions. This process can continue until each
ghost can say, "If you guys are gonna be there, |'m gonna stay right where |
am." In practice this situation Is almost achieved after only about ten
iterations, However, If the player presses the START button, the [terations
stop and the ghost army becomes the destinations for the real army. In this
way hypothesis Is converted into plans.

OVERALL FORCE RATIO

The moduie begins at line 1680. The first task is to calculate the
overall force ratio. This is the ratio of total German strength to total
Russian strength, end 1s a wusefu! (indicator of +the overall strategic
situation. To calculate this number, we must first add up the total German
strength and the total Russian strength. This calculation is made Iin lines

-30=-

1730-1870. The upper byte of the total strengths Is stored in TOTGS (total
German strength) and TOTRS (total Russian strength).

The next problem is to calculate the ratio of these two numbers. This
Is a simple long division. Unfortunately, | was not prepared to do a long
division. Such arithmetic takes many machine cycles to crunch and many bytes
of code to do properly. The floating point arithmetic package provided in
the Operating System ROM did not Iinterest me. So | wrote my own special
routine +to handle the problem. This 1Is an example of Individual
crotchetiness, not judicious planning. | probably should have used the
floating point package, or at least a decent 16-bit Integer arithmetic
package, but | was too lazy and impatient.

The first problem | must solve arises from the high probability that the
total German strength 1Is going to be very close to +the tfotal Russian
strength. |f | take a stralght ratio of the two | will very probably get a
result of 1. Since | will have Integer arithmetic, my result won't be very
sensitive to changes In the total strengths. | solved +this problem by
arbitrarily multiplying the ratio by 16. I+'s my program and | can cheat on
the arithmetic if | want to.

Unfortunately, multiplying by 16 creates a new problem. Should |
multiply the quotient by 16 or divide the divisor by 16? Either approach
will have the same effect, and both approaches have the simplicity of belng
executed with simple logical shifts. But dividing by 16 loses some precision
in the quotient, and multiplying by 16 runs the risk of losing the whole
number. For example, what if total German strength is 17 and | multiply by
16 by ASLing four times? | don't get 272 for an answer, | get 16. Check it
out for yourself.

Here's the clunky solution | came up with: ASL the dividend (line 1950)
until a bit falls off the high end of the byte into the Carry bit (line
1960). Put it back where it belongs (line 1970) and then LSR the divisor
(line 1980) the remaining number of shifts.

Now | am prepared to do a dumb long division (lines 2070-2140). Load
the dividend Into the accumulator. Keep subtracting the divisor from it
until It is all gone. The number of times you subtract the divisor is the
quotient. It's dumb, 1it+'s slow, but It works. More important, | can
understand i+. The final result Is stored in OFR, the overall force ratio.

INDIVIDUAL FORCE RATIOS

The next task is to calculate the individual force ratios. The war
might be going really well for Mother Russia, but the 44th Infantry Army may
not find conditions as rosy if it Is surrounded, out of supply, and being
attacked by four Panzer Corps. It Is necessary to supplement global planning
with a local assessment of +the situation. This 1Is expressed in +the
individual force ratios. There are five Iindividual force ratios: Four
express the amount of German danger bearing down on a Russian army from the
four cardinal directions. The fifth expresses the average of these four.

~31=

The fifth Is called the individual force ratio (IFR). The other four are
called the IFRN, IFRS, IFRE, and IFRW, for the directions they represent.

SUBROUTINE CALIFR

Subroutine CALIFR (lines 8390-9690) calculates the Individual force
ratios. This is an extensive computation which requires a great deal of time
and memory. The fundamental idea behind this subroutine is that danger s a
vector, having both a magnitude and a direction. This subroutine determines
aggregate magnlitude and the aggregate sum of the danger to the unit.

The subroutine begins by zeroing the local variables IFRO, IFR1, IFR2,
IFR3, and IFRHI. These correspond to the IFRN, IFRE, |FRS, IFRW, and IFR
tables, but are easier to use In the routine. After initializing some
coordinate variables, the first large loop begins.

This loop, beginning with |ine 8520, extends all the way to |ine 9230,
Its purpose is to calculate the directional IFRs, so it Is really the meat of
the subroutine. |t sweeps through each unit, first checking If the unit Is
on the map (lines 8520-8540). |If so, It determines the separation between
the tested unit and the unit whose IFR is being computed. |t measures this
In terms of both the total distance between the two (ignoring Pythagoras) and
the X-separation (TEMPX) and the Y-separation (TEMPY). Units further than
eight squares away are considered to be too far to be of any local

consequence (lines 8680-8690). The range to closer units Is halved and
stored in TEMPR.

The unit's combat strength determines the magnitude of the unit's
threat. We must also calculate the direction to the unit. This Is done In
lTnes 8750-9020. These |ines test the direction vectors to determine the
overall direction to the unit. The result of these tests is a value In X of
0, 1, 2, or 3. This value specifles the direction of the threat.

In lines 9030-9150 we determine the magnitude of the threat. We get the
combat strength of the tested unit, divide by 16, and check to see if the
tested unit Is Russian or German. If Russian, the result is added to the
running sum of local Russian strength (RFR). |If German, it is added to the
running sum of local German strength in the direction specified in the X
register. This done, program flow loops back to the next unit in sequence.

The next chunk of code, |ines 9250-9320, add up all the danger values
from all four dlirectlions and leave the result in the accumulator.

The next chunk of code, |ines 9350-9570, calculates the final Individual
force ratio In much the same manner that the overall force ratio was
calculated. The dividend is multiplied by 16 (lines 9350-9420), and then the
divisor [s subtracted from the dividend repeatedly until the dividend is all
gone (lines 9450-9510). The count of the number of subtfractions equals the
quotient. This quotient is averaged with the overall force ratio (lines
9540-9560) and the result is stored in the IFR for t+he unit. The only
remaining function is to move the local directlional IFRs to the unit=specific

-32-

IFR tables (lines 9610-9680).

Subroutine INVERT Is a simple absolute value routine. It takes a value
In the accumulator and returns the absolute value of the number in the
accumulator. You may have noticed that It was used heavily in the code. By
JSRing to INVERT+2, we get the negative value of the accumulator returned.

Back in the main part of the module, we complete the IFR loop by setting
the army's current position (CORPSX, CORPSY) to the objective position (OBJX,
oBJY). OBJX and OBJY are the coordinates of our ghost armies. This
completes the initialization loop. We now enter the main loop of the
program.

MAIN LOOP STRUCTURE

The main program loop begins on line 2340 and extends all the way to
line 7290. IT Is obviously a gigantic loop, and It takes a long time to
execute. It is also an Indefinitely terminated loop. |t does not terminate
after a specific number of passes. |t keeps looping until the player presses
the START key. The main loop sweeps over the entire Russian army. The inner
loop sweeps over each unit In the Russian army.

The first task of the loop Is to ignore militia armies and armies that
are not on the map. Militia are not allowed fo move. |f an army does not
fail these two tests in lines 2360-2420, then the local military situation
for the army Is evaluated. This Is done by comparing the army's individual
force ratio with the overall force ratio. If IFR=0FR/2, then the army must
be more than eight squares from the nearest German unit. This conclusion can
be made from the way that CALIFR calculates the IFR. |f the army Is far from
the front, then 1t is treated as a reinforcement. |f not, It Is treated as a
front-line unit, and a different strategy Is used.

REINFORCEMENT STRATEGY

The job of a relnforcement Is to plug weak spots in the line. This
requires that the unit be able to figure out where the line Is weak, no easy
task. The trick Is to use the existing Russian front-line units as gauges
for the seriousness of the situation at any segment of the front. Where the
front is solid, the |FRs of the front-line units will be low. Where the
front is weak, their IFRs will be large. So we need merely examine the IFRs
of all Russian units, select the largest, and head in that army's direction.
Well, not quite. We don't want all the reinforcements heading for the same
spot or the beleaguered Russian army will find himself +tframpled by his
rescuers. More important, we need to take into account the distance between
unit in distress and rescuer. There is no point in rushing to save somebody
several thousand miles away.

The code to do all this extends from |ine 2470 to line 2870. The

section starts by Initializing BVAL to the value of OFR/2. BVAL stands for
"best value" and is used to store the value for the most beleaguered Russian

=33

army. Then a loop begins at line 2520 which sweeps through all Russian
armies, rejecting off-map armies and calculating the separation between the
tested army and the reinforcing army. This separation is divided by 8 (lines
2660-2680). | cannot now figure out the purpose of the branch in line 2690.
It throws out the tested army I1f the separation had bit D3 set. A very
strange test indeed. Lines 2700-2760 subtract the separation from the tested
unit's IFR and compare the result with the best previous result. If the new
result is bigger, then this unit has a better combination of proximity and
(get this) beleagueredness. This unit becomes the preferred unit. Its value
Is stored in BVAL and its ID number is stored in BONE (best one). Then we
move on to test another unit. When all units have been tested the best one
is selected for support. Its coordinates become the objective of the
reinforcing army. The Jjob of planning that army's move Iis done and the
routine jumps to the end of the loop (TOGSCN).

STRATEGY FOR FRONT-LINE ARMIES

Front-line armies have a very complex strategy. They must evaluate a
large number of factors to determine the best possible objective square.
These factors are: the army's IFR, Its supply slituation, the accessibility of
the square, the straightness of the l|ine that would result, the vulnerabillty
fo being surrounded, the danger imposed by nearby Germans, the possibility of
a traffic jam, the terrain In the square, and the distance to it. Let's take
it slowly.

In lines 2990-3050 we perform a simple test to see if the unit should
take emergency measures. We ask, is the army seriously outnumbered? Is It
out of supply? |f either answer is yes, then this army is probably tfrapped
behind German iines and it must escape to the east. |t Is glven an objective
square directly east of Iits current position. It will frantically crash
eastward, regardless of tThe clircumstances. It will even attack vastly
superlor German units in [+s haste.

This may strike you as pretty stupid. | gave a good deal of thought to
the problem and | am convinced that this is the best all-round solution. My
first solution was much more Intelligent: | had such Russian units run away
from the Germans. This normally meant that they ran to the west, straight
for Germany. This Is not very realistic. I+ also forced the player to
assign large numbers of troops the boring job of tracking down and finishing
off the forlorn Russian armies. | considered having cut-off Russians sit
down and stay put, but then they would never have any chance of escapling.
Quite a few Russians do Indeed escape with this system, so | think it has
proven to be a successful way of dealling with a difficult probiem.

NORMAL FRONT-LINE ARMIES

If an army is not In trouble then i+ must choose a direction in which to
move. The computatlions for this choice begin in line 3130, with DRLOOP, the
direction loop. The critical loop variable is DIR, the direction of movement
being evaluated. For the purposes of this loop, DIR takes the following

meanings: O=north, 1=east, 2=south, 3=west, FF=stay put. This loop answers
the question, "Should this army move in direction DIR?" |+ first determines
The square being moved into (lines 3160-3240). The coordinates of this
target square are TARGX, TARGY. The square being left Is a ghost army square
at OBJX, OBJY. The value of this target square is SQVAL. After verifying
that the square can be entered (Iines 3290-3340), the primary logic begins.

LINE INTEGRITY COMPUTATIONS

To figure whether a move will result in a solid line or a weak line, it
Is first necessary to give the computer some Iimage of what that |Ine looks
lilke. | did this by creating two arrays. The first array is called the

direct line array and Is stored in LINARR. This array Is 25 bytes long and
covers a 5-by-5 square. The square being tested Is always at the center of
the big square. The routine will not evaluate the entire Russian l|ine, for
that task is Impossibly large. Instead, It will treat it as a collection of
short |ine segments and evaluate each segment for desirable configuration.

The big square is addressed by starting at the central square, whose
coordinates are TARGX, TARGY, and stepping outward in a spiral from this
square. The direction vectors for this spiral path are specified In a table
called JSTP. The counter for the steps is called JCNT. The coordinate of a
I1ttle square being considered within the big square is always SQX, SQY.

The contents of the big square are computed with two nested loops,
LOOP56 and LOOP55 (lines 3450-3800). The outer loop steps through each of
the 25 squares in the big square (except the central square, which we assume
will contain the ghost army). The Inner loops sweeps through all Russian
armies to see If one's objective Is in the square being tested. Note that we
check not for the presence of the unit itself (CORPSX, CORPSY) but rather for
the intention of the unit to go to the square (OBJX, OBJY). This is how we
coordinate the plans of the different armies. I|f a match is obtained, the
muster strength of that army 1Is stored Intc the array element (lines
3760-3780). We then store the muster strength of the army whose plans are
being made Into the array element for the central square. When this task is
completed we have an array, LINARR, which tells us how much Russian muster
strength is In each of the 25 squares surrounding the square in question. We
can now examine the structure of this configuration. We will examine It from
four different directions: north, south, east, and west. We will keep track
of which direction we are looking from with the variable SECDIR (secondary
direction).

THE LINE VALUE ARRAY

A very useful tool for examining this two-dimensional array is to
construct a one-dimensional representation of Its most important feature.
This one-dimensional representation will answer +the question, "How far
forward is the enemy In each column?" A picture might help:

-35=

LV ARRAY: 5, 5,5 5,5 5,4,3, 21 1, 1, 1, 1,1

If a particular column 1is not populated at all, the value 1In the
corresponding LV entry is five.

Lines 3920-4220 build the LV array from the LINARR. The variable POTATO
(remember | told you | sometimes used funny variable names?) counts which
column we are Iin. The Y-register holds the row within the column, and the
X-register holds the LINARR index. The loop searches each column looking for
the first populated square. When it finds one, the row index of the square
is stored in the LV arrray. |If It finds no populated square in the column,
it assigns a value of 5 fo the corresponding LV element. The sequence of
CPX, BNE, LDX instructions in |Ines 4060-4220 transiate the current row count
in X into an index for LINARR and resume the loop. This is the clumsiest
kind of code. It is speclial purpose code, code that Is executed only once
per condition. During program execution, much of the code Is effectively
useless, testing for conditions that do not exist. A more elegant sclution

is called for here. | was too lazy to be elegant; | just slopped the code
together.

EVALUATING THE STRENGTH OF THE LINE (LPTS)

Now that the analytical tools we need are In piace, we are ready to
begin analysis of the position. We shall analyze the strength of a given
IIne configuration by assigning points to it. We will assign various points
for the various features we look for in a good line. These points will be
stored in a variable called LPTS. Initially, we shall set this variable to
zero and during the course of the evaluation we shall add to It or subtract
from it.

The calculation begins on |ine 4240. We first evaluate the
configuration for its completeness. |Is there a unit in every single column
in the array? For each populated column, we add $28 to LPTS (now In the
accumulator). This Is done In |ines 4240-4320.

We then test if the contemplated presence of our army would fill an
otherwise empty column. The test for this is simple and Inelegant (lines
4360-4460). An easier way to have done this would have been LDA LV+2/CMP
#3$02/BNE Y95. It seems so simple and obviocus now. in any event, If the
conditlon is satisfied, we add $30 to LPTS.

~36-

We don't want to create a traffic jam, so we must evaluate the degree of
blocking In this array. This is done by testing the frontmost unit in each
column and looking behind It; If somebody Is In that square the retreat route
of the front unit and the attack route of the rear unit are both blocked.

This 1Is <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>